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ABSTRACT

In the present paper, we study phase waves of self-sustained oscillators with a nearest-neighbor dispersive coupling on an infinite lattice. To
analyze the underlying dynamics, we approximate the lattice with a quasi-continuum (QC). The resulting partial differential model is then
further reduced to the Gardner equation, which predicts many properties of the underlying solitary structures. Using an iterative procedure
on the original lattice equations, we determine the shapes of solitary waves, kinks, and the flat-like solitons that we refer to as flatons. Direct
numerical experiments reveal that the interaction of solitons and flatons on the lattice is notably clean. All in all, we find that both the QC
and the Gardner equation predict remarkably well the discrete patterns and their dynamics.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5144939

Interacting limit cycle oscillators play a fundamental role in syn-
chronization studies. When the coupling is small, system dynam-
ics reduces to that of the oscillator phases. In many setups, as
in the seminal Kuramoto model, the interaction is dissipative
and leads ultimately to synchrony of all phases. Yet, in many
experimental setups, the coupling is dispersive with the resulting
phase equations being conservative. We focus on a conserva-
tive phase dynamics on a one-dimensional lattice and demon-
strate the existence of a very robust dynamics of solitary waves.
A crucial role in the understanding of the dynamics is played
by its quasi-continuum approximation via a partial differential
equation, which provides a remarkably accurate description of
the underlying phenomena on the lattice.

I. INTRODUCTION

Dynamics of networks of oscillators have gathered considerable
attention in recent years. The dynamics of even the simplest net-
work architectures, such as a global coupling in a population1 or a
local coupling on a regular lattice (see, e.g., Ref. 2), is highly nontriv-
ial even for the simplest Kuramoto–Sakaguchi type of interactions.3

In the latter case, one addresses the phase dynamics of oscillators
coupled via their first harmonics with an additional phase shift.
This phase shift determines the relative importance of dissipative,
diffusion-type, and conservative (dispersive) interactions. For the
diffusion-type coupling, the interaction results in global synchro-
nization of a homogeneous lattice. (In an inhomogeneous lattice
with random oscillator frequencies, the diffusive coupling should
be strong enough to ensure synchrony.4) Homogeneous oscillator
lattices with a purely conservative coupling follow a very differ-
ent path for their phase dynamics, which is, surprisingly enough,
Hamiltonian, leading to the formation of nontrivial waves, such as
compactons or kovatons.5–8

In the present paper, we extend our previous work and
address both analytically and numerically a dispersive variant of
the Kuramoto–Sagakuchi chain. Studying the solitary structures,
we find solitons in a bounded range of velocities. At range’s edge,
solitons collapse and kink/anti-kink emerge. However, close to the
transition’s threshold, we find a narrow strip of velocities wherein
solitons undergo a structural change, and rather than grow with
amplitudes, they widen and turn into flat-top solitons, referred to
as flatons. Notably, the interaction between solitons and flatons is
found to be remarkably clean.
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Next, we mention two potential experimental realizations of
dispersive phase oscillator chains. A purely dispersive coupling of
self-sustained oscillators, of the type studied here, is relevant in
micromechanical oscillators that were studied both theoretically9–13

and more recently were explored experimentally.14 Dispersive cou-
pling of self-sustained oscillators is also relevant in arrays of
lasers.15,16 In the latter case, typically two-dimensional arrays are
explored. Extension of our analysis of a one-dimensional lattice to
higher dimensional lattices is a highly nontrivial affair and is left
for future studies. In passing, we note that the long chains we have
focused on are not easily replicated experimentally. The more realis-
tic short chains where boundary effects matter will also be a subject
of future studies.

II. THE BASIC MODEL

Consider a chain of self-sustained, autonomous oscillators with
a nearest-neighbor coupling, described via their complex amplitudes
An,

dAn

dt
= iωAn + µAn(1 − |An|2)+ iε(An−1 − 2An + An+1). (1)

The amplitudes in (1) were normalized with the equilibrium ampli-
tude of a single oscillator being unity, whereas µ, assumed to be
large, governs the relaxation rate to the equilibrium so that the
limit cycle oscillations are strongly stable. Contrary to the large
dissipation of the local amplitude dynamics, the present coupling
is assumed to be purely conservative as found in nano-electro-
mechanical setups addressed in Refs. 9–13 and recently realized
experimentally.14 In the µ → ∞ limit, one may neglect the changes
in amplitude’s modulus and set An = eiϕn , where ϕn is the phase of
the oscillator. This leads to a phase chain model,

dϕn

dt
= ω + ε

(

cos(ϕn+1 − ϕn)+ cos(ϕn−1 − ϕn)− 2
)

. (2)

In chain (2), any linear phase profile ϕn = (π/2 − α)n is uniformly
rotating (a so-called twisted state17). To study the deviations from
this plane wave, we introduce the phase difference θn = ϕn+1 − ϕn +
α − π/2 and rescale the time εt → t to obtain the following basic
model:

dθn

dt
= sin(α − θn+1)− sin(α − θn−1). (3)

As is clear from its derivation, Eq. (3), which is the basis of our stud-
ies, describes phase waves on the top of the plane wave, whereas
α defines the slope of the background linear phase profile. In
particular, the α = π/2 case was addressed in Refs. 5 and 6.

Noteworthy are the invariance properties of Eq. (3) under
(θ ,α) → −(θ ,α) and (θ ,α, n) → (−θ ,π − α, −n) and especially
its invariance under

θ → 2α − θ . (4)

Consequently, both θ = 0 and θ = 2α are solutions as is θ = α,
which is mapped into itself.

Among the features of Eq. (3), we note the dispersion relation
ω = 2 cosα sin k, −π ≤ k ≤ π , of its linear waves and the afore-
mentioned “sonic vacuum” at α = π/25,6 (linear waves are absent),

where the lattice becomes essentially nonlinear. Finally, we note the
conservation laws,

I1 =
∑

n

θn, I2 =
∑

n

cos(α − θn), and I3 =
∑

n

(−1)nθn,

(5)
valid on an infinite chain.

III. WAVES IN A QUASI-CONTINUUM

A. General features

In spite of their innocuous appearance, Eq. (3) describes a
complicated nonlinear system, which defies a direct analysis. As
in previous works,5,6,8 to gain insight into its dynamics, we shall
adopt a quasi-continuous description wherein the discrete system
is replaced with a continuous formulation, which keeps a trace of
its discrete origin. To this end, we approximate the chain as θj(t) →
θ(x, t) and fj+1 − fj−1 → 2(fx + 1

6
fxxx), which yields

1

2

∂θ

∂t
+

(

∂

∂x
+

1

6

∂3

∂x3

)

sin(θ − α) = 0. (6)

As there is no small parameter in the problem, Eq. (6) cannot, in the
strict mathematical sense, be considered as an asymptotic descrip-
tion of the discrete problem, and its utility can be judged only a
posteriori. Nonetheless, both in the present problem and in a large
variety of other problems, cf. Refs. 5, 6, and 8, it captures both the
qualitative and quantitative properties of the discrete solitary waves
remarkably well.

Similarly to the discrete system, Eq. (6) is also invariant under
θ → 2α − θ . Thus, if θ1 is solution so is θ2 = 2α − θ1. This is a cyclic
property with θ2 leading back to θ1, and as in the discrete case, the
trivial θ = 0 solution yields θ = 2α, whereas θ = α is mapped into
itself.

Separating the linear convection, we rewrite (6) as

1

2
θt + cosαθx + Cqc(θ)θx +

1

6

∂3

∂x3
sin(θ − α) = 0, (7)

where

Cqc(θ) = 2 sin

(

θ

2

)

sin

(

α −
θ

2

)

. (8)

Note the non-monotone nature of Cqc(θ); it attains its maximal
value at θ = α and vanishes at both θ = 0 and θ = 2α, which merely
reflects its invariance under (4).

Equation (6) conserves four local quantities,

I1 =
∫

θdx, I2 =
∫

Q(θ)dx, I3 =
∫

sin
√

6(x + x0)θdx,

I4 =
∫

cos
√

6(x + x0)θdx, (9)

where Q(θ) =
∫

sin(θ ′ − α)dθ ′ = cos(α − θ). I1 and I2 are in a
direct correspondence with the corresponding discrete conserva-
tion quantities. Notably, the QC admits also a Lagrangian (for more
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details, see Ref. 8),

L =
∫ ∫

[1

2
ψxψt − Q

(

Lψx

)]

dxdt, (10)

where

L =
√

1 + ∂2
x , θ = Lv, and v = ψx. (11)

Consequently, the QC conserves also the momentum
∫

v2dx, and in
the original variables,

I5 =
∫

θL−2θdx . (12)

B. The Gardner approximation

To unfold the key phenomena, we begin with a weakly nonlin-
ear regime, θ � 1, wherein

1

2
θt + cosαθx +

(

sinα

2
θ 2 −

cosα

6
θ 3

)

x

+
cosα

6

∂3θ

∂x3
= 0. (13)

Note that whereas, on one hand, we have neglected the nonlin-
ear corrections to the third derivative, which, insofar that θ − α 6=
±π/2, has only a minor quantitative impact, on the other hand, to
preserve the crucial non-monotone nature of convection, we have
carried its expansion to the third order. Using the Galilean invari-
ance to dispense with convection’s linear part, after normalization,
Eq. (13) begets the celebrated Gardner equation,

ut + CG(u)ux + uxxx = 0, where CG = 6u(1 − u). (14)

Both CG and Eq. (14) are invariant under u → 1 − u, which echoes
the invariance of the original lattice and its QC rendition under (4).
Its solitons, traveling with speed λ, satisfy an ordinary differential
equation with respect to s = x − λt,

1

2
u2

s + PG(u) = 0, where 2PG(u) = −λu2 + 2u3 − u4. (15)

Note that due to the defocusing effect of the cubic term, the poten-
tial peaks at u = 3

4
[1 +

√
1 − 8λ/9] and comes down as the speed

increases. Consequently, the resulting solitons,

u =
λ

1 +
√

1 − λ cosh
(√
λ(x − λt)

) , (16)

have a bounded range of admissible propagation speeds: 0 < λ <

1. At the limiting velocity λ = 1, potential’s peaks touch the u-axis,
and the soliton solution (16) flattens into a constant = 1. This is a
singular limit at which both kink and an anti-kink form,

u =
1

1 + exp(∓s)
, where s = x − t. (17)

Close to the edge of solitons’ upper velocity range, there is a narrow
strip of velocities where solitons undergo a structural change, and
rather than grow with amplitudes, they begin to widen and their top

flattens. To extract these features from Eq. (16), let

λf = 1 − ε2, where 0 < ε � 1,

to obtain

u =
1 − ε2

1 + ε cosh
[√

λf(x − λft)
] , (18)

with soliton’s amplitude being umax = 1 − ε. The extent of soli-
ton’s widening is expressed via x1/2, where soliton’s amplitude has
decreased by half,

x1/2 ' ln
2

ε
. (19)

Thus, amplitude (velocity) changes ∼ 1 − ε (∼ 1 − ε2), which
are pretty much numerically unobservable, cause solitons to widen
as ∼ ln 1/ε. We shall refer to the flat-like solitons as flatons.

The proximity of flaton velocities to the edge of the admissible
speed range enables approximating them by a kink–anti-kink pair
placed at 2x1/2 � 1 from each other,

u '
1

1 + exp
(

|x| − x1/2

) , x ∈ (−∞, ∞), (20)

and provides an upper bound to all flatons.

C. Analysis of the traveling waves

We now proceed to unfold the solitary wave structure of
QC [Eq. (6)]. Seeking traveling waves θ = θ(s = x − λt) upon one
integration, we have

−
λ

2
θ + sin(θ − α)+ sinα +

1

6
sin(θ − α)′′ = 0, (21)

and, as their small amplitude regime indicates, traveling waves call
for 2 cosα < λ. Integrating Eq. (21), we have

1

6
cos2(θ − α)θ 2

s + Pqc(λ,α; θ) = 0, (22)

where the potential Pqc reads

Pqc(λ,α; θ) = −λ [θ sin(θ − α)+ cos(θ − α)− cosα]

+ [sin(θ − α)+ sinα]2 . (23)

A typical potential landscape for α = π/4 is displayed in Fig. 1
for three values of λ. As in the weakly nonlinear case, the bounded
potential sets an upper bound at which propagation is possible,
corresponding to potential’s top descending toward the θ-axis at
θ = 2α with λ = 2 sinα/α, where the soliton flattens into a constant
and kink/anti-kink emerge. Consequently,

2 cosα = λmin < λ < λmax = 2
sinα

α
(24)

determines the interval of admissible velocities of solitary waves.
On the basis of the weakly nonlinear regime, we anticipate

that as λ → λmax = 2 sin(α)/α, solitons turn into flatons, which, as
illustrated in Fig. 2, is indeed the case.

Note the structural singularity of Eq. (22) at θ − α = ±π/2,
denoted by the vertical lines on the potential landscape, where
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FIG. 1. The potential landscape for α = π/4 with (λmin, λmax)

= (
√
2, 4

√
2/π). The three plots display the potential corresponding to

λ = 1.7, 1.75, and 4
√
2/π = λmax. At the critical speed, λmax potential’s

positive peak touches the θ -axis, soliton dissolves, and kink/anti-kink connect
the two peaks. The two vertical θ = α ± π/2 lines, where Eq. (22) becomes
singular, bound the admissible domain.

Eqs. (6) and (22) degenerate, setting α = π/2 as the highest admissi-
ble value of parameter α with the corresponding maximal amplitude
θ = 2α = π and the maximal speed of the kink being λmax = 4

π
.

In the special α = π/2 case, rather than a sequence of flatons
approaching the kink limit, a kovaton emerges, which, since Eq. (6)
becomes singular both at θ = 0 and at the top θ = π , is and strictly
compact there (see Refs. 5 and 6 for a full elaboration of this case).
Also, unlike flatons where every width corresponds to a different
speed, however minutely different, all kovatons travel at exactly the

same limiting velocity of their corresponding kink with their width
being chosen at will.

IV. TRAVELING WAVES ON THE CHAIN

Our starting point is the original chain equation (3)
rewritten as

θ̇n(t) = sinα
(

cos θn+1(t)− cos θn−1(t)
)

− cosα
(

sin θn+1 − sin θn−1

)

. (25)

Seeking traveling waves θn(t) = 2(t − an) of Eq. (25), where
a = 1/λ is the inverse velocity, we obtain an advance-delay
equation,

2̇ = sinα
(

cos2(t − a)− cos2(t + a)
)

− cosα
(

sin2(t − a)− sin2(t + a)
)

. (26)

We integrate Eq. (26) once to obtain

2(t) =
∫ t+a

t−a

[

sinα(1 − cos2(x))+ cosα sin2(x)
]

dx, (27)

with the integration constant chosen to assure that 2 = 0 is a solu-
tion. In what follows, (27) will be a starting point for the following
iterative procedure.

A. Kinks

Assume that there is a kink connecting 2 = 0 with 2 = 20.
Setting2 = 20 in (27) begets a condition relating a with20,

20 = 2a[sinα − sin(α −20)]. (28)

However, symmetry (4) dictates that for a given inverse velocity a,
there should be a solution connecting21 = 2α with22 = 2α −20.
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FIG. 2. Waves for α = 0.2π . (a) Solitary solutions of the chain, Eq. (32) (circles), superimposed on the QC rendition, Eq. (22), for different values of their velocity deviations
from its upper bound. From bottom to top: λmax − λ = 10−m, m = 1, . . . , 9. (b) Velocity of solitons vs their amplitude in both discrete and QC renditions. Observe the
remarkable fit between the QC and its discrete antecedent.

Chaos 30, 053119 (2020); doi: 10.1063/1.5144939 30, 053119-4

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

 0

 0.2

 0.4

 0.6

 0.8

 1

-30 -20 -10  0  10  20  30

space

fi
el

d
Θ

/π

FIG. 3. Discrete kinks for different values of α from bottom to top α = 0.05π ,
0.1π , 0.2π , 0.4π , and 0.5π . In the last, exceptional, case, the tail decays at a
double exponential rate.

This leads to an additional condition relating a and20,

2α = 2a[sinα − sin(α − 2α)] = 4a sinα, (29)

2α −20 = 2a[sinα − sin(α − 2α +20)]

= 2a[sinα − sin(20 − α)]. (30)

Adding (28) and (30), we have

2α = 4a sinα,

which coincides with the λmax derived in Sec. III C. Using a = α

2 sinα

in (30), we have

sin(20 − α)

20 − α
=

sinα

α
,

with the obvious solution 20 = 2α, which may serve as kink’s
amplitude.

To determine the kink, we solve Eq. (27) iteratively,

2(k+1)(t) =
∫ t+a

t−a

[

sinα(1 − cos2(k)(x))+ cosα sin2(k)(x)
]

dx.

(31)
Starting from an initial ansatz 2(0)(x), having a proper asymptotic
behavior at x → ±∞, these iterations converge and yield the kink
profiles shown in Fig. 3.

B. Solitary waves

In order to apply the iterative procedure due to Petviashvili18,19

to solitary waves and to avoid convergence to the trivial solution, we
modify it by introducing an intermediate normalization step,

2̃(t) =
∫ t+a

t−a

[

sinα(1 − cos2(k)(x))+ cosα sin2(k)(x)
]

dx,

2(k+1) =
(

||2(k)||
||2̃||

)γ

2̃, (32)

where || � || stands for any norm (in our implementation, the L1-
norm was used). Also, to assure a faster convergence, the exponent
1 < γ ≤ 2 was adjusted to the assumed α and a (though the conver-
gence itself does not depend on γ ). When carrying the iterations
(32), we fix α and a and start with a solitary profile. The result-
ing iterations yield a solitary solution on the chain. In Fig. 2, we
compare the discrete solitary solutions with the corresponding QC
solitary solutions obtained solving Eq. (22) and, as clearly seen, find
a remarkable overlap attesting to the utility of the QC rendition.

It is instructive to represent the solitary waves in terms of the
original phases ϕn rather than in the phase differences θn [cf. Eqs. (2)
and (3)]. This is done in Fig. 4, where we have adopted the reference
frame with ω = 0.

V. DIRECT SIMULATIONS OF THE CHAIN

We now proceed to present the results of our direct simulations
of the chain (25). We address two basic initial-value problems.

FIG. 4. Space–time plots of a soliton [panel (a)] and of a flaton [panel (b)] in terms of the phases ϕn(t) (color-coded values) for α = 0.2π . The background stripes represent
the plane wave on the base of which solitary waves propagate.
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FIG. 5. α = 0.25π . Evolution on the lattice for different downstream values of A—panels (a) and (b): A = 0.7π , panels (c) and (d): A = 0.35π , and panels (e) and (f):
A = 0.2π . The left panel enlarges the vicinity of the front.

A. Evolution of an initial step

Consider an initial step profile θn(0) = A
2
(1 − tanh 4(n−n0)

N0
)

with N0 = 50, connecting downstream A with the trivial upstream,
and follow the frontal edge of the propagating wave. Figure 5 dis-
plays three different evolution scenarios according to order relations
between the downstream amplitude A and α.

1. A > 2α; as seen in Figs. 5(a) and 5(b), a kink forms. It is fol-
lowed by a characteristic linear profile connecting downstream
A with kink’s amplitude 2α. Behind kink’s leading profile, a few
solitons emerge, which, due to the invariance (4), point down
from the top plateau 2α. Being much slower than the kink, they
lag far behind the emerging dispersionless profile.

2. α . A . 2α. As seen in Figs. 5(c) and 5(d), a kink forms, but
now, it is followed by an oscillating domain with a nearly trian-
gular envelope, which intermediates between the downstream
A and kink’s frontal amplitude 2α. The waves-train can be
viewed as a sequence of negative solitons, though in Figs. 5(c)
and 5(d), only the first few pulses have become truly isolated
pointing-down solitons.

3. A . α [see Figs. 5(e) and 5(f)]. A kink does not form. Instead,
there is a wave packet embedded within a triangular envelope.
In the course of the evolution, the leading waves continue to
separate from each other to become true solitons with the lead-
ing amplitude ≈ 2A propagating with a velocity as given via
Pqc(λ; π

2
, 2A) = 0.

FIG. 6. Emergence of flatons and kovatons. Panel (a): α = 0.25π and from bottom to top: A = 0.05, 0.25, 0.5 , and 1.5. Panel (b): α = 0.5π and from bottom to top:
A = 0.05, 0.4, 0.6, 1.0 , and 1.5. The difference between the two, though unobservable to the eye, is meaningful. Whereas flaton’s tails decay exponentially, kovaton’s tails
decay at a doubly exponential rate, which reflects the fact that in the QC limit, it has a strictly compact support.
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FIG. 7. Interaction of waves for α = 0.2π . Panel (a): Interaction of two solitons. Panel (b): interaction of a flaton with a soliton. The interval between the frames (starting
from the bottom) is1t = 150. The profiles are arbitrarily shifted in the n-direction.

We now append the above phenomenological description of
the numerical simulations with an analysis based on the remark-
able proximity we have found between the dynamics on the lat-
tice, its QC rendition, and the Gardner equation. To this end,
we shall refer to the recent study of the Gardener equation by
Kamchatnov et al. 20 and to an earlier seminal work of Gurevich
and Pitaevskĭı. 21 The comparison is based on their analysis of the
signaling problem for Eq. (14),

u(x, 0) =
{

A for x < 0,

0 for x > 0.
(33)

We start noting (the parentheses refer to the corre-
sponding QC case) that the convection CG = 6u(1 − u) (Ccq(θ)

= 2 sin( θ
2
) sin(α − θ

2
)) has three key points: u = 0 (θ = 0) and

u = 1 (θ = 2α), where it vanishes, and a turning point where it
attains its maximal value, which separates the two domains of
monotonicity at u = 1/2 in Gardner’s case and θ = α in the QC.

With the upstream being trivial, according to Ref. 20, there
are three regimes according to the position of the downstream
amplitude A vs the three key points:

(1) A < 1/2 (QC: A < α),
(2) 1/2 < A < 1 (QC: α < A < 2α), and
(3) 1 < A (QC: 2α < A).

We now detail the dynamics of Gardner’s equation vis-à-vis the
numerical results, in parentheses, in the various regimes.

(1) A < 1/2 (QC: A < α). The downstream and the upstream are
on the same side of the monotonicity. In this regime, the Gard-

ner equation is de facto governed by the KdV equation to which
it reduces when the cubic term becomes secondary. Conse-
quently, as follows from the analysis in Refs. 20 and 21, the solu-
tion takes the form of a modulated periodic wave, the so-called
undular bore, with a lead amplitude having twice its down-
stream value, i.e., 2A; see Fig. 6 in Ref. 20. So much for Gardner,
returning to our case, panels (e)–(f) in Fig. 5 clearly show that
the analytical features displayed by Gardner’s equation parallel
the simulation results of the chain!

(2) 1/2 < A < 1 (QC: α < A < 2α). The downstream and the
upstream are now on the opposite sides of convection’s mono-
tonicity, and Gardner’s solution consists of two parts; let u(∗)
= 1 (θ(∗) = 2α) be the point where convection vanishes, then,
provided that A < u(∗), instead of a single modular kink span-
ning, as in the previous case, the whole upstream–downstream
range, we now have a reverse modular kink connecting the
downstream state A with an intermediate state u(∗), which
then connects to the trivial upstream via a kink; see Fig. 8 in
Ref. 20. Exactly the same phenomenon is seen on panels (c)
and (d) of Fig. 5, where θ(∗) = 2α. [That u(∗) = 1 is a con-
sequence of the upstream being trivial. If 0 < u(+∞) < 1/2,
u(∗) = 1 − u(+∞), and kink’s amplitude depends on u(+∞)

as well.20]
(3) 1 < A (QC: 2α < A). This is a dispersionless regime, and

rather than a modulated periodic wave, we have a rarefac-
tion wave that intermediates between the downstream A and
a kink at the front, propagating with the highest admissi-
ble velocity; see Fig. 10 in Ref. 20. Exactly the same effect is
observed in panels (a) and (b) of the chain, with 2α being kink’s
amplitude.
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B. Evolution of an initial pulse

This is arguably the most basic numerical experiment. We
follow the evolution of an initially single pulse excitation θn(0)
= A

cosh2 4(n−n0)
N0

, with N0 = 50. It begets a sequence of solitary waves

with the leading waves being, for small A, solitons, which turn into
flatons for large A’s; see the left plate in Fig. 6 and kovatons in
the right plate. Though in these simulations flatons and kovatons
emerge very naturally, emergence of several flatons or kovatons was
never observed, with the solitons forming behind the leading fla-
ton/kovaton having amplitudes smaller than 2α and thus slower as
well. Notably, the Gardner equation, which served us so well in the
signaling problem, does not beget flatons easily in the corresponding
numerical experiments.22 They seem to have a very narrow domain
of attraction, and for a flaton to emerge, a special “tailoring” of initial
data was necessary, though once present, they have all the features
of an integrable entity.

C. Interaction of solitary waves

The essence of our findings is summarized in Fig. 7, which dis-
plays collisions of two solitons and a collision of a flaton with a
soliton: both in Fig. 7 and other numerical experiments, we have car-
ried, the interaction on the lattice of solitary waves, whether solitons
or flatons, is remarkably clean, and the interacting entities re-emerge
without visible distortion or radiation.

VI. SUMMARY

In this paper, we have explored the emergence and interac-
tion of nonlinear traveling waves in a phase oscillator chain. We
have found, both for the quasi-continuous rendition and its discrete
antecedent, a variety of soliton and kink solutions. Furthermore, we
have found that solitons in a velocity range close to kinks flatten and
became very wide. We thus refer to such solitons as flatons. In 1D,
flatons can be looked upon as a joined pair of two kinks. In direct
numerical simulations of the chain, we have seen the flatons emerging
out of a variety of large initial excitations. Notably, the interaction
of solitons and solitons with a flaton are very clean and without a
noticeable distortion or radiation.

Finally, we reiterate both the remarkable roles of the Gardner
equation (14), which was deduced at a second stage of approxima-
tion of the chain, in unfolding the various facets of the dynamics
and the actual affinity between its patterns and the patterns both
observed on the chain and predicted by its QC rendition.
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