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CORRELATIONS OF THE STATES OF NON-ENTRAINED OSCILLATORS
IN THE KURAMOTO ENSEMBLE WITH NOISE IN THE MEAN FIELD

A. S. Pikovsky,1,2 A.V.Dolmatova,3 and
D. S.Goldobin3,4 ∗ UDC 537.862+517.925.42

We consider the dynamics of the Kuramoto ensemble oscillators not included in a common
synchronized cluster, where the mean field is subject to fluctuations. The fluctuations can be
either related to the finite size of the ensemble or superimposed on the mean field in the form
of common noise due to the constructive features of the system. It is shown that the states of
such oscillators with close natural frequencies appear correlated with each other, since the mean-
field fluctuations act as common noise. We quantify the effect with the synchronization index of
two oscillators, which is calculated numerically and analytically as a function of the frequency
difference and noise intensity. The results are rigorous for large ensembles with additional noise
superimposed on the mean field and are qualitatively true for the systems where the mean-field
fluctuations are due to the finite size of the ensemble. In the latter case, the effect is found to be
independent of the number of oscillators in the ensemble.

1. INTRODUCTION

Many physical, biological and even social systems can be described as complex ensembles of coupled
oscillators. The synchronization phenomenon plays an important role in the behavior of such systems [1]:
it is observed in electronic and radio-engineering systems, in the collective behavior of people and animals,
in the neural structures of the brain, etc. This phenomenon is well studied for systems with different types
of coupling or in the presence or absence of noise.

In ensembles of non-identical oscillators, a partial synchronization phenomenon is typical, in which
some of the elements are synchronized and form a synchronous cluster, whereas the rest of the ensemble
continues to behave asynchronously with the cluster. When considering collective phenomena, priority is
given to the dynamics of synchronized elements, and the behavior of non-entrained elements is analyzed
mainly in the context of their possible transition to a synchronous cluster and remains relatively poorly
understood. Ensembles of finite size [2–4] are exceptions in terms of attention to dynamics of non-entrained
elements. In such ensembles, non-entrained elements significantly influence the collective dynamics of the
system and, in particular, the behavior of a synchronous cluster.

The subject of this paper is the collective dynamics of non-entrained elements irrespective of the
problem of their transition to a synchronous cluster. Namely, for pairs of non-entrained oscillators with a
small difference in the natural frequencies, mean-field fluctuations in the ensemble should act as common
noise and induce some level of correlation of states [5–8]. Fluctuations can be related both with the external
noise acting on the mean field and with the size of the ensemble. Consideration is carried out within the
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framework of a mathematical model that is adequate to the Kuramoto ensemble [9, 10] and some other
systems. We calculate the synchronization index |〈exp[i(ϕ1 − ϕ2)]〉| (a measure of correlation of the ϕ1

and ϕ2 states) for non-entrained elements as a function of detuning of their natural frequencies and noise
intensity in the mean field.

The structure of the paper is as follows. In Sec. 2, we describe the mathematical model under study
and derive averaged evolution equations for the phase difference distribution. In Sec. 3, the synchronization
index is calculated analytically. In Sec. 4, the main mathematical model is derived for ensembles of self-
excited Van der Pol oscillators with a common force-type effect and chains of series-connected Josephson
elements. Section 5 discusses the adequacy of the examined mathematical model to the Kuramoto ensemble.
Section 6 presents the conclusions.

2. DYNAMICS OF OSCILLATORS IN A CONSTANT FIELD WITH NOISE

Consider the dynamics of N phase oscillators affected by a constant common force with small fluc-
tuations:

ϕ̇j = ωj + [h+ σ0ξ(t)] sinϕj , (1)

where j = 1, 2, . . . , N , the overdot denotes a time derivative, h and σ0ξ(t) are the constant and fluctuation
components of the common force, σ0 is the fluctuation amplitude, ξ(t) is assumed to be normalized, δ-
correlated Gaussian noise, namely, 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2δ(t − t′), and the angle brackets denote
ensemble averaging. Section 4 substantiates the adequacy of Eq. (1) to a wide range of physical systems.
For definiteness, in Secs. 2 and 3, we talk about dynamic system (1) in the context of an interpretation in
which h+ σ0ξ(t) is the common force. However, we mention that this equation also describes the dynamics
of the Kuramoto ensemble [9] at the thermodynamic limit of a large number of oscillators, the natural
frequencies of the oscillators are not identical, and noise is added to the common force (mean field) acting
on the oscillators. In this interpretation, ϕj is the difference of the phase of the jth oscillator and the phase
of the mean field, and ωj is a deviation of the natural frequency of the oscillator from the frequency of the
mean field (which is close to the mean natural frequency of oscillators in the ensemble, but is not equal to it).
It is expedient to come back to justifying this interpretation of Eq. (1) later, after studying its properties,
because understanding of the latter will permit us to discuss its adequacy to the Kuramoto ensemble with
a finite number of elements, where the mean field appears to fluctuate with partial synchronization.

We focus on oscillators whose phase is not locked by the force h and would not be locked by it in
the absence of noise, which within the framework of Eq. (1) means |ωj| > h. For h �= 0, the instantaneous
growth rates of the phases ϕj start to depend on time even in the absence of noise, while the oscillation
frequencies are varied. Let us introduce the replacement of variables

tan

(
ϕ̃j − π/2

2

)
=

√
ωj − h

ωj + h
tan

(
ϕj − π/2

2

)
.

Then Eq. (1) in the variables of new phases ϕ̃j takes the form

˙̃ϕj =
√

ω2
j − h2 + σ0ξ(t)

ωj sin ϕ̃j − h√
ω2
j − h2

. (2)

It can be seen that for σ0 = 0 the new phases grow at constant rates

ω̃j =
√

ω2
j − h2,

i. e., are the natural phase variables at h �= 0. Since with the increment of the new phase ϕ̃j by 2π the initial
phase ϕj will also grow by 2π, the rates ω̃j are oscillation frequencies of the oscillators in the absence of
noise.
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Consider the dynamics of two oscillators with close frequencies. Denote the mean frequency of these
oscillators as ω̃ =

√
ω2 − h2 and the frequency difference, as Δ. For the further analysis, it is convenient to

introduce a new effective noise amplitude σ = 2ω(ω2 − h2)−1/2σ0. Then, with a small frequency difference
Δ = ω̃1 − ω̃2, from Eq. (2) one can obtain

˙̃ϕ1 = ω̃ +
1

2
Δ +

1

2
σξ(t)

(
sin ϕ̃1 − h

ω

)
,

˙̃ϕ2 = ω̃ − 1

2
Δ +

1

2
σξ(t)

(
sin ϕ̃2 − h

ω

)
. (3)

We now determine the new variables θ = ϕ̃1 − ϕ̃2 and ψ = ϕ̃1 + ϕ̃2. In these variables, Eqs. (3) take the
form

θ̇ = Δ+ σ sin

(
θ

2

)
cos

(
ψ

2

)
ξ(t), ψ̇ = 2ω̃ + σ

[
sin

(
ψ

2

)
cos

(
θ

2

)
− h

ω

]
ξ(t). (4)

The probability density of states W (θ, ψ, t) for system (4) is determined by the following Fokker–
Planck equation:

∂

∂t
W (θ, ψ, t) +

∂

∂θ
ΔW +

∂

∂ψ
2ω̃W = σ2L̂2(W ) , (5)

where L̂(X) is the following differential operator:

L̂(X) =
∂

∂θ

[
sin

(
θ

2

)
cos

(
ψ

2

)
X

]
+

∂

∂ψ

{[
sin

(
ψ

2

)
cos

(
θ

2

)
− h

ω

]
X

}
.

Using the method of multiple scales [11], averaging of Eq. (5) over a rapidly varying phase ψ can be
rigorously performed (as it was done in Appendex A in [12]). For the averaged probability density w(θ, t) =∫ 2π
0 W (θ, ψ, t) dψ we obtain the equation

∂

∂t
w(θ, t) +

∂

∂θ
Δw(θ, t) =

σ2

4

∂2

∂θ2
[(1− cos θ)w(θ, t)] . (6)

The relative error of this equation for the averaged probability density has the order of small parameters
Δ/ω̃ and σ2/ω̃.

In the case of a statistically stationary state of the system (the probability density w(θ) is time
independent), Eq. (6) can be integrated over θ:

Δw(t)− σ2

4

d

dθ
[(1− cos θ)w(θ)] = J =

ν

2π
, (7)

where J is the probability flux and ν is the difference of the observed mean frequencies.

For the further analysis, it is convenient to introduce new normalized variables

a =
4Δ

σ2
=

√
ω2 − h2

ω σ2
0

|ω1 − ω2|, j =
4J

σ2
.

In these variables, Eq. (7) is given by

aw(θ)− d

dθ
[(1 − cos θ)w(θ)] = j. (8)

With allowance for the normalization condition
∫ 2π
0 w(θ)dθ = 1, integration of Eq. (8) over θ permits one

to relate the normalized probability flux with the only essential parameter a of the problem:

j = a/(2π).
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It can be noted that the latter relation corresponds to the equality ν = Δ, i. e., noise does not affect
the difference of observed frequencies. Substituting the found value into expression (8), we obtain a final
equation for the probability density in the stationary case:

aw(θ)− d

dθ
[(1 − cos θ)w(θ)] =

a

2π
. (9)

3. ANALYTICAL SOLUTION FOR THE SYNCHRONIZATION INDEX

For the further analysis of stationary system (9) we replace the variables

x = ctg(θ/2). (10)

Denote the probability density of states in new variables by p(x). Since the equality p(x) |dx| = w(θ) |dθ|
should be fulfilled, the probability densities in the former and new variables are related as follows:

p(x) = w(θ)
2

1 + x2
. (11)

To determine the boundary conditions for the function p(x), we consider the limiting case where w(θ) is
singular, i. e., represents a Dirac delta function. If the phase difference θ = π, then the corresponding x = 0
and the singularity w(θ) = δ(θ + π) corresponds to the singularity p(x) ∝ δ(x). If the oscillators tend to
the synchronicity state, then the phase difference θ → 0, while |x| → ∞. Replace the delta function by its
finite representation

w(θ) ∝ 1

ε
exp

[
−
(
θ

ε

)2
]
, (12)

where ε is an arbitrary small number. With allowance for the smallness of θ (θ → sin θ), the latter expression
yields the following distribution of the variable x:

p(x) ∝ 2

ε(1 + x2)
exp

{
−
[

2x

(1 + x2)ε

]2}
. (13)

For large |x| → ∞, expression (13) can be simplified:

p(x) ∝ 1

x2ε
exp

[
− 4

(xε)2

]
∝

{
0, x < 2/ε;

(x2ε)−1, x > 2/ε.
(14)

Thus, it is seen that even for a singular distribution of the probability density, p(x) → 0 for |x| → ∞. Let
us come back to the Fokker–Planck equation for the probability density. With allowance for Eqs. (10) and
(11), Eq. (9) for p(x) takes the form

dp

dx
+ ap =

a

π(1 + x2)
. (15)

The solution of this equation can be represented by the formula

p(x) =
a

π

x∫
−∞

1

1 + y2
exp[a(y − x)] dy. (16)

To calculate the synchronization index

γ = |〈exp(iθ)〉| = |〈cos θ〉+ i〈sin θ〉| (17)
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it is needed to find the mean values S = 〈sin θ〉 and C = 〈cos θ〉. In view of expression (16) for the probability
density, we find

S =
a

π

+∞∫
−∞

2x

1 + x2
dx

x∫
−∞

exp[a(y − x)]

1 + y2
dy = 2a[−ci(2a) cos(2a)− si(2a) sin(2a)], (18)

C =
a

π

+∞∫
−∞

x2 − 1

1 + x2
dx

x∫
−∞

exp[a(y − x)]

1 + y2
dy = 1− 2a[ci(2a) sin(2a)− si(2a) cos(2a)], (19)

where

Fig. 1. The synchronization index of two oscillators
in the ensemble, which is affected by a constant
common field with noise. Analytical solution (17)
is represented by a line. The points correspond
to the results of direct numerical integration of
Eq. (1).

ci(x) = −
∞∫
x

cos t

t
dt = Ci(x),

si(x) = −
∞∫
x

sin t

t
dt = Si(x)− π/2.

Substituting the found expressions into Eq. (17), one
can calculate the synchronization index of two oscillators.
The obtained dependence of the synchronization index
on the parameter a is presented in Fig. 1. It can be seen
that the analytical theory agrees well with direct numer-
ical calculations for Eq. (1), which were performed for
ω0 = (ω1 + ω2)/2 = 2, h = 1, and σ0 = 0.05; the extreme
right point in the diagram corresponds to ω1 − ω2 ≈ 0.1,
i. e., the frequency difference remains fairly small.

Speaking about the correlation of states, it is im-
portant to bear in mind that the mean differences of ob-
served frequencies ν in the considered system are noise in-
dependent. The high correlation of states and the absence
of “entrainment” of the mean frequency can be combined
only with an essentially intermitted character of synchro-

nization: the periods of synchronous behavior alternate with the phase slip periods in such a way that
the mean resulting phase difference over a fixed interval of observation time does not depend on the noise
intensity.

4. VAN DER POL OSCILLATORS AND JOSEPHSON CONTACTS

We now show how phase equations (1) correspond to some particular systems of oscillators.
As the first example, consider the ensemble of Van der Pol oscillators in the self-excited oscillation

mode with an identical force-type effect f(t) on each oscillator:

ẋj = yj , ẏj = 2ε(1 − x2j)yj − Ω2
jxj + f(t) , (20)

where ε > 0, Ωj is the frequency of small oscillations of the jth oscillator. Since harmonic oscillations with
amplitude 2 are established in the Van der Pol oscillator for ε � 1 and f = 0, we introduce the following
variable amplitudes and phase: xj = 2Aj sinφj and yj = 2ΩjAj cosφj. By direct substitution into Eq. (20)
it can be found that

Ȧj = εAj

{
1 + cos 2φj −A2

j [1− cos(4φj)]
}
+

f

2Ωj
cosφj , (21)
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φ̇j = Ωj − ε
[
(1− 2A2

j ) sin 2φj +A2
j sin 4φj

]− f

2AjΩj
sinφj . (22)

For small ε and f , the Krylov–Bogolyubov averaging method [11] for system (21)–(22) in the leading
order yields

Ȧj = ε(Aj −A3
j ),

i. e., Aj → 1, and for Aj = 1, with allowance for the first order of smallness, we have

φ̇j = Ωj + ε[sin(2φj)− sin(4φj)]− f

2Ωj
sinφj . (23)

Transformation of the phase variables ϕj = φj + [ε/(2Ωj)] cos(2φj) − [ε/(4Ωj)] cos(4φj) + O(ε2/Ω2
j ) brings

Eq. (23) to the form

ϕ̇j = Ωj − f

2Ωj

[
sinϕj +O

(
ε

Ωj

)]
. (24)

For ε � Ωj, |f | � Ωj, and a small relative detuning of the oscillator frequencies Ωj, Eq. (24) is equivalent
to Eq. (1) with f/(2Ω0) = −[h + σ0ξ(t)], where Ω0 is the mean value of Ωj. The error of correspondence
between these equations is of the second order of smallness. Thus, h and σ0ξ(t) specify the constant and
variable components of the common force, respectively.

As the second example, we consider a series connection of Josephson contacts. Voltage uj at the jth
contact is due to the phase jump ϕj at this contact: uj = �ϕ̇j/(2e), where � is a Planck constant and e is
an elementary charge. With a significant ohmic current of leakage through the contact, the dynamics of the
phase jump is determined by the equation [13]

�

2erj
ϕ̇j + I0j sinϕj = I,

where rj is the ohmic resistance of the contact, I0j sinϕj is the Josephson current, I0j is the constitutive
parameter of the contact, and I is the current flowing through the circuit. The latter equation can be
rewritten in the form

ϕ̇j =
2e rjI

�
− 2e rj

�
I0j sinϕj . (25)

For metamaterials based on Josephson contacts [14–16], situations are relevant in which I0j changes in the
same way for all elements due to a mechanical load or exposure to external fields of a different nature. If
the parameters of the elements differ only weakly (which is natural for a metamaterial) and the Josephson
current is small compared to the ohmic current, it is possible to neglect the nonidentity of the coefficients
before the term sinϕj and obtain an equation such as (1) for all the elements.

5. KURAMOTO ENSEMBLE WITH MEAN-FIELD FLUCTUATIONS

Consider an ensemble of N oscillators described by the Kuramoto model:

φ̇j = Ωj +
μ

N

N∑
k=1

sin(φk − φj). (26)

Here, φj and Ωj are the phase and natural frequency of the jth oscillator, respectively, and μ is the global
coupling coefficient in the ensemble.

All the oscillators interact with each other with identical force; therefore, the collective dynamics of
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the ensemble can be described using a mean field with amplitude R and phase Φ:

Z = R exp(iΦ) =
1

N

N∑
j=1

exp(iφj). (27)

In this case, Eq. (26) can be rewritten in the form

φ̇j = Ωj + μR sin(Φ − φj). (28)

We introduce the phase deviation ϕj = φj − Φ and obtain the equation of its dynamics. We assume
that the coupling coefficient μ exceeds the excitation threshold of the mean field Z (or, in other words, the
synchronous mode) [9, 10] well enough, so that a significant part of elements in the ensemble are synchronized,
but oscillators with a large deviation of the natural frequency from the mean value remain non-entrained.
Let us differentiate the mean field (27) with respect to time taking into account expression (28):

Ṙ = − 1

N

N∑
j=1

ωj sinϕj +
μR

N

N∑
j=1

sin2 ϕj, (29)

Φ̇ = Ω0 +
1

R

1

N

N∑
j=1

ωj cosϕj − μ

2N

N∑
j=1

sin(2ϕj). (30)

Here, we introduced the natural-frequency detuning ωj = Ωj−Ω0. Consider the phase dynamics of the mean
field in more detail. For a large, but finite number of ensemble elements, fluctuations of the amplitude and
rotation velocity of the mean field Z turn out to be small, of the order of

√
Na/N =

√
Na/N/

√
N , where Na

is the number of non-entrained oscillators. When the oscillator is included in a synchronous cluster, its effect
on the phase rotation of the mean field becomes almost stationary; therefore, only non-entrained oscillators
will give a significant contribution to the fluctuating part of the second and third terms on the right-hand
side of Eq. (30). It can be noted that if the greater part of the elements are synchronized, the mean field
will rotate with an almost constant amplitude 〈R〉 [4, 9] and angular frequency fluctuating near the mean
value of Ω0. In this case, the phase of the common field can be represented as the sum of constant and
small fluctuation components. Let us estimate the magnitude of the fluctuating component of the second
and third terms in Eq. (30):

1

R

1

N

N∑
j=1

ωj cosϕj ∼ δω
√
Na

N
,

μ

N

N∑
j=1

sin(2ϕj) ∼ μ
√
Na

N
,

where δω is the half-width of the distribution of natural frequencies ωj. Thus, it can be written

1

R

1

N

N∑
j=1

ωj cosϕj ≡ GΦ,ω
γ
√
Na

N
ξΦ,ω(t),

μ

2N

N∑
j=1

sin 2ϕj ≡ GΦ,ϕ
μ
√
Na

2N
ξΦ,ϕ(t),

where GΦ,ω and GΦ,ϕ are multipliers of order 1, which remain indefinite in the analysis presented here. We
introduced pseudo-stochastic processes ξΦ,ω(t) and ξΦ,ϕ(t) normalized to unity: 〈ξ2Φ,ω〉 = 〈ξ2Φ,ϕ〉 = 1. These
processes cannot be truly stochastic, since they occur as a result of the dynamics of the determinate system.
At the same time, they are related to the superposition and nonlinear interaction of Na oscillatory processes,
which in the absence of interaction would have incommensurate frequencies ω̃j, so that the set ω̃j is not
regular. Proceeding from Eq. (28) and (30), one can write the equation for the phase deviation ϕj :

ϕ̇j = ωj +

√
Na

N

[
GΦ,ωγξΦ,ω(t) +GΦ,ϕ

μ

2
ξΦ,ϕ(t)

]
+ μR sinϕj . (31)

In Eq. (31), the fluctuations R with respect to 〈R〉 remain undescribed. With the superposition
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of Na oscillatory processes with a random set of incommensurate frequencies, it should be expected that
R− 〈R〉 ∼ √

Na/N . Let us introduce a quantity ξR(t):

R− 〈R〉 ≡ GR

√
Na

N
ξR(t),

where GR is a multiplier of order unity and 〈ξ2R〉 = 1. Then Eq. (31) will take the form

ϕ̇j = ωj +

√
Na

N

[
GΦ,ωγξΦ,ω(t) +GΦ,ϕ

μ

2
ξΦ,ϕ(t)

]
+ μ

[
〈R〉+GR

√
Na

N
ξR(t)

]
sinϕj . (32)

Statistical properties of the ξΦ,ω(t), ξΦ,ϕ(t), and ξR(t) processes, except for the normalization, remain indef-
inite.

Since additive noise in a system of this type contributes to synchronization less efficiently than
multiplicative noise [12], the noise terms ξΦ,ω and ξΦ,ϕ will be neglected. In addition, in Eqs. (3), one can
extract the additive component of noise (this term is proportional to h/ω), which upon averaging over phase
ψ does not contribute to Eq. (7) in the leading order for evolution of the phase difference distribution w(θ, t).
Since the results of the analytical theory strictly corresponding to Eq. (7) are in good agreement with direct
numerical calculations for Eq. (1) (see Fig. 1), the approximation, within which the contribution of additive
noise is omitted, can be considered valid. Finally, for description of the oscillator phase deviations from the
mean-field phase, we have an equation of the form (1)

ϕ̇j ≈ ωj + μ

[
〈R〉+GR

√
Na/N√
N

ξR(t)

]
sinϕj . (33)

At the thermodynamic limit N → ∞, the noise term related to the dynamics of non-entrained oscillators
disappears; however, there exist physical systems where the mean field can be disturbed by common noise
for constructive reasons. The presented analysis of Eq. (1) for such systems can be considered rigorous,
and the described correlations of the states of non-entrained oscillators with close natural frequencies will
be observed. Synchronization by common noise [5–8, 17] will be a mechanism for the occurrence of these
correlations.

It was mentioned above that for a finite-size Kuramoto ensemble, the fluctuations ξR(t) will not
be quite stochastic and, moreover, depend on the signals ϕj(t). For such a system, without additional
analysis, one can speak only about the qualitative picture of the occurrence of correlations. Let us estimate
how the magnitude of correlations depends on the number of oscillators. It was found that for self-excited
oscillatory systems with weak common noise ξR(t) the synchronizing effect of noise, as well as its impact
on the coherence of oscillations of an individual system, is qualitatively determined by the integral of the
noise autocorrelation function

∫ +∞
−∞ 〈ξR(t) ξR(t+ τ)〉dτ [18, 19], and for a fixed value of this integral it does

not depend on other statistical properties of noise. Consequently, comparing Eqs. (1) and (33), as well
as collating the normalization of noises ξ(t) and ξR(t), one can obtain the effective value σ0 for Eq. (33):
2σ2

0 = μ2G2
R(Na/N

2)
∫ +∞
−∞ 〈ξR(t) ξR(t+τ)〉dτ . The characteristic decay time of autocorrelations of the order

parameter R can be estimated by the time of the mismatch of phases growing at different rates ω̃j : τcorr,R ∼
δω−1, where δω is the half-width of the natural-frequency distribution. Hence,

∫ +∞
−∞ 〈ξR(t) ξR(t + τ)〉dτ ≈

2〈ξ2R〉τcorr,R ≈ 2/γ. For a characteristic difference of natural frequencies, we have |ω1 − ω2| ≈ 2δω/(N/2).
Consequently, for the parameter a determining the magnitude of correlations, we obtain the formula

a ≈ 4(δω)2

μ2G2
R(Na/N)

√
ω2 − μ2 〈R〉2

ω
.

The characteristic value of a appears to be independent on the number of oscillators in the ensemble and has
the order 1. Thus, for most oscillators in the ensemble, the correlation occurrence effect does not depend on
the ensemble size and is relatively weak. At the same time, the frequency difference distribution is random,
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and there can be pairs of oscillators with a small frequency difference, for which the value of a is small. For
a given a∗, the fraction of oscillators with a < a∗ is also independent of the ensemble size.

6. CONCLUSIONS

In this paper, we have considered the dynamics of oscillators in the Kuramoto ensemble with noise in
the mean field. The focus is on oscillators that are not entrained by a synchronous cluster. It is shown that
the noise of the mean field induces correlations of oscillator states with close frequencies. The mechanism
of occurrence of correlations is related to the common-noise synchronization phenomenon.

We obtained an analytical expression γ = |〈exp[i(φ1 − φ2)]〉| for the synchronization index of two
oscillators as a function of the difference of their natural frequencies. This expression agrees well with nu-
merical calculations (see Fig. 1). The problem of adequacy of the studied mathematical model of finite-size
Kuramoto ensembles, where non-periodic oscillations of non-entrained oscillators create mean-field fluctua-
tions, has been considered. However, the dependence of characteristic differences of the nearest frequencies
and the intensity of effective noise on the ensemble size is such that the magnitude of correlations is inde-
pendent of the ensemble size.

The results presented in Secs. 2 and 3 were obtained by A. Pikovsky with support by the Russian
Science Foundation (project No. 14–12–0081). The results presented in Secs. 4 and 5 were obtained by
A.V.Dolmatova and D. S.Goldobin with support by the Russian Science Foundation (project No. 14–21–
00090).
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