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ABSTRACT

We consider the Kuramoto-Sakaguchi model of identical coupled phase oscillators with a common noisy forcing. While common noise always
tends to synchronize the oscillators, a strong repulsive coupling prevents the fully synchronous state and leads to a nontrivial distribution of
oscillator phases. In previous numerical simulations, the formation of stable multicluster states has been observed in this regime. However,
we argue here that because identical phase oscillators in the Kuramoto-Sakaguchi model form a partially integrable system according to the
Watanabe-Strogatz theory, the formation of clusters is impossible. Integrating with various time steps reveals that clustering is a numerical
artifact, explained by the existence of higher order Fourier terms in the errors of the employed numerical integration schemes. By monitoring
the induced change in certain integrals of motion, we quantify these errors. We support these observations by showing, on the basis of the
analysis of the corresponding Fokker-Planck equation, that two-cluster states are non-attractive. On the other hand, in ensembles of general
limit cycle oscillators, such as Van der Pol oscillators, due to an anharmonic phase response function as well as additional amplitude dynamics,
multiclusters can occur naturally.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5084144

Coupled oscillators can synchronize if the nature of coupling
makes their phases attract each other (attractive coupling), or
desynchronize if there is repulsion of the phases (repulsive or
inhibitory coupling). This e�ect is well captured by the Kuramoto

model of coupled phase oscillators. Another way to synchronize

oscillators is to act on them with a common force—in particu-

lar, even common random noise will bring the phases together,

an e�ect known as noise-induced synchronization. An interplay

of repulsive coupling with common noise can be nontrivial, since

the two e�ects act against each other. We argue in this paper

that the Kuramoto model in such a case cannot form multiple

clusters, due to its special integrability based on the Watanabe-

Strogatz theory. The only possible end state for an evolution under
theKuramoto-Sakaguchimodel with repulsive coupling andweak
noise is complete asynchrony of the oscillators. However, clusters
can be observed in numerical simulations because a discretization
of the dynamics, in general, breaks the integrability.We also show
that in a more realistic model like coupled Van der Pol oscillators,

clusters can typically form due to the anharmonic phase response
intrinsic to these oscillators.

I. INTRODUCTION

The Kuramoto model, since its formulation in 1975 by
Kuramoto,1 has been vastly successful across scienti�c disciplines
in describing naturally occurring phenomena in coupled oscillatory
systems. On the one hand, its simple mathematical form allows the
analytical solution of a mean �eld theory for coupled oscillators with
non-identical natural frequencies in the in�nite system size limit.1,2

On the other hand, it is still able to generate complex behavior, e.g.,
chimeras,3,4 chaos,5 etc. The signi�cance of the Kuramoto model to
complexity science is akin to that of a simple model organism in the
study of genetics, as its simple mathematical form, nevertheless, pro-
vides qualitative and quantitative insight into a variety of complex
phenomena, especially as a paradigm for synchronization.
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Since the original publications, there has been a plethora of
the literature dedicated to modelling systems by coupled Kuramoto
oscillators. A particularly idealised and simple model is that of the
globally coupled identical oscillators. For such a system, a powerful
Watanabe-Strogatz (WS) theory6 exists, according to which identi-
cal phase oscillators under identical forcing in their frequencies and
�rst harmonics evolve under a Lie group belonging to the general
class of Möbius group action.7 Such systems possess a hidden low-
dimensional dynamics. Moreover, it implies partial integrability, as it
guarantees the existence of constants of motion, which are preserved
throughout the dynamics.6 The system is only “partially” integrable
because there are still 3 variables that are not constant and follownon-
trivial dynamical equations. Closely related to the WS approach is
the Ott-Antonsen theory,8,9 which allows an exact formulation of the
mean �eld dynamics (with 2 degrees of freedom) for an in�nite-sized
population of non-identical oscillators.

Beyond the discovery of periodic components of a complex
dynamics, the theoretical signi�cance of the WS integrability is still
not quite clear. For example, the integrability cannot be stated with
certainty to exist in synchronous states, because in this case, a clus-
ter is in complete synchrony the same way as if the synchronized
system had been “non-integrable.” However, in situations with par-
tial synchrony, including the evolution towards aforementioned fully
synchronized state, the WS integrability leads to a multiplicity of
regimes due to the integrals of motion and appears to have addi-
tional periodic components in the dynamics (cf. application of the
WS integrability to chimera states in Ref. 10). Recently, a perturba-
tion theory based on theWS integrability has been suggested,11which
allows one to follow the evolution of the integrals under perturba-
tions. One of the important consequences of theWS approach, which
we explore below, is that it leads to the restriction on possible not
fully synchronous states—namely, it excludes the formation of several
clusters.

This study is inspired by the results ofGil et al.,12where clustered
states were observed in a set of identical oscillators under common
multiplicative noise and repulsive coupling. In general, globally cou-
pled identical oscillators can demonstrate con�gurations of di�erent
structural complexities: complete synchrony (one cluster state), par-
tial synchrony (a nontrivial continuous distribution of phases, where
all individual phases can be di�erent), clusters (several groups of
fully synchronized oscillators), chimeras (when one or several cluster
coexist with partially synchronous oscillators), and solitary states13

(when only one oscillator with a di�erent phase exists apart from the
fully synchronous cluster). Under strong repulsive coupling, a fully
synchronized cluster becomes unstable, and it is not evident a pri-
ori which of these aforementioned con�gurations will be observed.
Therefore, Gil et al.12 conducted numerical simulations and reported
that common noise generally causes clustering in globally repulsively
coupled interactions.

We call this claim into question based on the following rea-
sons. First, clustering is indeed observed in some models of glob-
ally coupled identical phase oscillators,14–16 but always in situations
with complex interaction functions, i.e., when the coupling term
includes higher harmonics of the coupled phases. However, no such
higher harmonics were present in the interaction term in the model
proposed by Gil et al. Secondly, recent studies of the competition
between common noise and repulsive coupling revealed non-trivial

distributions for identical and non-identical oscillators,17,18 but no
clustering has been observed. Gil et al., on the other hand, reported
that for identical oscillators, clusters formed without a threshold, at
any noise intensity. Finally, because themodel used byGil et al. can be
fully described by theWS theory, there are restrictions due to the gen-
eral properties of theMöbius transformgoverning the dynamics,7 i.e.,
clusters are not allowed to appear (see Sec. III A). Therefore, a thor-
ough numerical and analytical study is needed to resolve the con�ict
between numerical �ndings12 and known theories.

In this paper, we will thoroughly study the formation and sta-
bility of clusters in numerical experiments. After formulation of the
problem (Sec. II), we will present the WS approach and show that
clustering is impossible. This conclusion will be further supported
by an analytic and numerical investigation of the Lyapunov expo-
nents of oscillators evolving in the �eld of two fully synchronized
clusters (Sec. III B). In terms of numerics, the exact integrability is not
preserved by the standard numerical schemes, both for deterministic
and for stochastic equations. In Sec. IV, we analyse errors in di�er-
ent numerical methods in terms of the change in the constants of
motion which should be preserved by the Möbius group action and
show that this can lead to the formation of clusters as a numerical
artifact. The WS approach is restricted to oscillators which couple to
common external forces in their �rst harmonics. Furthermore, the
Langevin equations must be understood in the Stratonovich inter-
pretation in order for the usual di�erential calculus used in the WS
approach to be applicable. Since we attribute the formation of clus-
ters to the violation of the WS integrability, we test this hypothesis
in Sec. IV D, by including higher order terms in the phase dynamics
and in Sec. V, by studying repulsively coupled Van der Pol oscillators
under common additive noise, for which higher order Fourier terms
and multiplicative noise are naturally present in the phase reduced
dynamics.

II. PROBLEM FORMULATION

We study a population of identical phase oscillators with phases
{ϕk} subject to a global coupling of the Kuramoto-Sakaguchi type2

and common phase-dependent noise terms

ϕ̇k = ω + 1

N

N
∑

j=1

sin(ϕj − ϕk + γ )

+ σ1η1(t) sinϕk + σ2η2(t) cosϕk. (1)

Here, η1,2(t) are Gaussian white noise terms, with 〈ηi(t)〉 = 0,
〈ηi(t)ηj(t′)〉 = δijδ(t − t′).

The parameters σ1 and σ2 parametrize the noise strengths for
the two noise terms. Langevin equation (1) is to be interpreted in
the Stratonovich sense so that the WS theory is applicable. Indeed,
when interpreted in the sense of the Itô calculus, for σ1 6= σ2, a noise-
induced drift, i.e., the Stratonovich shift, exists, and is proportional to
the second harmonics in ϕk which violates the conditions of the WS
theory. The phase shift parameter γ parametrizes the degree of repul-
sion and attraction in the coupling term. In particular, when γ = 0,
the coupling is purely attractive, for γ = π , it is purely repulsive, and
for γ = π/2, the coupling is neutral. Because it is always possible to
rescale time, we assume, without loss of generality, that the phases
couple with unit strength to the mean �eld in Eq. (1).
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Models of type (1) have been analysed in Ref. 19 for the case of
one noise term, and in Gil et al.12 for two noise terms. In the latter
work, it has been argued that model (1) is the proper approximation
after phase reduction, for a population of weakly coupled identical
Stuart-Landau oscillators with a common additive noise term which
is isotropic in the complex plane, making the phase equations invari-
ant under rotation. In this case, σ1 = σ2 = σ and one can rewrite
(1) as

ϕ̇k = ω + Im[(Zeiγ + σξ)e−iϕk ], (2)

where Z = 1
N

∑N
j=1 e

iϕj is the Kuramoto mean �eld and ξ = −η1 +
iη2 is complex Gaussian white noise. There exist well-known results
on the stability of the completely synchronous cluster ϕ1 = ϕ2 =
· · · = ϕN for model (2): To quantify the degree of stability of a fully
synchronous cluster, which corresponds to |Z| = 1, one calculates the
transversal Lyapunov exponent (in the previous literature also known
as “evaporation” or “split Lyapunov exponent”17), which describes the
evolution of oscillator phases slightly deviated from the cluster. It is
their average exponential rate of approach towards a cluster (or the
rate of moving away from the cluster if the exponent is positive). The
expression for this exponent is17

λ = − cos γ − σ 2

2
.

For a negative Lyapunov exponent, complete synchronization is sta-
ble, i.e., it attracts nearby phases that are perturbed from it. According
to this formula, for strong enough noise, the cluster of complete syn-
chrony, with |Z| = 1, is stable. For repulsive coupling, with cos γ < 0
and weak enough noise, the cluster is unstable.

While in Ref. 17, mainly the statistical properties of |Z| have
been analysed, Ref. 12 focuses on the occurrence of clusters, which
are distinct attractive subgroups of oscillators with identical phases
within the groups. The main goal of this paper is twofold (i) to
demonstrate that the occurrence of clusters in system (2) is impossi-
ble and (ii) to identify numerical artefacts that may nevertheless lead
to cluster formation in simulations.

III. THEORY

A. Application of the Watanabe-Strogatz theory

Our basic equation (2) in the Stratonovich interpretation
belongs to a class of problems for which a theory, �rst developed by
Watanabe and Strogatz6 in 1994, which we shall call WS theory, is
applicable. TheWS theory reduces the N-dimensional dynamics of a
system of identically driven identical phase oscillators

ϕ̇k = ω(t)+ Im[H(t)e−iϕk ], k = 1, . . . ,N, (3)

where ω(t) and H(t) are arbitrary real and complex-valued func-
tions of time, respectively, to a three-dimensional dynamical system
preserving N − 3 independent constants of motion. It is evident
that Eq. (2) belongs to class (3). One must stress here that qual-
itative arguments below are applicable to any common force act-
ing on the oscillators, not necessarily to the white Gaussian noise
case mainly treated in this paper. It can be colored noise, or a
chaotic/quasi-periodic/periodic force, or any combination of these
functions of time.

At the heart of the WS theory (see Refs. 6 and 20 for a detailed
presentation) is a coordinate transformation M formally belong-
ing to the class of Möbius maps, which is a type of fractional linear
transformation, mapping the complex unit circle one-to-one to itself.
Speci�cally,M and its inverseM−1 can be written as

M : ψk → ϕk, eiϕk = z + ei(ψk+β)

1 + z∗ei(ψk+β)
, (4)

M
−1 : ϕk → ψk, eiψk = e−iβ z − eiϕk

z∗eiϕk − 1
. (5)

Here, {ϕk} are the original phase coordinates, z is a complex parame-
ter of absolute value smaller than 1, and the parameter β is a rotation
angle. If ϕk evolve according to (3) and z and β evolve according to

ż = iω(t)z + 1

2
H(t)− 1

2
H∗(t)z2,

β̇ = ω(t)+ Im[z∗H(t)],

(6)

then ψk = M−1(ϕk) are time independent constants of motion. The
constants of motion are determined by the actual phases ϕk and three
time-dependent, real-valued parameters, the amplitude, and angle
of z and by β . It is possible to impose conditions on the constants
which make theMöbius transform unique. For instance, if no major-
ity cluster exists one can choose z and β such that 〈exp(iψk)〉 =
0 and arg

(

〈exp(i2ψk)〉
)

= 0.6 The Möbius transform (4) consists
essentially of a common rotation of angles ψn by angle β and a sub-
sequent contraction along the circle into the direction of the angle
of z. Indeed, |z| can be used as a measure of synchronization akin
to the Kuramoto order parameter as both become equal to unity at
complete synchronization. The existence of the constants of motion
implies the system is integrable. However, it must be stressed that
the WS integrability only holds for phase oscillator models of the
form Eq. (3), e.g., the Kuramoto-Sakaguchi model for globally cou-
pled phase oscillators or the Winfree model21 with a harmonic phase
response function.

Equations (6), in principle, allow for a numerical integration
of the system which automatically conserves all constants ψk. How-
ever, typically the forcing term H(t) contains the Kuramoto order
parameter Z = 〈exp(iϕk)〉k for which ϕk = M(ψk) must be calcu-
lated at every time step. Only for constants of motion which are
uniformly distributed on the unit circle, the parameter z approxi-

mates the actual mean �eld Z to the order 1/
√
N, where N is the

number of oscillators.10,20

Expressions (4) and (5) alone already rule out the formation
of clustered states from non-clustered initial conditions. Two oscil-
lators with initially di�erent phases are mapped to a single point
only if |z| → 1, in which case zk = exp(iϕk) tends to z for all
points of the circle except a singular “solitary state” point with z +
exp [i(ψk + β)] = 013 for which the Möbius transform is not unique
at |z| → 1. Therefore, only a single cluster attracting di�erent phases
can exist at a time. Nevertheless, this only prohibits the forma-
tion of multiple clusters but not their existence under this model.
There is not restriction for oscillators to be in one or several dis-
tinct clusters with identical phases within each cluster and stay in that
con�guration.
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B. Linear stability analysis of a two-cluster state

In Sec. III A, we have shown that clusters cannot appear from
non-clustered initial conditions. The same arguments can be applied
when the dynamics evolves from an initial multicluster state. Here,
either the multicluster remains with the same partition or the fully
synchronized state with maximally one additional cluster or oscilla-
tor in a solitary state appears. Imperfect clusters, i.e., con�gurations
with phases very close to one another, can also dissolve or contract
depending on their dynamical stability. It is, therefore, instructive to
look on the stability of the multicluster states. According to the WS
theory, one expects that not more than one of the clusters can be
asymptotically attracting. Otherwise, multiclusters would also form
from non-clustered initial conditions, a phenomenon which is for-
bidden by the argument in Sec. III A. In this section, we provide a
linear stability analysis of the two-cluster state under the stochastic
evolution given by model (2) which con�rms our expectation. We
write equations (2) for a two-cluster state as

8̇1 = ω + p1 sin γ + p2 sin(18+ γ )

+ σ sin81η1(t)+ σ cos81η2(t),

8̇2 = ω + p2 sin γ − p1 sin(18− γ )

+ σ sin82η1(t)+ σ cos82η2(t).

(7)

Here, 81 and 82 are the phases of the two clusters. 18 = 82 −81

is their phase di�erence. Parameters p1 and p2 = 1 − p1 are their
relative population sizes.

To evaluate the stability of the two-cluster state in terms of a
small perturbation from one of the clusters, say, cluster 1, we per-
turb two oscillators belonging to cluster 1 by pulling them by a small
amount in opposite directions away from the cluster, i.e.,ϕ1,2 = 81 ±
δ. For small δ, linearization yields

δ̇ = δ
[

−p1 cos γ − p2 cos(18+ γ )

+ση1(t) cos81 − ση2(t) sin81] . (8)

This allows us to express the stability of cluster 1 via the
split/evaporation Lyapunov exponent22–24 as

λ1 = −p1 cos γ − p2〈cos(18+ γ )〉
+ σ 〈η1(t) cos81〉 − σ 〈η2(t) sin81〉, (9)

where 〈·〉 indicates time average, which in this case also equals to
the ensemble average, because as we will see in (11), the probability
distribution of the phase18 is stationary.

While the Stratonovich shift for the Langevin equations (7) hap-
pens to be zero, which is not the case anymore when Eq. (8) is consid-
ered as well. It is important to keep this in mind and choose a correct
integration scheme when Eqs. (7) and (8) are integrated numerically.
To calculate the Lyapunov exponent analytically, we need to know
the probability distribution of 18 and the averages 〈η1(t) cos81〉,
〈η2(t) sin81〉. First, we write a two-dimensional Fokker-Planck
equation for81 and18 corresponding to the Langevin equations (7)
under the Stratonovich interpretation.25 Then, integrating the joint
density of 81 and 18 over the variable 81, using the fact that the
probability distribution of 81 is rotational symmetric, i.e., uniform,
we obtain a closed equation for the probability distribution P(18)

of the phase di�erence

∂P(18)

∂t
= − ∂

∂18

{[

(p2 − p1) sin γ (1 − cos18)

− cos γ sin18]P} + σ 2 ∂2

∂182
[(1 − cos18)P] .

(10)

Note that this probability density function is de�ned and restricted
on the open interval (0, 2π) since the two clusters cannot cross each
other. The stationary solution has the form

P(18) ∼ exp

[

18(p2 − p1) sin γ

σ 2

] ∣

∣

∣

∣

sin
18

2

∣

∣

∣

∣

−2
(

cos γ

σ2
+1

)

. (11)

A closed expression for the normalized probability density is possible
when γ = π , i.e., the repulsion between the oscillators ismaximal. In
this case,

P(18) = 1

2B
(

1
σ 2

− 1
2
, 1
2

)

∣

∣

∣

∣

sin
18

2

∣

∣

∣

∣

−2
(

1− 1
σ2

)

, (12)

where B(x, y) is the Beta function. The shape of the probability
density function in the general case (11) is shown in Fig. 1.

In expression (11), a nonzero phase shift parameter γ intro-
duces a curious asymmetry in the form of the exponential factor
which is not a periodic function, i.e., when we consider the distri-
bution on (0, 2π) wrapped around the circle, the derivative is not
continuous at the singular absorbing point18 = 0 = 2π . The criti-
cal noise strength σc beyond which the two clusters are synchronized
to become one cluster corresponds to the casewhereP(18) becomes

FIG. 1. Probability density function (11), when p1 = 0.4, γ = 0.8π , and the
noise strength takes on various values (see legend). When the exponent of
∣

∣sin 18

2

∣

∣ is positive, the function peaks asymmetrically at values larger than π
(orange solid and dashed lines), and when the exponent is 0, it is an exponential
distribution (red), and when it is negative, the distribution has an asymmetrical
singularity at 0 (black dashed and solid lines). The function will become a delta
function when the exponent is −1 (not shown here).
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a delta function δ(18). Formally, this corresponds to divergence
of the integral of the probability density (11). This happens if the
exponent of | sin(18/2)| is smaller than −1, and from this, we can
calculate the critical noise strength to be σ 2

c /2 = − cos γ .
In addition to the distribution of the phase di�erence 18, one

needs to calculate the averages 〈η1(t) cos81〉 and 〈η2(t) sin81〉 to
evaluate (9). Since η1(t) and η2(t) are independent Gaussian white
noise processes and 81[η1, η2] is a functional of both η1 and η2 this
can be accomplished by virtue of the Furutsu-Novikov formula26,27

〈η2(t) sin81〉 =
∫

δ(t − t′)

〈

δ sin81

δη2

〉

dt′

=
〈

d(sin81)

d81

δ81

δη2

〉

=
〈

1

2
σ cos281

〉

= σ

4
. (13)

Similarly 〈η1(t) cos81〉 = − σ

4
. A general expression for the Lya-

punov exponent λ1, which describes the stability of cluster 1, is
therefore

λ1 = −p1 cos γ − (1 − p1)

∫ 2π

0

cos(18+ γ )P(18)d18− σ 2

2
.

(14)

Lyapunov exponent (14) can even be analytically represented for the
case γ = π

λ1 =
{

p1 + p2(σ
2 − 1)− σ 2

2
, σ 2 < 2,

1 − σ 2

2
, σ 2 ≥ 2.

(15)

Exchanging p1 and p2, we obtain the Lyapunov exponent λ2 of the
other cluster. From this special case, one can easily see that when
σ 2 < 2, i.e., when a fully synchronized one-cluster state is unstable
and the two-cluster Lyapunov exponents are well de�ned, they satisfy
λ1 + λ2 = 0.

Through direct numerical evaluation of the Lyapunov exponent
λ1 in Fig. 2, we obtain a con�rmation of the above analytical result.

For the case of the Kuramoto-Sakaguchi model with general
phase shift parameter γ , using (9) and the corresponding expression
for λ2, we obtain for the sum

λ1 + λ2 = − cos γ − σ 2 − cos γ

∫ 2π

0

cos18P(18)d18

+ (p2 − p1) sin γ

∫ 2π

0

sin18P(18)d18. (16)

After applying integration by parts for the product of three func-
tions, 〈sin18〉 can be written in terms of 〈cos2(18/2)〉 and
〈cos18〉. After simple algebra, the relation λ1 + λ2 = 0 for the
generic Kuramoto-Sakaguchi model can be shown. This means that
for two narrowly distributed groups of repulsively coupled oscilla-
tors with commonmultiplicative noise, the larger groupwill dissolve,
while the smaller group is attractive (Fig. 2). Simultaneous attraction
into two clusters is not possible.

IV. NUMERICS

Aswehave argued above, theWS theory of integrability prevents
amulticluster state from ever occurring inmodel (2), and a linear sta-
bility analysis via the Fokker-Planck formulation has con�rmed it in

FIG. 2. Diagram for the linear stability of cluster 1 of the two clusters indicated by
its Lyapunov exponent, for phase shift γ = π (maximal repulsion), in the plane
of parameters p1, the relative size of cluster 1, and the noise strength σ 2/2.
Bold solid lines: theoretical result (15) obtained by the Fokker-Planck formula-
tion. Contour lines/color: by direct simulation of Eqs. (7)–(9) via the Euler-Heun
scheme. The Lyapunov exponent for cluster 1 below the critical noise strength
σ 2
c /2 = 1 is shown in the color gradient. Above the critical noise strength, one

cluster is formed. The diagram is symmetric with respect to line p1 = 0.5 (except
for very small positive exponents for p1 < 0 and σ 2 ≈ 2, which can be attributed
to finite averaging time), indicating that together with the second cluster Lyapunov
exponent λ1 + λ2 = 0.

the case of two clusters in the repulsive regime. But the observation of
clustering in simulations byGil et al.12may be attributed to numerical
artefacts, as one cannot expect the WS integrability to be preserved
by standard numerical methods. In this section, we explore how dif-
ferent numerical integration methods for integrating deterministic
and stochastic equations a�ect the WS integrability and clustering.
First, we discuss methods which quantify the errors occurred from a
deviation from the integrability andmeasure the degree of clustering.

A. Numerical evaluation of the constants of motion

As has been outlined in Sec. III A, the constants of motion of
the system can be determined via the Möbius transformation (4) of
the N phases {ϕj}. In practice, one must �rst determine the complex
variable z = ρei8, which characterises the transformation. Watan-
abe and Strogatz (see Sec. 4.2 in Ref. 6) have shown that this can be
accomplished with the help of a potential function

U(ρ,8) = 1

N

∑

j

log
1 − 2ρ cos(ϕj −8)+ ρ2

1 − ρ2
. (17)

The proper value of z corresponds to the minimum of this function
with respect to its modulus ρ and to its argument8. The easiest way
to determine the minimum is by integrating

ρ̇ = −Uρ , 8̇ = −U8,
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until the steady state is established. The angles ψk + β can then be
obtained with the Möbius transformation (4). To avoid determina-
tion of the value of β , it is convenient to consider only the di�erences
ψj − ψ1, j = 2, . . . ,N, as constants of motion. The disadvantage of
this method lies in the necessity of solving theminimization problem
for potential (17), which can be performed with �nite accuracy only.
There exists, however, another possibility to determine the constants
of motion.

Marvel et al. (see Sec. V in Ref. 7) have demonstrated that
the cross ratio of four complex numbers on the unit circle is a
preserved quantity under the Möbius transformation. For any four
phases ϕk,ϕk+1,ϕk+2,ϕk+3 (not necessarily ordered on the circle), the
constant of motion Ck is de�ned as

Ck = Sk,k+2

Sk,k+3

· Sk+1,k+3

Sk+1,k+2

, where Sij = sin
ϕi − ϕj

2
. (18)

Ourmethod of checking the conservation of these quantities is based
on (18), but we �nd it appropriate to avoid calculating fractions,
because as the phases synchronize, the denominators can be very
small or vanish. Instead, we calculate the errors of the form

ek = Sk,k+2(t)Sk+1,k+3(t)Sk,k+3(0)Sk+1,k+2(0)

− Sk,k+3(t)Sk+1,k+2(t)Sk,k+2(0)Sk+1,k+3(0).

In summary, we test for the integrability in numerical schemes by
calculating the following errors containing changes in the conserved
quantities under the Möbius action

ErrWS(t) = max
k

{sin |[ψk(t)− ψ1(t)] − [ψk(0)− ψ1(0)]|},

where k = 2, . . .N, (19)

ErrMMS(t) = max
k
(|ek|) where k = 1, 2, . . . ,N − 3. (20)

B. Numerical evaluation of clustering

In numerical simulations of model (2) (details shall be outlined
below), we may observe di�erent clustered states, as illustrated in
Fig. 3.

FIG. 3. Besides 2-cluster and 3-cluster states discovered by Gil et al.,12 4 or 5
clusters can also be found for large integration steps. Shown are multiclus-
ters formed from the same initial condition of 100 Kuramoto phase oscillators,
drawn randomly from a uniform distribution, with coupling phase shift γ = 2πα ∈
(π/2,π) (repulsive coupling regime), various integration step sizes h and noise
strengths σ , after an integration time of T . (a) σ = 0.01, α = 0.3, h = 1.0, T =
220 000; (b) σ = 0.1, α = 0.4, h = 1.5, T = 225 000; (c) σ = 0.1, α = 0.4,
h = 2.0, T = 100 000; (d) σ = 0.1, α = 0.45, h = 2.0, T = 100 000. In most
cases, the final distributions of clusters are close to equipartition; in some cases,
the dynamics is quite complex, with switchings between different nearly-clustered
states.

We quantify the formation of synchronized clusters with the
help of the Kuramoto-Daido mean �elds

Zk = 1

N

∑

m

eikϕm . (21)

After long integration time, the �rst order mean �eld Z1 for repul-
sive coupling is either small if noise is present or vanishes completely
in the deterministic case. The second order parameter R2 = |Z2| is
maximal and equal to 1 for two fully synchronized clusters of arbi-
trary sizes with phase di�erence π between them. Altogether, the
degree of the formation of two clusters can be measured by a growth
of R2 approaching values close to one. We will, henceforth, use the
evolution of R2 as an indication for a two-cluster state.

C. Deterministic evolution

We �rst explore how well the WS integrability is preserved in
numerical simulation of deterministic equations. Here, the original
Kuramoto-Sakaguchi model is not optimal. After a short initial tran-
sient, the evolution of R1 = |Z1| e�ectively comes to a halt as soon
as a steady state is reached, i.e., R1 = |Z1| is zero for repulsive cou-
pling or unity for attractive coupling. Instead, we integrate a model
of type (3) with a prescribed modulated time-dependent forcing
ω(t) = 0.2 sin(1.752t), H(t) = 0.4 cos(2.33t) · Z, and N = 10 desi-
gned to ensure the state remains nontrivial (see Fig. 4). Integrat-
ing this deterministic equation, we use the standard Runge-Kutta
method of 4th order (RK4) and the �rst-order Euler method.

First, comparing Fig. 4 [panels (a) and (b)], where the twometh-
ods (19) and (20) of determining the constants ofmotion are used, we
can conclude that, while the errors in the constants ofmotion are sim-
ilar for large steps, the calculation of the errors via ErrWS (19) does not
allow for a proper estimation of very small errors, due to the neces-
sity of a minimization procedure which can be performed only with
�nite precision. Therefore, for the rest of the paper, we calculate the
errors using only ErrMMS (20).

The second observation is that in all the cases, the errors grow
in time roughly linear, with prefactors depending on the integration
step h: ErrMMS,RK4 ∼ h4.94t for the RK4 method and ErrEuler ∼ h0.99t
for the Euler method, indicating a drift of the constants of motion.
This is consistent with the fact that RK4 makes an error of h5 in each
time step and for Euler, it is h.

In Fig. 5, we present the results for the integration of the deter-
ministic equations (1) with ω = σ1 = σ2 = 0, N = 100, and γ =
0.54π (slightly repulsive). Here, we use rather large integration steps
to make the clustering e�ect visible during a relatively short tran-
sient time interval, before the main order parameter becomes very
small and the dynamics stops. One can see that for h > 0.6 the order
parameterR2, whichmeasures formation of a two-cluster state, grows
to macroscopic values.

For instructive purposes, we explore here which type of per-
turbations are introduced by the numerical integration methods to
the original dynamics (1) when noise is not present. The simplest
case is to estimate the perturbations introduced by the Euler method.
The Eulermethodmodels a continuous-time dynamical system ϕ̇k =
fk( Eϕ) up to the order h as a map ϕk(t + h) = ϕk(t)+ hfk[ Eϕ(t)]. Then
we might ask, what continuous equation is integrated by the same
map correctly up to the order h2. Looking for this equation in the
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FIG. 4. Time evolution of errors (20) from the integration of a deterministic
equation with RK4 (a) and (b) and the Euler (c) scheme. Dashed lines in (a)–(c)
have slope = 1 in the log 10-log 10 plot. (d) shows the numerical errors at end
time T = 1000 vs. time step h, as well as their linear fits (shown in legend). (a)
ErrWS(t), RK4, (b) ErrMMS(t), RK4, (c) ErrMMS(t), Euler, and (d) log10 Err(T) vs.
log10 h.

FIG. 5. Second Kuramoto-Daido order parameter (left) (21) and integrability
errors (right) (20), averaged over 10 random initial conditions drawn from uniform
distribution, as functions of time for Eq. (1) with ω = σ1 = σ2 = 0, N = 100,
and γ = 0.54π . The Euler method is used for integration. Cluster formation on
the left always corresponds to poor conservation of the constants on the right by
the Euler scheme.

form of ϕ̇k = fk( Eϕ)+ hgk( Eϕ), we �nd

gk( Eϕ) = −1

2

∑

m

fm( Eϕ)
∂

∂ϕm
fk( Eϕ).

Substituting for the Kuramoto-Sakaguchi model fk = ω + Im
[

Zei(γ−ϕk)
]

, we obtain a modi�ed equation where the error in the
Euler integration is part of the dynamics

ϕ̇k = ω + Im
[

Zei(γ−ϕk)
]

− ε

4
Im

[

Zei(2γ−ϕk) − Z∗Z2e
−iϕk − Z2ei2(γ−ϕk)

]

. (22)

Here, Z2 =
〈

exp (i2ϕm)
〉

m
is the second Kuramoto-Daido mean �eld.

One can see that in addition to the new coupling terms proportional
to sinϕ or cosϕ, which do not violate the WS integrability, terms
proportional to sin 2ϕ and cos 2ϕ appear, which violate the WS inte-
grability and may result in the formation of two clusters. Clusters of
higher orders can presumably be attributed to terms ∼ sin 3ϕ, etc.,
appearing in higher order errors in h.

D. Stochastic evolution

Throughout this paper, we interpret the stochastic system (1) in
the Stratonovich sense. However, the additional drift term needed to
transform it into Itô interpretation vanishes for the case when the two
noise terms correspond to an isotropic noise in the complex plane,
i.e., σ1 = σ2. Therefore, the numerical schemes for both Stratonovich
and Itô interpretations can be used to integrate the phases in the case
of two noise terms of equal strength. On the other hand, the two noise
terms in (1) do not commute. It has been shown, e.g., in Refs. 28–30,
that the strong order of convergence of all higher order integration
methods for stochastic di�erential equations with non-commutative
noise cannot be higher than 0.5. Strong order of convergence is
de�ned by the average error made by the time-discretized approx-
imation of the stochastic integration scheme in approximating each
individual path of the continuous-time process. Therefore, we restrict

Chaos 29, 033127 (2019); doi: 10.1063/1.5084144 29, 033127-7

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 6. Evolution of the second Kuramoto-Daido order parameter R2 under the
Euler-Heun scheme for different step sizes integrating (1) with strong noise
σ1 = σ2 = 0.1. Inset: collapse of the curves when plotted as functions of ht. The
data are averaged over simulations with 10 different sets of initial conditions. Sys-
tem parameters: system size N = 100, intrinsic frequencyω = 0, noise strength
σ = 0.1, and phase shift γ = 0.6π .

ourselves to using only low-order integration schemes. Only in the
case of noise in a single direction (i.e., σ2 = 0), high-order meth-
ods like the stochastic Runge-Kutta method28 are used. In Fig. 6,
we show the results in the case of two relatively strong noise terms
σ1 = σ2 = 0.1. The integration is performed with the Euler-Heun
scheme for di�erent time steps h. Due to the rotational invariance
preserved by two noise terms of equal strength, we have set ω = 0.
One can clearly see the formation of two clusters, indicated by values
of R2 growing close to one, on a time scale∼ h−1. For a weaker noise
σ = 0.01, clustering appears much slower. Only initial growth of the
second order parameter can be observed at the maximal integration
time of T = 4 × 105. This dependence of the clustering time scale on
the integration step size demonstrates that clustering in this system
is a numerical artifact. In fact, when we break theWS integrability by
including a term in the stochastic dynamics (2) proportional to the
error in the deterministic integration scheme as in Eq. (22), i.e.,

ϕ̇k = ω + Im
[(

Zeiγ + σξ
)

e−iϕk
]

− ε

4
Im

[

Zei(2γ−ϕk) − Z∗Z2e
−iϕk − Z2ei2(γ−ϕk)

]

, (23)

we observe robust clustering under dynamics equation (23) at a simi-
lar time scale as in the original system (2) for an integration time step
of h = ε (see Fig. 7).

In Fig. 8, we compare di�erent integration schemes applied to
models with one or two noise terms. Here, for the cases of two
noise terms (like in Fig. 6) and of one noise (where we set ω = 10
because the rotational symmetry is broken), we present results for the
Euler-Heun scheme, suitable for the Stratonovich interpretation of
the stochastic di�erential equation. Additionally, we show the results
of the stochastic Runge-Kutta scheme (SRK), which is suitable for
the one-noise case only, because of the non-commutativity of the two

FIG. 7. Three Euler-Heun integrations of identical initial conditions showing the
time series for the 2-cluster order parameter R2. Blue and green: under the
original model equation (1) with 2 equal noise terms, with time step h0 = 0.02
and h1 = 0.005, respectively. Red: under the modified dynamics equation (22)
with the perturbation amplitude ε = h0 in the modified dynamics and time steps
h = h1. The time scales at which the 2 clusters build up for blue and red time
series are comparable, supporting the hypothesis that the Fourier terms of sec-
ond order in the discretization errors of the integration scheme are responsible
for the formation of two clusters.

noise terms mentioned above. One can see that all plots are qualita-
tively similar, with only some quantitative di�erences. As one would
expect, the conservation of the constants of motion under the SRK
scheme is the best, and here also the growth of the second order
parameter is rather weak on the chosen time interval t < 2 · 105. We
have also performed simulations with the Euler-Maruyama scheme

FIG. 8. Simulations of Eq. (1) with 1 and 2 noise terms. We show R2 (top panels)
and numerical error (bottom panels) as functions of time, for the Euler-Heun and
stochastic Runge-Kutta 4th order methods. Parameters: N = 100, noise strength
σ = 0.01, phase shift γ = 0.6π . Intrinsic frequency ω = 0 for 2 noise terms,
and ω = 10 for one noise term. Resulting evolution is averaged over 8 different
initial conditions (same for all experiments). The dashed lines in the left andmiddle
columns (the Euler-Heun method) have slope equal to 1, whereas in the right
column the slope is 0.5, showing the superiority of the SRK method of integration.
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with the Stratonovich shift for the model (1) in the Stratonovich
interpretation, both with one noise term and with two noise terms
(where the Stratonovich shift is zero), all of which yield quantita-
tively identical results to the Euler-Heun scheme and are therefore
not shown.

We can conclude this section by stating that, in general, numeri-
cal schemes do not conserve the integrals ofmotion of the system and
eventuallymay lead to the formation of clusters. Because themethods
for integrating stochastic di�erential equations have typically lower
order than the deterministic ones, the clusters may be more easily
observed in the integration of noisy equations. In the determinis-
tic case, clustering may not be observed at all if a zero mean �eld
steady state is reached �rst. The presence of noise can prolong the
time within which the constants of motion continue to drift and their
deviation from their initial values continues to grow until at some
point fully synchronized multiclusters are formed.

As mentioned in Sec. III, the best way to avoid the numerical
artefacts of clustering is to integrate the Watanabe-Strogatz equa-
tions (6), but to accomplish this one has to performmultiple Möbius
transforms at each time step for a full time series of the mean �eld,
which may be quite computationally expensive. Furthermore, dis-
cretization errors are still present in integrating the low-dimensional
dynamics of theMöbius group parameters. Only multicluster forma-
tion would be guaranteed to no longer occur.

V. OSCILLATORS WITH NATURALLY OCCURRING

CLUSTERS UNDER REPULSIVE COUPLING AND

COMMON NOISE—THE VAN DER POL OSCILLATORS

Unlike the Kuramoto model, more realistic oscillator models
such as Van der Pol oscillators have limit cycles which intrinsi-
cally contain higher order Fourier terms and additional amplitude
dynamics. Under common additive noise and repulsive coupling, the
formation of multiclusters is no longer forbidden and could now nat-
urally occur. We consider N identical repulsively all-to-all coupled
Van der Pol oscillators subject to additive common Gaussian white
noise in one direction

ẋk = yi,

ẏk = a(1 − x2k)yn − xn − b
1

N

N
∑

j=1

(

yj − yk
)

+ σξ(t).
(24)

Here, b > 0 is the repulsive coupling strength, a parametrizes the
nonlinearity of Van der Pol oscillators, σ is the noise strength, and
ξ(t) is a Gaussian white noise force. Using phase reduction,21 the
additive noise term will become multiplicative with the linear phase
response function as a factor.

With a similar approach to that of Sec. III B, one can determine
the Lyapunov exponents for the two-cluster state in (24) numeri-
cally by integrating a perturbation from one of the clusters in the
linearized dynamics of the two cluster system. Contrary to the case
of the Kuramoto model, presented in Fig. 2, now in Fig. 9, we see
that the two-cluster state with p1 ≈ p2 is locally stable, which is con-
�rmed in Fig. 10 by direct simulations of Eq. (24). Here, we de�ned
the Kuramoto order parameters using the phases de�ned by virtue
of Poincaré sections (see also Ref. 16). One oscillator has been cho-
sen as a reference, and the moments of time t1, t2, . . . at which it

FIG. 9. Lyapunov exponent diagram for one of the two clusters of repulsively
coupled Van der Pol oscillators with additive noise in one direction, similar to
diagram 2. Contour plot of the Lyapunov exponent of cluster 1 is obtained by
numerical integration of the linearized equations (24) for two clusters of relative
sizes p1 and p2 = 1 − p1. System parameters a = 1, b = 0.01 correspond to
highly nonlinear regime of the Van der Pol oscillator limit cycle. The numerical
integration uses the Euler-Maruyama scheme with step size h = 0.005. Unlike in
Fig. 2, an analytical expression for critical noise strength is hard to obtain. From the
simulations, we found it to be σ 2

c /2 ≈ 0.027. The gray region beyond the critical
noise strength, therefore, corresponds to the formation of one cluster under strong
noise. Compared to the Kuramoto-Sakaguchi model in Fig. 2, a previously forbid-
den region of stable 2-cluster appears in the domain p1 ≈ p2 below the critical
noise strength. As the region with a negative Lyapunov exponent becomes larger
as the noise strength increases, it is evident that the common noise stabilizes both
clusters.

crosses half-line (x > 0, y = 0) have been determined. Then, the
phase di�erences of all other oscillators to the reference one at time tm
were de�ned as 2π(t(k)m − tm)/(tm+1 − tm). Here, t

(k)
m − tm is the time

needed for an oscillator with index k to reach the Poincaré section
from its position at time tm.

FIG. 10. Direct simulation of the Van der Pol oscillator ensemble of size N = 100
under weak common additive noise and repulsive coupling results in stable two
clusters with relative sizes p1 = 53% and p2 = 47% after a transient. Left: time
series for order parameters R1 and R2 during the initial transient from normal
Gaussian random initial conditions in the (x, y) plane. Right: snapshot of two sta-
ble clusters formed after integration time T = 33 000. System parameters are
a = 1.0, b = 0.01, and σ 2/2 = 0.01. The Euler-Maruyama integration scheme
with h = 0.001 is used. This is consistent with the negative evaporation Lyapunov
exponents for both clusters within the triangular parameter region in Fig. 9.
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In general, clustering strongly depends on the level of
nonlinearity, described by a. For large a (a = 1, b = 0.01), in the
deterministic case three clusters can be observed. In the presence
of noise, the picture is not so clear as several di�erent cluster states
may appear depending on the realization of initial conditions and of
the noise, but a tendency at least to the temporal formation of clus-
ters is clearly observed. For small values of nonlinearity parameter
a, typically non-clustered states are observed both with and with-
out noise. This is to be expected, since the Van der Pol oscillator
with a weakly anharmonic limit cycle has comparably much smaller
higher order Fourier terms in its phase response function. In general,
dynamic complexity of systems like (24) with non-negligible ampli-
tude dynamics can be very high, with chimera-like states becoming
possible (i.e., where clusters coexist with dispersed elements), and a
full characterization is beyond the scope of this paper.

From the above observation, we can therefore conclude that
there exists a qualitative di�erence between the dynamics of the phase
oscillator model (e.g., Fig. 2) and that of the more general oscillator
model with additional amplitude dynamics (e.g., Fig. 9), speci�-
cally under a repulsive coupling and common noise: while under the
Kuramoto-Sakaguchi model clusters are not allowed to form, under
the Van der Pol model, they are naturally forming and are stabilized
by the common stochastic forces.

VI. CONCLUSIONS

In this study, we apply the Watanabe-Strogatz (WS) theory6 to
the Kuramoto-Sakaguchi model of repulsively coupled phase oscilla-
tors under common noise, studied previously in Ref. 12. Our main
result is that although both the WS theory and the stability analy-
sis of clustered states exclude the appearance of clusters as observed
in Ref. 12, these observations can be generally explained as arte-
facts from the �nite accuracy of numerical simulations. The cor-
rect long term behavior for repulsively coupled phase oscillators
under common noise is either an incoherent state with no clus-
tering (when the common noise has a weaker e�ect compared to
the repulsive coupling) or a completely coherent state (when the
common noise has a stronger e�ect compared to repulsive cou-
pling). We study the numerical errors of di�erent deterministic and
stochastic schemes by monitoring the evolution of the constants of
motion which are conserved under the exact dynamics. It should
be stressed that the conclusions of the WS theory only apply to a
restricted class of phase oscillators which approximate weakly cou-
pled, weakly nonlinear limit cycle oscillators. The violation of the
WS integrability occurs naturally in general coupled oscillator sys-
tems. We show that in the case of repulsively coupled Van der Pol
oscillators noise-induced or deterministic clustering can indeed be
easily observed in regimes of larger nonlinearity. Due to the limi-
tation of the Kuramoto-Sakaguchi system in describing real-world
oscillator models or even more complicated coupled systems of dif-
ferential equations, in terms of numerics, this paper presents only a
cautionary tale. For most types of high dimensional coupled di�er-
ential equations, a hidden low-dimensional dynamics such as present
in the Kuramoto-type system is not available, nor do there often exist
integrals of motion. For these systems, often the only way to measure
or to gauge numerical errors is by using integration steps which are

as small as possible and to compare results under various degrees of
numerical accuracies.
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