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TWO-BUNCH SOLUTIONS FOR THE DYNAMICS
OF OTT–ANTONSEN PHASE ENSEMBLES

I.V. Tyulkina,1∗ D. S.Goldobin,1,2 L. S.Klimenko,1,2

and A. S. Pikovsky3,4 UDC 537.86+001.891.57+621.37

We have developed a method for deriving systems of closed equations for the dynamics of order
parameters in the ensembles of phase oscillators. The Ott–Antonsen equation for the complex
order parameter is a particular case of such equations. The simplest nontrivial extension of the
Ott–Antonsen equation corresponds to two-bunch states of the ensemble. Based on the equations
obtained, we study the dynamics of multi-bunch chimera states in coupled Kuramoto–Sakaguchi
ensembles. We show an increase in the dimensionality of the system dynamics for two-bunch
chimeras in the case of identical phase elements and a transition to one-bunch “Abrams chimeras”
for imperfect identity (in the latter case, the one-bunch chimeras become attractive).

1. INTRODUCTION

The dynamics of coupled self-oscillatory systems is of interest for many applications in physics,
biology, and technology [1, 2]. In the case of weak coupling, a universal approach can be developed based on
the phase approximation, in which only the phase dynamics of oscillators is considered, and their amplitudes
are assumed algebraically coupled with phases. The famous Kuramoto model describes a system of phase
oscillators coupled through the mean field and considers analytically the transition to synchronization. For a
certain class of phase systems in a common field (see a more specific definition in the next section, as well as
a recent review [2]), Watanabe and Strogatz [3, 4], and Ott and Antonsen developed analytical approaches
to obtain closed equations for complex order parameters of phase ensembles.

The Watanabe–Strogatz theory shows a partial integrability of ensembles of identical elements. In
particular, motion constants, whose distribution determined by the initial conditions is preserved in the
process of evolution, can be introduced at the thermodynamic limit of an infinite ensemble. With arbitrary
distributions of these constants, the laws of motion are quite complex, while in the particular case of a uniform
distribution, they are significantly simplified. It is exactly this fairly simple case for which a solution was
found in [5]. It follows from the above that the Ott–Antonsen solution, in view of the Watanabe–Strogatz
partial integrability, can be only neutrally stable for identical ensembles. At the same time, the Ott–
Antonsen solution is apparently stable with the introduction of non-identity. Until now, however, there was
no description of situations in the vicinity of the Ott–Antonsen solution which could permit one to follow
the indicated properties.

Such a description proposed in this paper is based on the so-called circular cumulants. These quan-
tities can be considered special complex order parameters for phase ensembles. For the Ott–Antonsen
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solution, only the first cumulant is non-zero. We show the existence of another invariant solutions that can
be fully specified by the first and second cumulants and analyze how the approximation of the solution to the
Ott–Antonsen manifold can be described within the framework of this approach in the case of non-identical
ensembles.

The paper comprises six sections. Elements of the Ott–Antonsen theory, which are essential for this
work, are given in Sec. 2. Formalism of circular cumulants and common equations of dynamics in terms of
cumulants is introduced in Sec. 3. Section 4 shows the possibility to obtain a more general solution than the
Ott–Antonsen solution and establishes the two-bunch nature of the new solution. In Sec. 5, the obtained
results are used to study multi-bunch chimera states in the Abrams system [7]. Final conclusions are given
in Sec. 6.

2. OTT–ANTONSEN THEORY FOR PHASE SYSTEMS

In this section, we present the elements of the Ott–Antonsen theory for phase oscillators, which will
be needed for the further analysis. This theory applies to systems of identical elements described by the
equations

ϕ̇k = ω(t) + Im[2h(t) exp(−iϕk)], k = 1, . . . , N, (1)

where ω(t) and h(t) are the arbitrary real-valued and complex functions of time, respectively; the overdot
denotes a time derivative. The theory is valid at the thermodynamic limit N → ∞, where it is natural to
describe the evolution of the system in terms of the probability density of the phase distribution w(ϕ, t). In
these terms, the system has the properties of the Watanabe–Strogatz integrability. However, it is difficult
to describe these properties in terms of the density w(ϕ, t) or in terms of complex modes an(t), where an(t)
are the Fourier expansion coefficients

w(ϕ, t) = (2π)−1
{
1 +

∞∑
n=1

[an(t) exp(−inϕ) + a∗n(t) exp(inϕ)]
}
.

Here, the asterisk denotes complex conjugation. The equation for w(ϕ, t), which follows from the dynamic
equation (1) and is given by

∂w

∂t
+

∂

∂ϕ

{
[ω(t)− ih(t) exp(−iϕ) + ih∗(t) exp(iϕ)]w

}
= 0,

in the Fourier space takes the form of an infinite system

ȧn = inωan + nhan−1 − nh∗an+1 , n = 1, 2, . . . , (2)

where it should be assumed that a0 = 1. Ott and Antonsen note that the chain of equations (2) admits a
solution of the form an(t) = [a1(t)]

n, for which one can obtain a closed dynamic equation:

ȧ1 = iωa1 + h− h∗a21. (3)

Herewith, the variable a1 = 〈exp(iϕk)〉 is the order parameter of the system (the angle brackets denote
ensemble averaging). The set of solutions, for which an = (a1)

n, is called the Ott–Antonsen manifold [5].
It corresponds to the probability density distribution of quite a definite form, which can be found by
substituting an = an1 in the Fourier expansion w(ϕ):

wOA(ϕ) =
1− |a1|2

2π|1 − a1 exp(−iϕ)|2 .

In the Watanabe–Strogatz variables, this manifold corresponds to a uniform distribution of constants in the
Möbius transform underlying the Watanabe–Strogatz theory [4]. Note that other distributions of constants
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also remain invariant, but they are difficult to express through an modes. The Watanabe–Strogatz theory
suggests that the Ott–Antonsen manifold is neutrally stable. However, in the realistic cases of imperfect
identity, i. e., with spread of natural frequencies, this manifold becomes attractive [5, 6], which determines
the importance of this particular solution an = (a1)

n and justifies reducing the description to a dynamic
equation such as (3) in some problems [5, 7–11].

The Ott–Antonsen theory is extended to the case of an ensemble of oscillators with non-identical
natural frequencies ω as follows. Oscillators can be bunched by natural frequencies, and Eqs. (2) should be
written for each bunch of oscillators with identical frequencies ω:

ȧω,n = inωaω,n + nhaω,n−1 − nh∗aω,n+1, n = 1, 2, . . . . (4)

The distribution for the total ensemble is w(ϕ, t) =
∫
wω(ϕ, t) g(ω) dω, where g(ω) is the distribution of

frequencies ω, and, accordingly, an =
∫
aω,ng(ω) dω. If it is assumed that at some instant of time, aω,n

are smooth functions of ω, which are analytical in the upper half-plane of the complex value ω, then the
increments daω,n described by Eqs. (4) will also be analytical functions of ω in the upper half-plane, and aω,n
will remain analytical. In the case of analytical aω,n, the integrals

∫
aω,ng(ω) dω for specific distributions

g(ω) will be calculated by the methods of the theory of residues. In particular, for the Lorentz distribution
of frequencies with the mean frequency Ω and half-width γ, which is given by the expression

g(ω) =
γ

π[(ω − Ω)2 + γ2]
,

by closing the contour through the upper complex half-plane, one can calculate

an =

∫
aω,ng(ω) dω = aΩ+iγ,n

and use Eq. (4) for the complex value ω = Ω+ iγ :

ȧn = n(iΩ− γ)an + nhan−1 − nh∗an+1 , n = 1, 2, ... . (5)

We then will work with this system of equations bearing in mind that the case of identical frequencies
corresponds to γ = 0.

3. CIRCULAR CUMULANTS

Describing the dynamics of the system in the vicinity of the Ott–Antonsen manifold in terms of
an is problematic for states with a high degree of synchronicity, where |a1| is close to 1 and the series
an ≈ (a1)

n has a slow convergence. In this respect, it may be efficient to pass from considering the moments
an = 〈[exp(iϕ)]n〉 to cumulants that formally correspond to them

K1 = a1, K2 = a2 − a21, K3 = a3 − 3a2a1 + 2a31, . . . .

Strict relation between an and Kn is determined by means of generating functions:

F (ζ) ≡ 〈
exp[ζ exp(iϕ)]

〉 ≡
∞∑
n=0

an
ζn

n!
, Φ(ζ) ≡ ln[F (ζ)] ≡

∞∑
m=1

Kn
ζn

n!
. (6)

In terms of Kn, Eqs. (2) take the form

K̇n = n(iΩ− γ)Kn + hδ1n − nh∗
[
Kn+1 +

n∑
m=1

(n− 1)!

(m− 1)! (m − n)!
Kn−m+1Km

]
,
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where for n = 1 we have δ1n = 1, and for n 	= 1 the quantity δ1n = 0. Strict derivation of the equations
for Kn from Eqs. (2) is given in [12], while in the present paper we rely on this procedure as on the fact
whose reliability can be checked for the first several n using explicit relations between an and Kn. For
κn ≡ Kn/(n− 1)!, the dynamic equations are slightly simplified:

κ̇n = n(iΩ− γ)κn + hδ1n − nh∗
(
nκn+1 +

n∑
m=1

κn−m+1κm

)
. (7)

It follows from the last equation that the dynamics of κn is determined by the values of κ1, κ2, ..., κn+1,
and κn+1 enters Eq. (7) through the term −n2h∗κn+1. Thus, it does not seem possible in general to single
out the closed system of a finite number of equations.

Hereafter we call the quantities κn circular cumulants. Since an are not the moments of the phase,
but the moments of exp(iϕ), the quantities Kn are not true cumulants of the phase distribution. This
permits admissible arbitrariness in the selection of circular cumulants (choosing between the variables Kn

and κn).

4. TWO-BUNCH INVARIANT MANIFOLD

4.1. Extension of the Ott–Antonsen manifold

In terms of circular cumulants, the Ott–Antonsen solution (an = (a1)
n) takes a very simple form

κ1 = a1 , κn≥2 = 0. (8)

This fact serves as a considerable argument in favor of the cumulant representation: firstly, it appears that
the higher-order cumulants describe a deviation from the Ott–Antonsen manifold and, secondly, it becomes
possible to avoid the problem of slow convergence of the series an for |a1|→1.

For solving Eq. (8), only the first equation, which coincides with Eq. (3), remains in the chain of
equations (7), while all the subsequent equations are identically satisfied. However, broader specific cases
are also possible, where, instead of the infinite system (7), closed equations can also be obtained. Generally,
if the higher-order cumulants are not equal to zero, then the equation for n = 1 has the form

κ̇1 = (iΩ− γ)κ1 + h− h∗(κ2 + κ
2
1) . (9)

In typical problems, h = h(κ1, t), and deviation of the dynamics of the order parameter κ1 from the Ott–
Antonsen solution requires a nonzero value of κ2. Therefore, the particular solutions with κ2 	= 0 are of
interest. The system of equations (7) is closed if for some significant cumulants κn the cumulants κn+1 will
become zero. At κ2 	= 0, the solutions for which all the odd cumulants κn, except for the first one, are equal
to zero are the simplest variant for consideration.

Consider the case κ2j+1 = 0, where j = 1, 2, ... . For n = 1, we have the equation (9). For n = 2j+1,
Eqs. (7) yield

0 = −nh∗
[
nκn+1 + (κnκ1 + κn−1κ2 + · · · + κ1κn)

]
,

or
0 = (2j + 1)κ2j+2 + κ2jκ2 + κ2j−2κ4 + · · ·+ κ2κ2j . (10)

For n = 2j,
κ̇n = n (iΩ − γ)κn − nh∗

(
κnκ1 + κn−1κ2 + κn−2κ3 + · · · + κ1κn

)
,

or
κ̇2j = 2j (iΩ − γ − 2h∗κ1)κ2j . (11)

From the latter equation it can be seen that the dynamics of all the even circular cumulants is similar to
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the dynamics of the second one: for some solution κ2(t), we have

κ2j(t) = Cj

[
κ2(t)

]j
. (12)

Here, Cj are the integration constants specified by the initial conditions. By definition, C1 = 1. However,
it should be remembered that Eqs. (11) are valid only with the fulfilment of relations (10), which are the
condition that the odd cumulants higher than the first one remain zero. Solution (12) satisfies relation (10)
with the appropriate choice of constants Cj : Eq. (10) can be rewritten in the form of a recurrent relation

Cj+1 = − 1

2j + 1

j∑
m=1

CmCj+1−m, (13)

which expresses Cj+1 through C1, C2, ..., Cj and for a fixed C1 = 1 yields a uniquely determined set of
coefficients {Cj} = {1,−1/3, 2/15,−17/315, . . . }.

Thus, in the system it is possible to single out the invariant manifold

κ2j−1 = κ1δ1j , κ2j = Cjκ
j
2 , (14)

which is the expansion of the Ott–Antonsen manifold (it corresponds to κ2 = 0). The dynamics of the
system on this manifold is determined by a closed system of two complex equations:

κ̇1 = (iΩ − γ)κ1 + h− h∗(κ2 + κ
2
1), (15)

κ̇2 = 2 (iΩ − γ − 2h∗κ1)κ2. (16)

If h depends only on the first cumulants, κ1 and κ2, then the system remains closed since on this set the
higher-order cumulants are expressed through the second cumulant (or are equal to zero).

4.2. Two-bunch character of states of the form (14)

We will show that the constructed invariant manifold can be interpreted as a two-bunch state: the
manifold comprises two subensembles, in each of which the distribution of oscillators corresponds to the
Ott–Antonsen solution. Let us calculate the cumulants κn for this state. For each subensemble, we have

an order parameter κ
{p}
1 and zero higher-order circular cimulants κ

{p}
n≥2, where p = 1, 2 is the subensemble

number. The distribution of oscillators in the total ensemble is the superposition of distributions in the
subensembles: w(ϕ, t) = q1w1(ϕ, t) + q2w2(ϕ, t), where qp is the fraction of elements in the subensemble
p. By virtue of the linearity of the connection between the generating function of moments F (ζ) and the
distribution w(ϕ), one can obtain F (ζ) = q1F1(ζ) + q2F2(ζ) = q1 exp[Φ1(ζ)] + q2 exp[Φ2(ζ)] (see Eqs. (6)).

Since for the Ott–Antonsen solution the generating function of cumulants has the form Φp(ζ) = κ
{p}
1 ζ, we

finally find

Φ(ζ) = ln
[
q1 exp(κ

{1}
1 ζ) + q2 exp(κ

{2}
1 ζ)

]
.

Expansion of the latter expression into a Taylor series yields the values of Kn and κn. In the case of an equal
distribution of elements between the bunches q1 = q2 = 1/2, calculations show that all the odd cumulants
higher than the first one are equal to zero, while for the even cumulants, relation (12) takes place; in this
case,

κ1 = (κ
{1}
1 + κ

{2}
1 )/2 , κ2j = Cj

[(
κ
{1}
1 − κ

{2}
1

)2
/4
]j

. (17)

For an unequal distribution between bunches, the expansion has a much more complex form and the odd
cumulants are non-zero.

Thus, the states with an equal distribution of elements between two bunches of the form corresponding
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to the Ott–Antonsen solution correspond to the invariant manifold we found. Since the total set of cumulants
uniquely determines the probability density distribution, the found correspondence between the two-bunch
states and partial solutions of the form (14) is one-to-one. The Ott–Antonsen solution itself is a specific

case of coincidence of the bunches: κ
{1}
1 = κ

{2}
1 .

5. DYNAMICS OF MULTI-BUNCH CHIMERAS IN COUPLED
KURAMOTO–SAKAGUCHI ENSEMBLES

As an example, we consider the dynamics of two symmetric coupled ensembles of Kuramoto–Saka-
guchi oscillators (generalization of the Kuramoto model):

ϕ̇k = ωk +
μ

N

N∑
j=1

sin(ϕj − ϕk − α) +
ν

N

N∑
j=1

sin(ψj − ϕk − α) ,

ψ̇k = ωk +
μ

N

N∑
j=1

sin(ψj − ψk − α) +
ν

N

N∑
j=1

sin(ϕj − ψk − α) .

(18)

Here, ϕ and ψ are the phases in ensembles having a size N , μ and ν = 1 − μ are the coupling parameters
within the ensemble and with another ensemble, respectively, α is the phase shift of coupling (the coupling
is attractive for cosα > 0, repulsive for cosα < 0, and conservative for cosα = 0; for the Kuramoto model,
α = 0). In [7], the dynamics of this system was studied for the case of identical frequencies ωk = Ω at
the thermodynamic limit N → ∞. We found the chimera states in which the first ensemble is completely
synchronized, while the oscillators of the second ensemble form a bunch whose width is periodically varied
with time (see Fig. 1a). This bunch corresponds to the Ott–Antonsen solution, and the described regime on
the corresponding manifold is attractive. Subsequently [13], it was noticed that this regime should not be
the only attractive mode since with identical frequencies the Ott–Antonsen manifold, on which the initial
conditions were specified, is not a transversally attractive one. In particular, it was demonstrated that if
the initial state of the system is specified as different from the Ott–Antonsen distribution, then the system
does not transform to the modes represented in [7], and the dynamics of the order parameters has a higher
embedding dimension (see Fig. 1b).

We now use the result given by Eqs. (15) and (16) to study analytically the dynamics of system (18)
outside the Ott–Antonsen manifold and establish the effect of the detuning of natural frequencies γ on the
collective dynamics of the system. To simplify the equations, we assume that the first ensemble (of the ϕ
phase) represents a single bunch with the first cumulant κ, while the first and the second cumulants in an
ensemble of ψ phases, composed of two bunches, will be denoted κ1 and κ2.

Based on Eqs. (15) and (16) for system (18), it can be written

κ̇ = (iΩ − γ)κ+ h1 − h∗1κ
2; (19)

κ̇1 = (iΩ − γ)κ1 + h2 − h∗2 (κ2 + κ
2
1); (20)

κ̇2 = 2 (iΩ − γ − 2h∗2κ1)κ2, (21)

where h1 = (μκ+ νκ1) exp(−iα)/2 and h2 = (μκ1 + νκ) exp(−iα)/2.

5.1. Stability of the one-bunch mode to the second-bunch excitation

Consider stability of the second ensemble to the κ2 excitation, i. e., the behavior of the system of (20)
and (21) for a small κ2. Equation (21) yields

Re

(
d

dt
lnκ2

)
= −2γ − 2

{
μ |κ1|2 cosα+ νRe[κ∗κ1 exp(iα)]

}
. (22)
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From Eq. (20) for |κ2| 
 |κ1| one can obtain

d

dt
|κ1|2 = −2γ |κ1|2 + (1− |κ1|2)

{
μ |κ1|2 cosα+ νRe[κ∗κ1 exp(iα)]

}
. (23)

For analysis of the stability properties described by Eq. (22), it is convenient to rewrite the latter equation
as follows:

d

dt
ln

1

1− |κ1|2 = − 2γ |κ1|2
1− |κ1|2 +

{
μ |κ1|2 cosα+ νRe[κ∗κ1 exp(iα)]

}
.

Comparing the right-hand sides of this equation and Eq. (22) and averaging over time, it can be found that

Re
d

dt
lnκ2 = −2γ

1 + |κ1|2
1− |κ1|2 − 2

d

dt
ln

1

1− |κ1|2 , (24)

where the overbar denotes time averaging. The quantity Red lnκ2/dt determines the |κ2| growth rate and,
thus, characterizes stability of the system to perturbations leading it away from the Ott–Antonsen manifold.

It can be seen from Eq. (24) that there can be two types of trajectories, for which the properties of
stability to the κ2 excitation can differ, namely, a limited trajectory with imperfect synchronicity (|κ1| < 1)
and trajectories for which |κ1| → 1. In the first case, the second term on the right-hand side of Eqs. (24) is
equal to zero and the stability is determined by the first term, in which the expression for γ is sign-definite.
At γ = 0, deviations from the Ott–Antonsen manifold are not attenuated with time, while at γ 	= 0 they
start to decay. In the second case, at |κ1| → 1, the argument of the logarithm (1 − |κ1|2)−1 tends to +∞
and

d

dt
ln

1

1− |κ1|2 > 0.

Thus, when passing to complete synchronization, the trajectories merge to the Ott–Antonsen manifold: κ2

decays independently of the presence of the frequency detuning γ. During the frequency detuning (γ 	= 0),
the state of complete synchronization becomes impossible, as follows from Eq. (23), which admits the solution
|κ1| = 1 only at γ = 0. Averaging Eq. (23) over time, it can be seen that for a small γ the mode with |κ1| = 1
changes to some new mode, for which 1− |κ1|2 ≈ γ. Thus, the stability of the complete synchronization
state successor is high even for a small γ, since

Re
d

dt
lnκ2 ≈ − γ

1− |κ1|2 ≈ −1.

5.2. Dynamics of two-bunch chimeras

We now describe in detail the dynamics of two-bunch chimeras in the considered system (19)–(21).
It has already been noted that for the first ensemble, the second cumulant decays either because of the
complete synchronization or the γ effect. The decay rate is of the order of unity even for γ → 0; therefore,
it stands to reason to limit oneself to the case where only the first argument is not equal to zero. Since
Eqs. (19)–(21) have symmetry about the complex amplitude rotations κ → κ exp(iβ) and κn → κn exp(inβ),
the nontrivial part of the dynamics is due not to the full phases of the cumulants, but their differences. We
introduce for ensemble 1 the variables ρ ≡ |κ| and ξ ≡ κ/|κ|: κ = ρξ. The dynamics of ensemble 2 will be
described in the reference frame co-rotated with κ, in terms of the variables χ1 = κ1ξ

∗ and χ2 = κ2(ξ
∗)2.

Then from system (19)–(21) it can be found that

ρ̇ = −γρ+
1− ρ2

2
{μρ cosα+ νRe[χ1 exp(−iα)]} ; (25)

ξ̇ = i
(
Ω− 1 + ρ2

2ρ
{μρ sinα+ νIm[χ1 exp(−iα)}

)
ξ; (26)
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χ̇1 = −γχ1 +
μ

2

[
χ1 exp(−iα)− χ∗

1 exp(iα)(χ
2
1 + χ2) + i(1 + ρ2)χ1 sinα

]

+
ν

2

{
ρ exp(−iα)− ρ exp(iα)(χ2

1 + χ2) + i
1 + ρ2

ρ
χ1Im[χ1 exp(−iα)]

}
; (27)

χ̇2 = 2
(
− γ + μ

[
− |χ1|2 exp(iα) + i

1 + ρ2

2
sinα

]

+ ν
{
− ρχ1 exp(iα) + i

1 + ρ2

2ρ
Im[χ1 exp(−iα)]

})
χ2. (28)

For γ = 0, the first ensemble can be completely synchronized (ρ = 1), and then Eqs. (27) and (28)
take the form

χ̇1 = μ

[
χ1 exp(−iα)− χ1|χ1|2 exp(iα) − χ∗

1χ2 exp(iα)

2
+ iχ1 sinα

]

+ ν

{
exp(−iα) − exp(iα)(χ2

1 + χ2)

2
+ iχ1Im[χ1 exp(−iα)]

}
, (29)

χ̇2 = 2
(
μ
[− |χ1|2 exp(iα) + i sinα

]
+ ν

{− χ1 exp(iα) + iIm[χ1 exp(−iα)]
})

χ2. (30)

The system of equations (29) and (30) specifies an autonomous dynamic system in four-dimensional phase
space. It was shown that at γ = 0 small values of the cumulant χ2 neither decay nor rise with time
on the average (within the linear theory). Thus, with the same parameter values where the one-bunch
dynamics demonstrated tending towards a stable limit cycle on the plane χ1, attraction to a family of
tori parameterized by a characteristic amplitude of oscillations χ2 will be observed for two-bunch states
(qualitatively, |χ2| determines the “thickness” of the torus, see Fig. 1b).

In accordance with the obtained analytical results, numerical calculus shows quasiperiodic dynamics
on the (κ1/κ) plane at γ = 0 (Fig. 1b) and attraction of the trajectories to the limit cycle corresponding to
one-bunch states at γ 	= 0 (Fig. 1c).

Finally, Eqs. (20) and (21) provide an explicit analytical description of the system dynamics beyond
the Ott–Antonsen manifold and give the analytical proof that in the important paradigmatic problem [7] this
manifold is neutrally stable (i. e., becomes attractive only with the introduction of the frequency detuning γ).
Numerical calculations within the framework of a cumulant representation permit one to avoid the problems
with slow divergence of the series an for |a1| → 1: numerical integration with several first cumulants ensures
the same level of accuracy as a similar integration of Eq. (2) with hundreds of harmonics an.

6. CONCLUSIONS

The paper shows the possibility and prospects for using the formalism of circular cumulants for an
alternative description of the dynamics of phase element ensembles at the thermodynamic limit (i. e., for
a large ensemble size). For systems of the Ott–Antonsen type, this formalism allows one to obtain exact
equations for the dynamics of order parameters. A more general particular solution than the Ott–Antonsen
solution was found; a new solution permits one to describe the dynamics of two-bunch states of the ensemble
in the finite vicinity of the Ott–Antonsen solution, which is one-bunch. In the Abrams problem [7, 13], this
solution makes it possible to observe the conservative dynamics of multi-bunch states for ensembles of
identical elements and describes the transition of multi-bunch to one-bunch states, which become attractive
in the case of imperfect identity.

The results presented in Secs. 3 and 4 were obtained by A. Pikovsky with support by the Russian
Science Foundation (project No. 14–12–00811). The results presented in Secs. 2 and 5 were obtained with
support under grants MK-1447.2017.5 and G-RICS M-2017b-5 of the President of the Russian Federation.
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Fig. 1. Dynamics of the complex order parameters
in coupled Kuramoto–Sakaguchi ensembles (18).
Panel a: the state of ensemble 2 is one-bunch,
γ = 0 [7], μ = 0.64, and α = π/2 − 0.1; dy-
namics of the order parameter κ for synchronized
ensemble 1 (dashed line), dynamics of the order
parameter κ1 for ensemble 2 (gray thin line) and
the order parameter of ensemble 2 on the (κ1/κ)
plane (black line). Panel b: dynamics of the two-
bunch state at γ = 0 (gray line) as compared with
the one-bunch solution (dashed line, which corre-
sponds to the black line on panel a). Panel c : the
same as panel b, but for γ = 5 · 10−4 (the gray
trajectory tends to the cycle). For panels b and c,
μ = 0.65 and α = π/2−0.15; initial conditions for
the second ensemble are given by expressions (17)

and κ
{1,2}
1 = (0.8 ± 0.1) exp[(0.30 ± 0.15) i].
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