
Chaos ARTICLE scitation.org/journal/cha

Kantorovich–Rubinstein–Wasserstein distance
between overlapping attractor and repeller

Cite as: Chaos 30, 073114 (2020); doi: 10.1063/5.0007230

Submitted: 11March 2020 · Accepted: 16 June 2020 ·
Published Online: 7 July 2020 View Online Export Citation CrossMark

Vladimir Chigarev,1 Alexey Kazakov,1,2,a) and Arkady Pikovsky1,3

AFFILIATIONS

1National Research University Higher School of Economics, 25/12 Bolshaya Pecherskaya Ulitsa, 603155 Nizhny Novgorod, Russia
2Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, 603950 Nizhny Novgorod, Russia
3Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany

a)Author to whom correspondence should be addressed: kazakovdz@yandex.ru

ABSTRACT

We consider several examples of dynamical systems demonstrating overlapping attractor and repeller. These systems are constructed via
introducing controllable dissipation to prototypic models with chaotic dynamics (Anosov cat map, Chirikov standard map, and incom-
pressible three-dimensional flow of the ABC-type on a three-torus) and ergodic non-chaotic behavior (skew-shift map). We employ the
Kantorovich–Rubinstein–Wasserstein distance to characterize the difference between the attractor and the repeller, in dependence on the
dissipation level.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0007230

In studies of chaos and complex dynamics in dynamical sys-
tems, one usually distinguishes cases where the phase volume is
conserved (conservative dynamics) and those where it decreases
in time (dissipative dynamics). Recently, a mixed dynamics
attracted much attention, where attractors (limiting sets forward
in time) and repellers (limiting sets at the dynamics backward in
time) overlap but do not coincide. Here, we introduce a simple
way to generate such an overlapping by adding dissipation to the
conservative systems in a special controlled way. To characterize
the difference between attractors and repellers, we suggest the use
of the Kantorovich–Rubinstein–Wasserstein distance (KRWD).
This concept, also called earth mover’s distance, is a general tool
defining distance between two probabilistic measures via calcu-
lating minimal costs of “transportation” from one measure to
another. In this work, we present the results of calculation of
KRWDs for different examples of overlapping attractors and
repellers.

I. INTRODUCTION

Studies of attractors and repellers are central in the nonlin-
ear dynamics of dissipative dynamical systems. However, there are
different notions and definitions of these objects, relevant in differ-
ent situations. Mostly, often one deals with isolated attractors that

absorb, as time goes on, all the points from a whole neighborhood
(see, e.g., Ref. 1). If the phase space of the system is closed (for exam-
ple, a high-dimensional torus in the case of the phase dynamics or a
sphere for a spin–torque oscillator) or a system is time-reversible,2,3

one can also consider the dynamics backward in time and define a
repeller as an attractor of the backward dynamics. Isolated attractor
and repeller do not overlap (but they can collide4–6).

In Refs. 7 and 8, it has been demonstrated that the attractor and
the repeller can overlap giving the so-called phenomenon of mixed
dynamics (see Refs. 9–11 and references therein). In this case, it is
convenient to speak not on topology of these sets, but on invariant
measures. The invariant measures for the attractor and the repeller
are different and both are fractal, but they can have the same sup-
port (in the examples below this will be the full phase space). For
dissipative dynamics with a compact phase space, the phase volume
decreases both by forward and backward iterations so that both the
attractor and the repeller are fractal sets. They will evidently overlap
if their supports are the full phase space (so that the box-counting
dimensions are the dimension of the phase space). Higher-order
dimensions are, however, smaller. It is worth noting that systems
with such behavior can be ergodic and, even, hyperbolic.12,13 In this
paper, we do not focus on the fractal properties of the attractor and
the repeller but on the difference—distance—between them.

In our examples, we start with area-preserving two-dimensional
maps which possess a uniform invariant measure by iterations both
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forward and backward in time. Upon including dissipation (i.e.,
phase volume decreases in some regions and increases in other
ones), the time-reversal symmetry is broken, and the attractor and
the repeller invariant measures become different. We suggest to
characterize the distance between these two measures with a well-
established approach of the Kantorovich–Rubinstein–Wasserstein
distance. This concept first appeared in the optimal transportation
problem, where it is also known as the Earth Mover’s Distance
(EMD). The idea is to find an optimal “transportation” of one mea-
sure to another with a proper definition of costs (which in most cases
are just proportional to the ground distance multiplied with the
transported mass). While this concept has been previously applied
to characterize the difference between attractors of a dynamical sys-
tem at different parameter values,14–16 to the best of our knowledge,
it has not been suggested as a measure of the attractor–repeller dif-
ference. For other relations of the transportation problem to theory
of dynamical systems, see Ref. 17.

The paper is organized as follows. In Sec. II, we introduce four
basic models, three of them are maps given on a two-dimensional
torus possessing the uniform invariant measure: the Anosov cat
map, Chirikov standard map, and skew shift. We also define a con-
venient way to introduce dissipation to these systems, by employing
a Möbius circle map,18,19 and illustrate appearing attractors and
repellers. The fourth model is the incompressible three-dimensional
flow of the ABC-type on a three-dimensional torus where dissi-
pation is introduced straightforwardly. We present attractors and
repellers in all these systems. In Sec. III, we define the Kan-
torovich–Rubinstein–Wasserstein distance and perform its numeri-
cal evaluation for the attractors and repellers. We discuss the results
in Sec. IV. In the Appendix, we give some details on the computation
of the KRW distance and evaluate computational complexity.

II. BASIC MODELS

In this section, we introduce four models to be explored numer-
ically below. All these models have a compact phase space. First, we

will define three maps on a two-dimensional torus 0 ≤ x, y < 1. In
these examples, quite a full understanding of attractors and repellers
can be achieved. We will start with the “pure” cases where these
maps conserve the phase-space volume (Jacobian is exactly 1), and
then add dissipation. The fourth example is a smooth continuous-
time dynamical system on a three-dimensional torus. Here, we can
say less about the topological organization of the dynamics, rather
we will rely on a numerical analysis of the Lyapunov exponents to
show that indeed the attractor and the repeller exist in a certain
range of parameters.

A. Three maps on the 2-torus

The first map is the Anosov cat map A,

xn+1 = 2xn + yn (mod 1),

yn+1 = xn + yn (mod 1).
(1)

This is a prominent example of conservative hyperbolic chaos,20 see
Fig. 1(a), demonstrating that the stable and the unstable manifolds
of the saddle fixed point O(0, 0) intersect transversally.

The second map is the Chirikov standard map C

xn+1 = xn + K sin(2πyn) (mod 1),

yn+1 = yn + xn+1 (mod 1).
(2)

This map is the prototypic example of Hamiltonian dynamics with a
divided phase space.21 For small values of parameter K, the dynam-
ics is nearly integrable, while for K � 1, it is predominantly chaotic.
Chaos here is not hyperbolic because the stable and unstable man-
ifolds of saddle points can possess tangencies [see Fig. 1(b)]. Thus,
generally, elliptic (stable) periodic orbits are not excluded.22 Practi-
cally, one hardly observes regular islands for large enough values of
K. Below, we adopt K = 14/(2π).

FIG. 1. Stable (in red) and unstable (in blue) invariant manifolds of (0, 0) saddle fixed point for the Anosov cat map (1) [panel (a)] and the standard map (2) with K = 14/(2π)

[panel (b)]. Panel (c): the 80th image of the square ([0.1, 0.2] × [0.1, 0.2]) densely filled by initial conditions for the skew-shift map (3).
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The third map is a linear skew shift over a circle rotation S,

xn+1 = xn + yn (mod 1),

yn+1 = yn + ω (mod 1).
(3)

This map is not chaotic, it has two zero Lyapunov exponents. It
is known that for irrational ω, it is ergodic map on the torus.23

Below, we fix this parameter as the inverse value to golden mean
(ω = (

√
5 − 1)/2). In order to illustrate its ergodicity, we plot in

Fig. 1(c) the nth iteration of a small rectangle ([0.1, 0.2] × [0.1, 0.2]),
densely filled by initial points. When n → ∞, the image of this rect-
angle gives a dense set along the y-axis. Figure 1(c) shows this image
for n = 80.

B. Möbius map

Next, we add dissipation to the maps above. This leads to the
emergence of regions where the area is contracted and of regions
where the area is expanded. This can be accomplished by apply-
ing a nontrivial circle map to one of the coordinates (or to both of
them). As we want to iterate the resulting map forward and back-
ward, the simplest map x → x + a sin(x) is not practical because it is
inconvenient to invert it numerically. Therefore, we use the so-called
Möbius map.18,19

The Möbius map (MM) is a circle map xn → xn+1 (mod 1)
depending on three parameters 0 ≤ u, v < 1, and −1 < ε < 1,

ei2π(xn+1−v) =
ε + ei2π(xn−u)

ε ei2π(xn−u) + 1
. (4)

For a numerical implementation, it is convenient to rewrite this
formula in the real form,

cos(2π(xn+1 − v)) =
(1 + ε2) cos(2π(xn − u)) + 2ε

1 + 2ε cos(2π(xn − u)) + ε2
,

sin(2π(xn+1 − v)) =
(1 − ε2) sin(2π(xn − u))

1 + 2ε cos(2π(xn − u)) + ε2
,

and to express xn+1 from these equations using the standard ATAN2
function,

xn+1 = v +
1

2π
ATAN2((1 − ε2) sin(2π(xn − u)),

× (1 + ε2) cos(2π(xn − u)) + 2ε). (5)

Parameter ε determines level of contraction on the circle: for ε = 0,
the MM is a circle shift and for ε → 1, it maps almost all circle to a
small neighborhood of one point on it.

The MM is invertible; its inverse map, as one can easily see from
the following representation:

M(ε, u, v) : tan (π(xn+1 − v)) =
1 − ε

1 + ε
tan (π(xn − u)) (6)

is also a MM

M−1(ε, u, v) = M(−ε, v, u). (7)

We illustrate the action of MM and its inverse in Fig. 2.

FIG. 2. Möbiusmap (blue bold lines)M(ε, 0, 0) and its inverse (red lines) for three
values of the contraction parameter ε = 0.1, 0.3, 0.6.

C. Superposition of torus maps with the Möbius map

A combination of the MM with area-preserving torus maps
introduced in Sec. II A gives maps on a torus that do not conserve
area. We apply the MM with u = v = 0 to maps A, C, S in a symmet-
ric way, to preserve symmetry with respect to iterations backward
and forward in time,

A :

(

Mε 0
0 1

)

A

(

Mε 0
0 1

)

, C :

(

Mε 0
0 1

)

C

(

Mε 0
0 1

)

,

S :

(

Mε 0
0 1

)

S

(

Mε 0
0 1

)

. (8)

D. Attractors and repellers in the torus maps

We show attractors and repellers in maps (8) in Fig. 3. Panels
(a)–(c) show invariant measures for the attractor and the repeller.
We obtain these figures by plotting long trajectories of forward and
backward iterations. Panels (d)–(f) aim to illustrate the “backbones”
of these sets: in panels (d) and (e), we plot stable (in red) and unsta-
ble (in blue) manifolds of the fixed point (0, 0) for maps A and C; in
panel (f), a rational approximation for map S is presented.

For the perturbed Anosov cat map A, both the attractor
and the repeller are hyperbolic: all periodic orbits remain sad-
dles, and their stable and unstable manifolds intersect transversally
[see Fig. 3(d)]. For small values of the dissipation parameter ε,
this follows from the structural stability of hyperbolic chaos under
small smooth perturbations. For large ε, hyperbolicity is confirmed
numerically. Thus, we can conclude that there exists a pair of SRB
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FIG. 3. Forward iterations (blue dots) and backward iterations (red dots) of one of initial conditions for the Anosov cat map [panel (a)], the standard map [panel (b)], and for
the Strange nonchaotic attractor (SNA) [panel (c)]. Panels (d) and (e): stable (in red) and unstable (in blue) invariant manifolds of (0, 0) saddle fixed point for the Anosov can
map and the standard map, respectively. Panel (f): the attractor and the repeller for the skew-shift map for a rationalω = 5/8, demonstrating the loss of ergodicity. Parameter
of dissipation in the Möbius map in all cases is ε = 0.2.

(Sinai–Ruelle–Bowen)-measures: a forward SRB-measure is associ-
ated with the attractor and a backward SRB-measure is associated
with the repeller. Figure 3(a) shows the approximation for both for-
ward (in blue color) and backward (in red color) SRB-measures.
Figure 3(d) confirms that the forward SRB-measure is concen-
trated on the unstable invariant manifold, while the backward SRB-
measure is concentrated on the stable invariant manifold. Since
we break the conservativity, these two measures become mutually
singular.12

The standard map is not hyperbolic, as tangencies of stable
and unstable manifolds of periodic orbits are observed. Corre-
spondingly, small elliptic islands can exist even for large values of
parameter K, see Ref. 22. When MM is added, homoclinic tan-
gencies, see Fig. 3(e), generally can give rise to the attracting and
repelling orbits instead of elliptic ones.24,25 In numerics, we observed
them for relatively small values of K. However, for large K, such
orbits become “unobservable” [see Fig. 3(b)] because of very nar-
row basins. The situation here is similar to other nonhyperbolic
attractors (the so-called quasiattractors in the sense of Afraimovich
and Shilnikov26,27), which can potentially coexist with stable periodic
orbits. Correspondingly, nonhyperbolic repellers can coexist with
completely unstable periodic orbits (which are stable for backward

iterations). In fact, for large values of K, the perturbed Chirikov map
exhibits non-reversible mixed dynamics28,29 [see Fig. 3(b)] appearing
when a chaotic attractor intersects with a chaotic repeller in a system
that is not time-reversible.

It appears that Fig. 3(b) also gives a good approximation for
both forward (in blue color) and backward (in red color) measures
for the perturbed Chirikov map C, while Fig. 3(e) shows the unsta-
ble (in blue) and stable (in red) invariant manifolds of the zero fixed
point in this case. It seems that forward (backward) invariant mea-
sure is concentrated here on the unstable (stable) invariant manifold
as it was observed in the hyperbolic case [cf. Figs. 3(a) and 3(d) with
Figs. 3(b) and 3(e)]. However, there is no theory confirming this fact.
Probably, forward (backward) measure is concentrated here on the
closure of set of stable (completely unstable) periodic orbits, similar
to systems from Newhouse domains.8,9,30 However, we cannot see it
due to the finiteness of numerics. Thus, we can conclude that from
the numerical point of view, the nonhyperbolic Chirikov standard
map demonstrates the same chaotic properties as the hyperbolic
Anosov cat map.

The third example, the skew-shift map [see Fig. 1(c)], is non-
chaotic and belongs to examples of non-chaotic ergodic systems.
All unperturbed trajectories here are neutral (have two vanishing
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Lyapunov exponents). When dissipation is included via the MM,
the exponent in the x-direction becomes negative but the skew-
shift structure of the phase space, existing for irrational ω, prevents
the appearance of a smooth torus, so the attractor is fractal.31 The
same holds for the strange non-chaotic repeller. For this example,
the structure of the attractor and the repeller can be revealed not
through stable and unstable manifolds of a saddle point (which does
not exist) but via rational approximations.32 When the parameter
ω is rational (ω = p/q), the corresponding map loses ergodicity:
the circle shift in variable y on base of which the skew shift is
constructed, possesses a continuous set of periodic (with period q)
orbits. Correspondingly, the total dynamics can be split in period-
ically forced combination of a shift in direction x and of the MM.
It is known, that superposition of MMs is also a MM. On the other
hand, the MM has the following dichotomy: either there is a stable
and unstable fixed points, or the dynamics is conjugate to a cir-
cle shift, which for generic parameter values is ergodic. Therefore,
in dependence on the value of y, the qth iteration of map S with
ω = p/q demonstrates either a point attractor and a point repeller,
or an invariant set symmetric with respect to time inverse (alto-
gether there are q sets of each type). These sets are clearly seen in
Fig. 3(f). This structure exists for any rational approximation of the
irrational parameter ω, and the strange non-chaotic attractor and
repeller in Fig. 3(c) can be viewed as “limits” of the corresponding
rational approximations, one of which is shown in Fig. 3(f).

E. A chaotic flow on the three-torus

Here, we present an example of overlapping of the attractor and
the repeller in the continuous-time dynamics. The minimal dimen-
sion of the phase space for such systems is three, and we construct
our example on a three-dimensional torus 0 ≤ xi < 1, i = 1, 2, 3 as
follows. First, we take a dynamical system which conserves the phase
volume, similar to the three maps described in Sec. II A. We write it
as follows:

ẋk =
∑

j

(Akj cos 2πxj + Bkj sin 2πxj + Ckj cos 4πxj + Dkj sin 4πxj).

(9)
Additionally, we set

Akk = Bkk = Dkk = 0, Ckk = ε,

which allows us to control the divergence of the phase volume
through parameter ε. For ε = 0, the phase volume is conserved,
while for ε 6= 0, it is compressed in one part of the phase space
and expands in another part. Our goal is to find an example with
chaos in some range of values of ε. Searching sets of the coeffi-
cients Akj, Bkj, Ckj, Dkj taken randomly from a uniform distribution
on (−0.5, 0.5), we found a set yielding chaotic dynamics in the
interval 0 ≤ ε < 0.035. We checked this by means of the Lyapunov
exponents, calculated separately for trajectories of (9) forward and
backward in time. The result is presented in Fig. 4. It indicates, that
although the system (9) is not expected to be hyperbolic, chaos is
persistent at least for small values of the dissipation parameter ε.

While the trajectories of system (9) fill the whole three-
dimensional torus in the chaotic regime, it is not easy to represent
the dynamics in discrete time, as we have not found a good two-
dimensional Poincaré section without tangencies. Thus, we use a

FIG. 4. Lyapunov exponents in system (9) in dependence on the dissipation
parameter ε. Blue and red show the largest exponents for forward and backward
integration, respectively.

rather arbitrary section x3 = 0 and plot on it points of intersection
with a trajectory in both directions, to fill the full square, see Fig. 5.
The density of the map is of course non-uniform, it has pronounced
minima at the regions around tangencies of the flow (9) with the
section plane (i.e., regions where x3 = ẋ3 = 0).

At the end of this section, we would like to mention that
equations of type (9) have been recently studied in the context
of the phase dynamics of interacting nanomechanical oscillators.33

In another context, such equations are used to model chaotic sta-
tionary Lagrangian trajectories in three-dimensional fluid flows (a
prominent example here is the so-called ABC flow34).

III. KANTOROVICH–RUBINSTEIN–WASSERSTEIN

DISTANCE BETWEEN THE ATTRACTOR AND THE

REPELLER

Kantorovich–Rubinstein–Wasserstein distance (KRWD) is a
measure of similarity between two probability measures µ and ν.
It is defined as a solution of an optimal transportation problem in
the sense of Monge and Kantorovich, namely, as a transportation
protocol minimizing the cost needed to transport mass from µ to
ν. The most transparent formulation of KRWD is when both mea-
sures are weighted sets of point measures (i.e., densities are sets of
delta-functions, see Ref. 14),

µ =
n1

∑

i=1

αiδxi
, ν =

n2
∑

j=1

βjδyj
.

Then, any matrix fij ≥ 0, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2 satisfying

∑

i

fij = βj,
∑

j

fij = αi

delivers a possible transportation that transports one measure
into another one. An optimal transportation should minimize the
cost function defined according to the “performed work,” i.e.,
transported mass times the distance cij = ||xi − yj||2 between two
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FIG. 5. Poincaré sections of flow (9) at x3 = 0. At each panel, two different colors of points show cross section in one or in another direction (i.e., with ẋ3 > 0 and ẋ3 < 0).
Panel (a): symmetric case ε = 0, the attractor and the repeller coincide. Panel (b): The attractor for ε = 0.035. Panel (c): The repeller for ε = 0.035. Note that the bands
with small density (look white) separating regions of two colors correspond to lines of tangencies of the flow with the cross-sectional plane.

points

W(µ, ν) = min
∑

i,j

fijcij.

This minimal cost function is the Kantorovich–Rubinstein–
Wasserstein distance W(µ, ν). Of course, any metric could be used
as “distance” cij.

In the previous literature, KRWD has been applied to char-
acterize dynamical systems. In Ref. 14, KRWDs between the sets
obtained via iterations of a dynamical system (in particular, of the
Hénon map) at different parameters have been determined. Fur-
thermore, applicability of KRWD to detect synchronization of two
chaotic sets has been discussed. Below, we apply the KRWD to
characterize difference between attractors and repellers.

In Fig. 6, we show the results for the Kantorovich–Rubinstein–
Wasserstein distance between attractors and repellers for the three
maps presented in Sec. II C. The details of calculation are as follows.
We first constructed histogram approximations of the probability
densities, using a N × N grid on the unit torus, and 40 000 tra-
jectories (iterated forward and backward, respectively) of length
m = 25 000 (totally 109 points on both the attractor and the
repeller). Then, the Wasserstein distance was calculated according
to the definition above, with n1 = n2 = N2 (see the Appendix for

details). The distance on the torus was defined as
√

(1x)2 + (1y)2,

where 1x = min(|x1 − x2|, 1 − |x1 − x2|) and similar for 1y. To
check for possible errors due to finite grid, together with the distance
according to the constructed N × N histogram, we used “coarse-
grained” distributions on sets N

2 × N
2 , N

4 × N
4 , and N

8 × N
8 . In Fig. 6,

we show results for N = 64. The distances for N/2 = 32 deviated
from those at N = 64 by less than 0.5%.

One can see from Fig. 6 that in all cases of two-dimensional
maps, the distance between the attractor and the repeller, for small
value of dissipation parameter ε, grows linearly with ε. Furthermore,

in this figure, we show KRWDs between the attractors and the
uniform distribution on the torus and between the repellers and the
uniform distribution and also observe a linear growth. Curiously, in
Figs. 6(a) and 6(b), the sum of distances to the uniform distribution
is almost equal to the attractor–repeller distance; in Fig. 6(c), these
values differ significantly. However, the deviation is not very large,
which allows one to speak about certain “symmetry” of the attractor
and repeller measures with respect to the uniform one.

It is interesting to consider the limit ε → 1. For the one-
dimensional Möbius map, at ε close to 1, the point 0 is a strong
attractor, and the point 0.5 is a strong repeller (see Fig. 2). Due
to this, in the two-dimensional maps under consideration, it is
natural to expect that for ε → 1 attractors are close to the line
x = 0, 0 ≤ y < 1 and repellers are close to the line x = 0.5, 0 ≤
y < 1. Indeed, this is confirmed by Fig. 7, where the attractors and
repellers at ε = 0.99 for all above maps are presented. KRWDs
in this case is just the area between these two “lines,” which is
equal to 0.5 (half period of the MM). This asymptotic value is in
good agreement with numerical results presented in Fig. 3 at large
values of ε.

Finally, we present the results for the calculation of the KRWD
between the attractor and the repeller for the continuous-time flow
(9) (see Fig. 8). Figure 8(a) shows the distance between the attrac-
tor and the repeller for the chaotic flow (9) on a three-dimensional
torus, while Fig. 8(b) shows the distance for the corresponding two-
dimensional Poincaré map. For constructing probability histograms
on three-dimensional torus, we use partition of three-torus into
16 × 16 × 16 cells and for the two-dimensional Poincaré map, we
apply the same partition as for other two-dimensional maps. We
note that these results are very much similar to those for the two-
dimensional maps with nearly linear growth of the distance as a
function of the dissipation parameter. It is curious that KRWD
calculated for initial flow (9) is almost the same as KRWD calculated
for its two-dimensional Poincaré map.
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FIG. 6. Results of calculation of the KRWD for the Anosov cat map [panel (a)], the standard map [panel (b)], and for the SNA [panel (c)]. Red circles: distances between
the attractor and the repeller; green pluses: distances between the attractor and uniform distribution; and blue stars: distances between repellers and uniform distribution [on
panel (c) stars overlap with pluses]. Black filled circles: sums of values presented with pluses and stars. Dashed straight lines have a slope of 0.5.
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FIG. 7. Phase portraits of the attractor (blue points) and the repeller (red points) for the perturbed Anosov can map [panel (a)], the Chirikov standard map [panel (b)], and
the skew-shift map [panel (c)]. In all cases, parameter of dissipation in the Möbius map is ε = 0.99.

IV. DISCUSSION

In summary, we have provided four simple examples of over-
lapping attractors and repellers on a two-dimensional torus and
have characterized the difference between them with the Kan-
torovich–Rubinstein–Wasserstein distance. In all cases, we have
found that the distance grows, at small perturbations of the
ideal case where the attractor and the repeller coincide, linearly
with the dissipation parameter, which is introduced to break
the time-reversal symmetry, for small values of this parameter. For

two-dimensional maps, we have considered only the cases when
a Möbius map was applied only to one coordinate on the torus,
where its effect on the dynamics is not dramatic (and, in particu-
lar, the support of both the attractor and the repeller remains the
full torus). In some situations, e.g., when MM with sufficiently large
dissipation parameter ε is applied to both coordinates on a torus,
we expect that under strong dissipation the topological properties
of these sets may change, for example, in the Anosov map, a DA-
attractor1 could appear; this issue is under investigation. Another

FIG. 8. Distances between the attractor and the repeller for the chaotic flow (9) on a three-dimensional torus [panel (a), partition 16 × 16 × 16] and on Poincaré section
[panel (b), partition 64 × 64]. As in Fig. 6, the markers in panel (a) show distances of the attractor–repeller (red circles), attractor-invariant conservative (green pluses), and
repeller-invariant conservative (blue crosses); black circles are sums of green and blue values. In panel (b), green pluses and blue stars are distances not to the uniform
distribution but to the invariant distribution at ε = 0 [see Fig. 5(a)]. Dashed gray straight lines are drawn to illustrate nearly linear dependence of KRWD on ε.
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interesting phenomenon is connected with a possibility of the de-
splitting of the attractor and the repeller according to a bifurcation
described in Refs. 4, 5, and 11.

Both the attractor and the repeller in considered examples are
fractal sets, but the fractal properties can be hardly deduced from
the KRWD, which equally works for smooth and fractal measures.
There are approaches for determining mutual singularities of two
fractal measures,35–37 and their applications to the characterization
of attractors and repellers studied above will be presented elsewhere.

Finally, we note that we have characterized overlapping attrac-
tors and repellers using KRWD only for simple basic examples. It
is known that such an overlapping can also appear in more com-
plex maps including reversible and nonreversible maps arising as
a Poincaré section for various problems from application. In par-
ticular, such a phenomenon has been observed in the models of
coupled oscillators,7,10,28,38 in nonholonomic models,39–41 in models
of vortex dynamics,11,42 etc. The study of attractor–repeller merger
in these problems using the presented approach appears promising.
We expect that the proposed methods can help us to characterize
quantitatively the mixed dynamics phenomenon in such problems.
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APPENDIX: SOME DETAILS ABOUT KRWD

CALCULATION

Here, we give a short discussion on the numerical implemen-
tation of the KRWD calculations. We used two freely available
codes,43,44 both based on the primal simplex method, which yielded,

FIG. 9. CPU times vs grid size N for calculation of the KRWD with code43 (based
on the algorithm described by Jensen,45 red circles) and with code44 (based on
the primal method for solving a simplex problem, blue squares). The line shows
the power law ∼N

6.

of course, coinciding results. Although, in general, a solution of the
transportation problem may be non-polynomial, in our examples,
we observed in all cases a polynomial dependence of the CPU time
on the partition size. We illustrate this in Fig. 9. This graph shows
the power law ∼N6.

DATA AVAILABILITY

All numerical experiments with two-dimensional maps are
described in the paper and can be reproduced without additional
information. Parameter values for the solutions of the continuous-
time model (9) are available from the corresponding author upon
reasonable request.
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