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Abstract—We study the dynamics of the ring of identical phase oscillators with nonlinear
nonlocal coupling. Using the Ott –Antonsen approach, the problem is formulated as a system
of partial derivative equations for the local complex order parameter. In this framework, we
investigate the existence and stability of twisted states. Both fully coherent and partially
coherent stable twisted states were found (the latter ones for the first time for identical
oscillators). We show that twisted states can be stable starting from a certain critical value
of the medium length, or on a length segment. The analytical results are confirmed with direct
numerical simulations in finite ensembles.
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INTRODUCTION

The study of the systems of coupled oscillators is a topic of much current interest in theoretical
and experimental nonlinear science. The reason is in a fundamental importance of such models
in various fields of modern science and technology. They allow for an adequate description of
mechanical objects (for example, coupled pendulums [1–3], metronomes mounted on a common
base [4, 5]), of processes in electrical networks [6, 7], of solid state structures [8, 9] and molecular
chains [10, 11], etc. Further references to specific experimental and theoretical studies can be found
in the book [1] and the recent review [12].

A large number of key fundamental phenomena in nonlinear oscillatory media of different
nature can be studied in the framework of the phase approximation [1, 13]. This, in particular,
includes synchronization in its manifold representations [1, 2]. A transformation of an accurate and
specific mathematical formulation of a problem in terms of differential equations into a universal
description in terms of dynamic equations for the phase variables allows for identification of common
principles and general patterns in the behavior of physical, chemical, biological and social oscillatory
systems [1]. A seminal Kuramoto model and its modifications [12, 14, 15] are spectacular examples
of the power of phase reduction in studies of populations of oscillators interacting through a common
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field. An important feature of this coupling topology is the lack of information about the elements
positions in space. Therefore, in this case, despite the fact that the cluster formation process is
possible, one cannot formulate the problem of the formation of spatial patterns of synchrony.
The latter task is, however, possible for spatially ordered media with nonglobal coupling, local
or nonlocal. Here, because of the absence of permutation symmetry, positions of oscillators are
important. In several recent studies [16–18], stationary spatial patterns in phase oscillators media
with nonlocal coupling have been described as states with a spatially inhomogeneous profile of
a local (in space) complex order parameter, which measures the level of synchronization of the
neighboring elements.

In this paper we study twisted states [19–21] in a set of identical nonlocally coupled phase
oscillators, uniformly distributed on a ring. A fully coherent twisted state in such a configuration
occurs when the phase differences between neighboring oscillators is a constant, i.e., the phase
profile has a constant gradient. In the case of a partially coherent twisted state, the phases of units
deviate from the fully ordered gradient phase distribution, however, the phase of the local order
parameter has a constant gradient. The fully coherent twisted state was observed in systems of
identical phase oscillators [19, 20]. Remarkably, in the work [22] the authors essentially considered
such twisted states in a model of a coupled map lattice with a complex state variable (although
the term “twisted states” itself was not used there). The partially coherent twisted state has been
reported for a population with nonidentical natural frequencies [21]. In this article, we describe
both the fully coherent and the partially coherent twisted states in a system of identical phase
elements with nonlinear nonlocal coupling.

The paper is organized as follows. In Section 1 we formulate the model as a set of phase equations,
and introduce the local order parameter using the Ott –Antonsen ansatz. In Section 2 the twisted
states (fully coherent and partially coherent) are found as solutions of the Ott –Antonsen equations.
Furthermore, their stability is determined and numerical simulations are presented. We summarize
our findings in Section 3.

1. BASIC MODEL

We consider a continuous medium of nonlocally coupled identical phase oscillators with natural
frequency ω, continuously distributed over the interval [0;L) with periodic boundary conditions.
Such a configuration is equivalent to the situation where the elements of a one-dimensional
oscillatory medium are located on a ring of length L. We describe this system using the dynamical
variable φ(x, t) defined at each point x ∈ [0;L) and obeying the integro-differential equation:

∂tφ(x, t) = ω + Im
[
H(x, t)e−iφ(x,t)−iα(H(x,t)))

]
. (1.1)

Here H(x, t) is the force acting on the oscillator at site x, it is defined as a convolution over the
states of all other units

H(x, t) =

L∫

0

G(x− x̃)eiφ(x̃,t)dx̃. (1.2)

Note that the integral in (1.2) is understood in the Lebesgue sense, so that no spatial smoothness or

continuity of function eiφ(x,t) is needed. We stress once again that our basic model is a continuous
medium of oscillators, not a lattice system. The kernel G(y) characterizes the interaction strength

within the medium, and satisfies the unit normalization condition
∫ L/2
−L/2 G(y)dy = 1. For G(y) we

choose a function:

G(y) =
cosh(|y| − L/2)

2 sinh(L/2)
, (1.3)

which describes exponentially decaying interactions (with proper boundary conditions). This
function naturally appears as a Green function for a Laplace equation (see Eq. (1.7) below) on
a ring [17].
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Parameter α is a phase shift in the coupling. Usually, the value α is considered to be a constant
α0. However, nonlinear effects in coupling can have a significant influence on the dynamics of the
system. In order to take them into account, we set the value of phase shift as α(H) = α0 + α1|H|2
[18, 23, 24]. In the study of this model we are primarily interested in the dynamics of the system,
depending on the medium length L.

Equations (1.1)–(1.3) determine the dynamics of the investigated continuous medium. Because
coupling in (1.2) is nonlocal, there are no terms supporting smoothness and continuity of the
phase profile, thus φ(x, t) is generally a nonsmooth function of x: neighboring phases can differ
by as much as π. Hence, the original equation is inconvenient for the formulation of the pattern
formation problem and its further analysis. On the other hand, this problem does not appear in
numerical simulations below, where we perform a spatial discretization with 1000 points per unit
length along the x axis. The key step allowing for formulating a pattern formation problem is
in using the procedure of averaging (coarse-graining) over a small δ-neighborhood of a point x.
Following this approach, we introduce a local order parameter

Z(x, t) =
1

2δ

∫ δ

−δ
eiφ(x+x̃,t)dx̃, (1.4)

which is a continuous complex function of the coordinate x and time t, satisfying the inequality
|Z(x, t)| � 1. If |Z(x, t)| = 1, the behavior of neighboring elements of the medium is synchronous.
If |Z(x, t)| < 1, then the phase oscillators are partially synchronous. We employ the Ott –Antonsen
reduction [25], allowing for formulation of a closed dynamical equations for Z(x, t):

∂tZ = iωZ + (e−iα(H)H − eiα(H)H∗Z2)/2. (1.5)

According to definition (1.2) and to the definition of the local order parameter, the field H(x, t)
can be expressed via Z(x, t):

H(x, t) =

L∫

0

G(x− x̃)Z(x̃, t)dx̃. (1.6)

It is noteworthy that the Lebegues integral over a nonsmooth phase profile in (1.2) is transformed,
by virtue of coarse-graining, to the Cauchy integral over the smooth order parameter in (1.6).
Further, using (1.3), it is not difficult to pass from relation (1.6) to the equivalent differential
equation:

∂2
xxH −H = −Z (1.7)

with periodic boundary conditions:

H(0, t) = H(L, t), ∂xH(0, t) = ∂xH(L, t). (1.8)

Thus, the dynamics of the oscillatory medium under study can be described within the Ott –
Antonsen approximation as a set of partial derivative equations (1.5), (1.7) for the complex field
of local order parameter Z(x, t), with boundary conditions (1.8).

2. TWISTED STATES

Let us define a class of stationary twisted states. A fully coherent twisted state in system (1.1)
is realized if the phase profile φ(x, t) is a linear function of x, satisfying the boundary condition:
φ(x, t) = φ(0, t) + 2πmx/L (here m = ±1,±2, . . . is the number of phase rotations). This is clearly
a gradient profile. For a partially coherent twisted state, the phases of the individual elements
can deviate from the gradient distribution, however, the locally spatially averaged phase, i. e., the
argument of the local order parameter, has a gradient profile. A characteristic feature of these
regimes is that the absolute value of the order parameter |Z(x, t)| at all points of the medium is a
constant value, which corresponds to the same degree of local coherence of the oscillators, however,
the phase of the Z(x, t) makes an integer number of rotations along the ring. The global order

parameter
∫ L
0 eiφ(x,t)dx vanishes in the twisted states.
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2.1. Twisted States as Solutions of the Ott –Antonsen Equations

For uniformly rotating twisted states, the solutions Z(x, t) and H(x, t) are defined by the
following expressions:

Z(x, t) = z(x)ei(ω+Ω)t, H(x, t) = h(x)ei(ω+Ω)t, (2.1)

z(x) = z0e
−iqx, h(x) = h0e

−iqx, (2.2)

where z0 = const, h0 = const, q = 2πm/L, m = ±1,±2, . . ., Ω is the rotation frequency. We restrict
ourselves to the case m = 1, and the values of the parameters satisfying the condition: 0 � α0, α1 �
π/2.

Substituting (2.1) and (2.2) into (1.7), we obtain expressions relating the values of h0 and z0:

h0 =
z0

1 + q2
. (2.3)

To find the parameters z0 and h0, we substitute (2.1), (2.2), (2.3) into (1.5), from which we obtain
the following system:

sinα(H)

(
−1 + |z0|2

1 + q2

)
= 2Ω,

cosα(H)

(
1− |z0|2
1 + q2

)
= 0.

(2.4)

The system (2.4) has two solutions. The first solution

z0 = zs = 1, h0 = hs =
1

1 + q2
(2.5)

corresponds to a fully coherent twisted state (FCTS) (Fig. 1a). It exists for all values of α0, α1.
The second solution

z0 = zps = (1 + q2)

√
π − 2α0

2α1
, h0 = hps =

√
π − 2α0

2α1
(2.6)

corresponds to a partially coherent twisted state (PCTS) (Fig. 1b). The region of existence of this
state is defined by the inequality α1 > π/2− α0.

Fig. 1. Panels (a) and (b) illustrate twisted states via snapshots of the phases on the ring. (a) Fully coherent
twisted state for α1 = 0.7853, α0 = 0.7853, L = 12, zps = 1, hps = 0.785. (b) Partially coherent twisted state
for α1 = 1.57, α0 = 1.468, L = 7.85, zs = 0.42, hs = 0.256. Panel (c) shows regions of existence and stability
of different twisted states on a parameter plane (α0, α1). Region A: 0 < α1 < π/2− α0, FCTS is stable at
L > L∗

1, PCTS does not exist. Region B: π/2− α0 < α1 < 9(π/2− α0)/4, FCTS is stable at L∗
2 < L < L∗

1,
PCTS is unstable for any L. Region C: FCTS and PCTS are unstable for any L. Region D: FCTS is unstable
for any L, PCTS is stable for L∗

3 < L < L∗
4. The middle panel (arrows) illustrates dependences of stability of

different states on the length L.
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2.2. Stability Analysis

The stability of a stationary twisted state (2.1), (2.2) can be analyzed via linearization of
equation (1.5). For this we substitute the ansatz

Z(x, t) =
(
z0 + Ẑ(x, t)

)
e−iqx+i(ω+Ω)t, (2.7)

where Ẑ(x, t) is a periodic in x small perturbation, into the Ott –Antonsen equation (1.5). Similarly,
we represent H(x, t) as

H(x, t) =
(
h0 + Ĥ(x, t)

)
e−iqx+i(ω+Ω)t. (2.8)

As a result of linearization, we obtain an equation that determines the dynamics of Ẑ:

∂tẐ=−
(
iΩ+eiα

r2

1 + q2

)
Ẑ +

1

2

(
e−iαĤ−eiαr2Ĥ∗

)
− iα1r

2

2(1 + q2)2

(
Ĥ∗+Ĥ

)(
e−iα+r2eiα

)
, (2.9)

where

α = α0 + α1
r2

(1 + q2)2
, (2.10)

Ĥ(x, t) =

L∫

0

G(x− x̃)eiq(x−x̃)Ẑ(x̃, t)dx̃. (2.11)

We use the Bogolyubov method and represent the perturbation Ẑ(x, t) in the form

Ẑ(x, t) = aeλt−iknx + b∗eλ
∗t+iknx, (2.12)

where kn = 2πn/L, n is number of the harmonic of the perturbation Ẑ. Then Ĥ(x, t) is given by
the expression

Ĥ(x, t) =
a∗eλt−iknx

1 + (q + kn)2
+

b∗eλ
∗t+iknx

1 + (q − kn)2
. (2.13)

Substituting (2.12), (2.13) into (2.9), we get the following eigenvalue problem:

λ(n)

⎛
⎝a

b

⎞
⎠ =

⎛
⎝ M11 M12

M21 M22

⎞
⎠

⎛
⎝a

b

⎞
⎠ , (2.14)

where

M11 = −
(
iΩ+ eiα

r2

1 + q2

)
+

e−iα

2
(
1 + (q + kn)2

) −
iα1r

2
(
e−iα + r2eiα

)

2(1 + q2)2
(
1 + (q + kn)2

) , (2.15)

M12 = − eiαr2

2
(
1 + (q − kn)2

) −
iα1r

2
(
e−iα + r2eiα

)

2(1 + q2)2
(
1 + (q − kn)2

) , (2.16)

M21 = − e−iαr2

2
(
1 + (q + kn)2

) +
iα1r

2
(
eiα + r2e−iα

)

2(1 + q2)2
(
1 + (q + kn)2

) , (2.17)

M22 = −
(
−iΩ+ e−iα r2

1 + q2

)
+

eiα

2
(
1 + (q − kn)2

) +
iα1r

2
(
eiα + r2e−iα

)

2(1 + q2)2
(
1 + (q − kn)2

) . (2.18)
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Fig. 2. Fully coherent twisted states. Left three columns: results of direct numerical simulations of the set of
N = 2048 oscillators, at different points in time. The right column shows the spectrum of linear perturbations
λ1,2(n) for n = 0, 1, 2, . . . , 100. (a) Region A. Parameters: α1 = 0.7853, α0 = 0.7853, L = 5.0, zs = 1, hs =
0.388. The unstable twisted state evolves to an inhomogeneous state. (b) Region A. Parameters: α1 = 0.7853,
α0 = 0.7853, L = 10.0, zs = 1, hs = 0.717. Stable twisted state. (c) Region B. Parameters: α1 = 0.15, α0 =
1.457, L = 3.0, zs = 1, hs = 0.185. The unstable twisted state evolves to an inhomogeneous state. (d) Region
B. Parameters: α1 = 0.15, α0 = 1.457, L = 10.0, zs = 1, hs = 0.717. Stable twisted state. (e) Region B.
Parameters: α1 = 0.15, α0 = 1.457, L = 25.0, zs = 1, hs = 0.94. The unstable twisted state, evolving to a
turbulent regime. (f) Region C ∪D. Parameters: α1 = 1.2, α0 = 1.457, L = 3.0, zs = 1, hs = 0.185. The
unstable twisted state, evolving to a turbulent regime.

2.3. Stability of a Fully Coherent Twisted State

First, we consider fully coherent twisted states, when h0 = hs, z0 = zs. For them, the real parts
of the eigenvalues have the form

Reλ1 = −L2 cos(α)

L2 + 4π2
, (2.19)

Reλ2(n) = − 4L2n2π2(L2 − 12π2 + 4π2n2) cos(α)

(L2 + 4π2)(L2 + 4π2 − 8π2n+ 4π2n2)(L2 + 4π2 + 8π2n+ 4π2n2)
. (2.20)

It is easy to demonstrate that in this case stability is determined by eigenvalues with n = 1, i. e.,
by the first harmonic

Reλ2(1) = − 4π2(8π2 − L2) cos(α)

(L2 + 4π2)(L2 + 16π2)
. (2.21)

Analysis of expressions (2.19) and (2.20) shows that there are three characteristic regions of (α0, α1)
parameter values. In the first region 0 < α1 < π/2−α0 (Fig. 1c, region A) the fully coherent twisted

state is stable at L > L∗
1, where L∗

1 = 2
√
2π. In the second region π/2− α0 < α1 < 9(π/2 − α0)/4

(Fig. 1c, region B) this state is stable when L belongs to the interval L∗
2 < L < L∗

1, where

L∗
2 =

(√
2α1

/
(π − 2α0)− 1

)−1/2

. In the third region 9(π/2 − α0)/4 < α1 < π/2 (Fig. 1c, region

C∪D) this regime is unstable for any L.
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We illustrate the analytic stability considerations above with direct numerical simulations
in Fig. 2. Here phase snapshots at different moments in time and the eigenvalue spectrum of
fully coherent twisted states are shown. In the case of instability, these states evolve to various
inhomogeneous or turbulent regimes.

Fig. 3. Partially coherent twisted states. Panels show the same quantities as those in Fig. 2. (a) Region
B ∪C. Parameters: α1 = 1.2, α0 = 1.0, L = 12.0, zps = 0.879, hps = 0.716. The unstable twisted state evolves
to the turbulent state. (b) Region D. Parameters: α1 = 1.57, α0 = 1.468, L = 4.85, zps = 0.685, hps = 0.275.
The unstable twisted state evolves to the turbulent state. (c) Region D. Parameters: α1 = 1.57, α0 = 1.468,
L = 7.85, zps = 0.42, hps = 0.288. Stable twisted state. (e) Region D. Parameters: α1 = 1.57, α0 = 1.468,
L = 15.7, zps = 0.297, hps = 0.294. The unstable twisted state evolves to the turbulent state.

2.4. Partially Coherent Twisted State

Analyzing the eigenvalues λ(n) of the problem (2.14) numerically for h0 = hps, z0 = zps, we find
that a partially coherent twisted state is unstable for any L in the region B ∪C (Fig. 1c) and stable
for L∗

3 < L < L∗
4 in the region D (Fig. 1c). It is noteworthy that in this case stability of a twisted

state can also be affected by the harmonics of perturbations Ẑ(x, t) with n > 1. Time evolution
of stable and unstable partially synchronized twisted states is illustrated in Fig. 3, where phase
snapshots for different points in time and the eigenvalue spectrum are shown.

Thus, we have shown that a partially coherent twisted state can be realized in a system of
identical nonlocally coupled oscillators. Moreover, there is no region of system parameters α0, α1, L,
where this state could coexist with a fully coherent twisted state, i. e., no bistability coherent-
partially coherent twisted state has been found.

3. CONCLUSION

In summary, we investigated twisted states in a system of identical nonlocally coupled phase
oscillators with a nonlinear phase shift. The system was reformulated in terms of a local complex
order parameter as a system of partial differential equations, by virtue of the Ott –Antonsen
reduction. Twisted states were found as exact solutions of these equations, and the regions of
existence and stability of fully coherent and partially coherent states are described. Remarkably,
twisted states can be stable, starting from a certain critical value of the medium length, or on
a length segment. We stress that the existence of a partially coherent state is caused not by the
heterogeneity of the oscillator frequencies [21], but by the presence of a nonlinear dependence of
the phase shift on the field H, i. e., it is a purely dynamical phenomenon in an ordered medium of
identical oscillators. The analytically obtained results are confirmed by direct numerical simulation
within the framework of the phase model.
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