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Low-dimensional dynamics for higher-order harmonic, globally coupled phase-oscillator ensembles
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The Kuramoto model, despite its popularity as a mean-field theory for many synchronization phenomenon
of oscillatory systems, is limited to a first-order harmonic coupling of phases. For higher-order coupling, there
only exists a low-dimensional theory in the thermodynamic limit. In this paper, we extend the formulation used
by Watanabe and Strogatz to obtain a low-dimensional description of a system of arbitrary size of identical
oscillators coupled all-to-all via their higher-order modes. To demonstrate an application of the formulation, we
use a second harmonic globally coupled model, with a mean-field equal to the square of the Kuramoto mean-field.
This model is known to exhibit asymmetrical clustering in previous numerical studies. We try to explain the
phenomenon of asymmetrical clustering using the analytical theory developed here, as well as discuss certain
phenomena not observed at the level of first-order harmonic coupling.
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I. INTRODUCTION

Since its conception in 1975 by Yoshiki Kuramoto, the
Kuramoto model of globally coupled oscillators has been a
standard tool used by diverse scientific communities, partic-
ularly within the fields of nonlinear dynamics, computational
neuroscience, and network science, to describe synchroniza-
tion transition in ensembles of interacting oscillatory systems.
It can be directly applied after justifiable phase reduction of
the original system and, despite its mathematical simplicity,
captures the essential characteristics of synchronization phe-
nomenon.

The Kuramoto model is a model of all-to-all coupled
ensemble of phase oscillators, with each oscillator repre-
sented by a scalar variable—its phase. Inspired by the Ising
model, Kuramoto’s original intention was to devise a sim-
ilar model but for which there is an analytically solvable
transition to synchronization, at least in the infinite system
size limit (the thermodynamic limit) [1,2]. Kuramoto ac-
complished this by choosing the particular coupling function
of two interacting oscillators to be proportional to the first
harmonic function (i.e., sine or cosine) of the difference of two
phases.

Limiting the description of potentially complex periodic
dynamics to a scalar phase for each interacting subunit may
appear to be highly restrictive at a first glance. However, it
was shown that a phase oscillator model such as Kuramoto
model approximates the long-term behavior of any ensemble
of interacting oscillatory systems, so long as the coupling is
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weak and the subunits are nearly identical [3]. The oscillators
are said to be weakly coupled if their mutual perturbations
via their interactions are small (1) when compared to the
characteristic strong stability of the oscillators amplitudes,
and (2) when compared to their intrinsic natural frequencies
(the changes in the period are small compared to the periods).
There are many examples of reduction of a realistic oscillatory
system to the Kuramoto phase oscillator model, such as for
Josephson Junctions [4], atomic recoil lasers [5], functional
connectivity of the human brain [6,7] and in Caenorhabditis
elegans [8], neuronal oscillations [9–11], power networks and
smart grid [12,13].

Despite the canonical status of the Kuramoto model, many
oscillators interact with each other beyond the simple picture
of first harmonic coupling. Recently there has been an increas-
ing interest in second harmonic coupling functions and other
forms of coupling via higher-order modes—such models of
globally coupled phase oscillators are often called Kuramoto-
Daido models [14–19]. There are indeed many experimental
situations where the second harmonic coupling is large and
even dominates over the first harmonic [20–24]. Second har-
monic coupling can imply non-pairwise connection, which
have been shown to exhibit multistability and chaos [25–28].
Higher-order mode coupling usually means that a coupling
function �(ϕk − ϕ j ) between each pair of oscillators is a
generic 2π -periodic function of the phase difference ϕk − ϕ j ,
containing a few or many harmonics. Phenomenologically,
when higher harmonics are dominant in an interaction, the
synchronous state of the system is characterized by the for-
mation of multiple synchronized groups (or “clusters”) of
oscillators, each with a common phase [29]. This differs from
the cases where only the first harmonic exists, which can result
in at most one cluster.
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A remarkable feature of the first-order harmonic global
interaction, is that it allows for a low-dimensional reduc-
tion [30,31], i.e., a two- or three-dimensional dynamics suf-
fices at describing an N-body interaction. Similarly, there is
also a hidden low-dimensional dynamics for a pure higher-
order coupling in the thermodynamic limit [15], which was
shown using a similar method as the one employed by Ott and
Antonsen [30] for the first harmonic coupling. In this study,
we concern ourselves with another dimension-reducing tech-
nique that was developed earlier than the Ott-Antonsen (OA)
theory, namely the Watanabe-Strogatz (WS) theory [31–34].
Unlike the OA theory, the WS theory does not need a special
ansatz and can also be applied to a finite-sized ensemble,
however, it is restricted to oscillators with identical natural
frequencies that are identically driven.

In the following sections, we show that the WS theory in-
deed can be extended to pure higher-order models. In Sec. II,
we first introduce the general model of pure higher-order
harmonic coupling. In Sec. III, we review the WS theory
for a general first-order harmonic coupling of the Kuramoto-
Sakaguchi kind, then extend it to pure higher orders. Last, in
Sec. IV, we apply the extended WS theory to a non-trivial
second harmonic model exhibiting asymmetrical clustering,
and conduct numerical simulation of its low-dimensional
WS equations. We also find that under certain special initial
conditions, such a second harmonic model could exhibit de-
coherence under attractive coupling, which is not found in
first-harmonic models.

II. FORMULATION OF THE MODEL

We study a population of N identical phase oscillators with
phases {ϕ j}, j = 1, 2, . . . , N , subject to a global coupling.
Here, unlike in the standard Kuramoto-Sakaguchi model [2],
the coupling term is purely of an arbitrary higher-order l
(l � 2),

ϕ̇ j = ω(t ) + Im[H (t )e−ilϕ j ] , (1)

where ω(t ) and H (t ) are arbitrary scalar and complex func-
tions, respectively. When ω is constant, it represents the iden-
tical natural frequency of the oscillators. While in the problem
formulation and theory derivation we write generically ω(t ),
in the numerical part we use a constant ω, to be comparable
to previous numerical studies in the literature. H (t ) represents
an arbitrary complex forcing term, which can be dependent
or independent of the phases {ϕ j}, deterministic or stochastic,
and also can be external time-dependent forces. The latter case
is not considered in this paper; see Ref. [35] for exploration of
external driving within the scope of the reduced WS theory
for the first-order coupling.

Global coupling (a.k.a., “all-to-all” coupling) of the os-
cillators corresponds to the case where H (t ) depends on the
Kuramoto-Daido order parameters (mean fields of the higher
harmonics of phases),

Zm = 1

N

∑
j

eimϕ j .

For simplicity, in the rest of the paper we use Z1 and Z
interchangeably to denote the Kuramoto order parameter,
which is also the first Kuramoto-Daido order parameter.

The simplest example of high-order coupling of type
Eq. (1) is a model of identical phase oscillators globally
coupled via the second harmonic coupling function of their
phase differences:

ϕ̇ j = ω + 1

N

N∑
k=1

sin(2ϕk − 2ϕ j + γ )

= ω + Im(Z2eiγ e−2iϕ j ), (2)

where γ is the phase shift parameter, tuning the nature of
the coupling between various degrees of attractiveness or
repulsiveness. Here the global forcing term H (t ) is just the
second-order Kuramoto-Daido mean-field Z2 rotated by the
phase shift γ .

This system is trivial to solve due to its similarity with
the Kuramoto model, with phases ϕ now replaced by 2ϕ

and everything else stays the same (Ref. [36] has shown that
they are fully equivalent). Below we focus on more complex
models, where H (t ) is a generic function of order parameters,
which satisfies the phase shift invariance property (i.e., under
ϕ → ϕ + const. the dynamics is the same). In particular,
the complex forcing can take any form such as (Zq)m(Z∗

p )n,
with mq − pn = l , or a combination of these terms. So, for
example, for l = 2 one can have H (t ) ∼ Z2 like in Eq. (2),
but also H (t ) ∼ Z2 like in Ref. [26], or, e.g., H (t ) ∼ Z4Z∗

2 .

III. THEORY

A. Watanabe-Strogatz theory for Kuramoto-Sakaguchi model

Before delving into the treatment of higher-order harmonic
coupling using WS theory, we review first the original formu-
lation which deals with the first-order harmonic coupling, i.e.,
the Kuramoto-Sakaguchi model. In 1994, in modeling arrays
of N identical overdamped Josephson junctions, Watanabe
and Strogatz [31] showed that such a system has hidden low-
dimensional dynamics, for which N − 3 constants of motion
exists. This theory, which we shall call the WS theory, is ap-
plicable to N-dimensional dynamics of a system of identically
driven identical phase oscillators described by

ϕ̇ j = ω(t ) + Im[H (t )e−iϕ j ], j = 1, . . . , N, (3)

where ω(t ) and H (t ) are arbitrary real and complex-valued
functions of time, respectively. When ω is a constant, it
represents the common natural frequencies of the oscillators.
When H (t ) ∼ Z , this system corresponds to the Kuramoto-
Sakaguchi model of globally coupled identical oscillators.

A coordinate transformation M1 which is called the
Möbius transformation is central to the WS theory (see
Refs. [31,37] for a detailed presentation). M1 formally be-
longs to the class of Möbius maps (or Möbius group action),
which is a type of fractional linear transformation, mapping
the unit circle in the complex plane to itself in a one-to-one
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way. Explicitly, the time-dependent Möbius transformation
and its inverse1 can be written as

M1 : ψ j → ϕ j (t ), eiϕ j (t ) = z(t ) + ei[ψ j+α(t )]

1 + z∗(t )ei[ψ j+α(t )]
, (4)

M−1
1 : ϕ j (t ) → ψ j, eiψ j = e−iα z(t ) − eiϕ j (t )

z∗(t )eiϕ j (t ) − 1
. (5)

Here {ϕ j} are the phases of the oscillators, complex pa-
rameter z(t ) satisfies |z(t )| � 1, and the parameter α(t ) is a
rotation angle. If the phases evolve according to Eq. (3) and
the WS parameters z and α evolve according to

ż = iω(t )z + 1
2 H (t ) − 1

2 H∗(t )z2,

α̇ = ω(t ) + Im[z∗H (t )], (6)

then the transformed phases ψ j = M−1
1 (ϕ j ) are conserved

quantities (“constants of motion”). Thus, WS theory implies
partial integrability of the system of identical oscillators.
Equation (6) can be shown to be a Riccati equation, and its
integrability follows from the transformation of the Riccati
equation to a linear form [38,39].

Under the Möbius transform Eq. (4), constants ψ j are
rotated by the angle α and then contracted along the circle into
the direction of arg[z(t )], the degree of contraction controlled
by |z(t )| (see also a visualization of second harmonic example
in Fig. 1). In fact, akin to Kuramoto order parameter |Z|, |z|
can typically be used as a measure of synchronization, since
both parameters become equal to unity at full synchrony.

Because we have introduced three extra parameters via
the Möbius transform, to make the Möbius transform unique,
we must impose the same number of conditions on the new
system Eq. (6). We have the choice of either imposing three
conditions on the constants of motion, or, we can impose
conditions on the initial values of the parameters themselves.
The conditions themselves are rather arbitrary. In practice
however, there are a number of ways of choosing conditions
such that the system evolve more “naturally.” For the WS
reformulation of higher-order coupled system (see Sec. IV),
we focus on the latter option, namely, imposing conditions on
the parameters’ initial values.

B. Generalization of the WS theory to a
coupling via higher harmonics

Here we generalize the WS approach outlined above to
coupling via higher harmonics, using derivation extremely
similar to those outlined in Ref. [33]. Due to the algebraic
similarity, we only sketch out a general idea and leave the
details to be inferred from Ref. [33].

N phase oscillators coupled via higher-order harmonics
obey the general equations of motion Eq. (1). It can be
rewritten as

d

dt
(eilϕ j ) = ileilϕ j ω(t ) + l

2
[H (t ) − H∗(t )e2ilϕ j ]. (7)

1Distinguishing forward and inverse transformations is rather arbi-
trary; here we just use one possible formulation.

FIG. 1. The Möbius transformation ϕ j (t ) ↔ ψ j for the second
harmonic coupling is visualised for two parameter values of |ζ (t )|.
Horizontal axis: phases ϕ j are shifted by the parameter arg[ζ (t )]/2;
Vertical axis: constants ψ j are shifted by the parameter η(t ). Trans-
forming the same set of constants to the phases results in a more
spread out set of phases [panel (a)] for small values of |ζ |, and in
a more clustered state of phases for |ζ | close to one [panel (b)]. The
two branches of the mapping illustrate the non-uniqueness of M2(t ).

We transform the phases ϕ j into phases ϑ j via

eilϕ j = ζ + eiϑ j

1 + ζ ∗eiϑ j
, (8)

with an additional complex parameter ζ . Equations (7) can be
transformed in terms of {ϑ j}, ζ and their time derivatives {ϑ̇ j}
and ζ̇ . Going through a similar procedure of picking out terms
in the orders of eiϑ j as done in Ref. [33], we obtain

ζ̇ = l
[
ıω(t )ζ + 1

2 H (t ) − 1
2 H∗(t )ζ 2

]
,

ϑ̇ j = l{ω(t ) + Im[H (t )ζ ∗]}, (9)
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which satisfy all N transformed equations, and hence also the
N original Eqs. (7). We notice that the right-hand side of the
second equation of Eqs. (9) is independent of j, indicating that
all the angles {ϑ j} rotate at the same speed. Therefore, we can
create a new time-dependent parameter η which has the same
rotational speed as {ϑ j}, η̇ = ϑ̇ j , and define

η(t ) := ϑ j (t ) − ψ j, (10)

where {ψ j} are the constants of motion.
We thus come to the Möbius transformation from constants

ψ j to phases ϕ j

Ml : ψ j → ϕ j (t ), eilϕ j (t ) = ζ (t ) + eiϑ j (t )

1 + ζ ∗(t )eiϑ j (t )
, (11)

= ζ (t ) + ei[ψ j+η(t )]

1 + ζ ∗(t )ei[ψ j+η(t )]
, (12)

depending on the time-dependent WS variables ζ (t ), η(t ).
The inverse Möbius transformation for higher-order coupling
is

M−1
l : ϕ j (t ) → ψ j, eiψ j = e−iη(t ) ζ (t ) − eilϕ j (t )

ζ ∗(t )eilϕ j (t ) − 1
. (13)

Compare Eqs. (11) and (13) to the transform for a first-
order coupling Eqs. (4) and (5), only the original phases are
multiplied with the order of coupling l , otherwise the form of
the transform stays the same. Comparing the WS equations
for the first-order coupling Eq. (6) with Eq. (9), we find that
the equations for pure higher harmonic (or “l-harmonic”)
coupling are merely multiplied by the factor l on the right-
hand side.

We can write the equations for the three WS parameters
Eq. (9) in terms of dot and cross products of H (t ) and ζ in the
complex plane (ζ = ρ exp(i
), ρ �= 0):

ρ̇ = l
1 − ρ2

2ρ
H (t ) · ζ ,


̇ = l

[
ω(t ) + 1 + ρ2

2ρ2
H (t ) × ζ

]
, (14)

η̇ = l[ω(t ) + H (t ) × ζ ],

where parameter 
 evolves according to H (t ) × ζ , similar to
a torque experienced by an object with a magnetic moment
under a magnetic field. For different H (t ) it is as if the same
magnetic moment, denoted by the higher-order WS parameter
ζ , moves under a different magnetic field.

C. Numerical simulation of the dynamics in the WS variables

At first glance, Eqs. (14) present an enormous simplifica-
tion compared to the original model Eq. (3), as the number of
equations is reduced from N to 3. However, the difficulty in
numerical simulation of the WS equations is that the coupling
term H (t ) is typically expressed in terms of the original phases
via the Kuramoto-Daido order parameters, and not in terms
of the WS variables and the constants of motion. Therefore,
for each calculation of right-hand side in Eq. (14) one has to
perform transformation Eq. (11). If the coupling contains only
order parameters Zm∗l with integer m, then only quantities eilϕ j

are needed to compute the coupling term and no transforma-
tion step is needed. However, if other order parameters have
to be calculated, then one needs to know phases ϕ j , and they
are not uniquely defined through quantities eilϕ j . Indeed, one
value of a constant ψ maps to l values of the phase variable:
ϕ/l + 2nπ/l , where n = 0, 1, . . . , l − 1. To choose a proper
value, one can use continuity of the dynamics of the phases
ϕ in time. This means, the proper value of the phase at time
instant t + �t is the value closest to that at the previous step
ϕ(t ), for small �t . In numerical implementations without in-
termediate steps, like Euler or Adams-Bashforth schemes for
solving ordinary differential equations, this check is simple.
In Runge-Kutta-type schemes, one should take care that also
at intermediate calculations of the right-hand side of equations
inside a Runge-Kutta step, the proper phase is extracted from
the transformation Eq. (11).

D. Basins of attraction for clusters

The WS theory implies that a system of globally coupled
identical oscillators with an l-harmonic coupling can evolve
to at most l clusters at any point in time. Indeed, if the initial
phase distribution has no clusters, then all the constants of
motion ψ are different. Then, for any |ζ | < 1, all the phases
are different as well. The only way for clusters to form is
|ζ | → 1 under attractive coupling.

For attractive l-harmonic coupling, in general it is expected
that eventually the phases form l clusters, i.e., l distinct
attractive subgroups of oscillators (there are special initial
states for which this is not true, see discussion in Sec. IV D
below about the solutions in which |ζ | does not grow). Thus,
the circle is divided in l basins of attraction of these clus-
ters. The boundaries of these basins of attraction are hence
special points of the collective motion, since they will not
be synchronized to any final cluster, and can be described
as “unsychronizable” (“solitary states” in the terminology of
Ref. [40]). Because basins evolve in time, the boundaries are
unstable trajectories of the dynamics on the unit circle. Below
we relate these boundaries to the mathematical singularity
occurring in the WS formulation of the system, specifically,
to the pole in the Möbius transformation Eq. (11).

Because basin boundaries are not trajectories of real oscil-
lator phases, we have to consider the transformation Eq. (11)
for all possible values of ψ . One can see that this transfor-
mation becomes singular at the limit |ζ | → 1. For |ζ | = 1,
all values of ψ are mapped to the cluster states ϕ = 
/l +
2nπ/l , where n = 0, . . . , l − 1, except for the singular value
ψ̃ = 
 + π − η, where 
 = arg(ζ ) as defined in Sec. III B.
This singular constant is mapped via Eq. (11) (at |ζ | → 1−
when the map is not singular) to the basin boundaries at the
end of the evolution t → ∞: ϕ̃ = 
/l + (2n + 1)π/l , where
n = 0, . . . , l − 1.

In a particular case under l = 2 to be explored numerically
below, we have two such basin boundary trajectories. At the
end of the evolution, at t → ∞, where clusters are formed and
|ζ (∞)| = 1, these are points ϕ̃1(∞) = 
(∞)/2 + π/2 and
ϕ̃2(∞) = 
(∞)/2 + 3π/2. To find these boundaries at all
times, and in particular at the initial moment in time, one can
trace these states back in time, but even that is not necessary.
In fact, to find ϕ̃1,2(t ), it is sufficient to know the singular
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value of the constant ψ̃ at the final stage of the evolution: ψ̃ =

(∞) − η(∞) + π . Then, for each 0 � t < ∞, the basins
can be calculated according to the transformation Eq. (11):

ei2ϕ̃(t ) = ζ (t ) + exp{i[ψ̃ + η(t )]}
1 + ζ ∗(t ) exp{i[ψ̃ + η(t )]} . (15)

This expression shows that at each moment of time the basin
boundaries can be obtained via ψ̃ transformed by parameters
ζ (t ) and η(t ). The expression also tells us that the sizes of
the basins are equal (in the case of l = 2, the sizes are π ).
However, the positions of the basins depend on the final point
of integration of both WS variables ζ (t = ∞) and η(t = ∞):
thus to find them one first has to perform integration up to
large enough time, and only after that formula Eq. (15) is
applicable. Below we will also discuss an approximate way
to define these boundaries solely from the initial state, and
will see that it does not provide an exact prediction of the
clustering.

IV. NUMERICS

In this section we numerically simulate a particular model
coupled via second-order harmonic which has been studied
in previous literature. The approach can be generalized to
arbitrary higher order of phase coupling, and we offer one
example with the fifth-order coupling in the Appendix for
completeness.

A. Higher-order harmonic coupling example: Z2 mean-field

As discussed above, for l = 2 a coupling scheme via the
second-order Kuramoto-Daido order parameter Z2 is trivial,
because it can be reduced to the standard Kuramoto model.
It appears that a simple nontrivial example is a coupling
via the square of the first-order mean field, i.e., H (t ) = Z2.
This model has appeared in previous literature [26], where
an ensemble of identical phases at steady state is always
found to exhibit a curious strictly nonsymmetric two-cluster
distribution (or “asymmetrical clustering” in literature), start-
ing from phases drawn randomly from a uniform distribution
on the circle. It is “strictly” asymmetric because one cluster
always contains more oscillators than the other in the final
state. It is curious because the apparent asymmetry in the final
distribution arise deterministically from identical oscillators
identically driven, with uniform random initial conditions.
To further study this distribution, we use the extended WS
formulation above and its prediction of the boundaries of the
two basins of attractions to partially explain the source of this
apparent symmetry breaking.

The equations for Z2-mean-field model of identical oscil-
lators can be written as the following:

ϕ̇ j = |Z|2 sin(2 arg(Z ) − 2ϕ j ), Z = 1

N

∑
j

eiϕ j , (16)

or

ϕ̇ j = 1

N2

N∑
k=1

N∑
m=1

sin(ϕk + ϕm − 2ϕ j ), (17)

which corresponds to Eq. (1) with l = 2 and H (t ) = Z2.
Moreover, we assume the natural frequency ω to be a constant
and fix its value to zero (one can accomplish this by choosing
a rotating reference frame).

Since we can rescale time, we have set the coupling
strength to 1 without loss of generality. The elementary
coupling between phases Eq. (17), unlike the Z2-mean-field
model Eq. (2), involves now a triplet of oscillators indexed by
m, k, and j. This corresponds to a hypernetwork topological
connection between the oscillators, where three nodes jointly
form a coupling connection, as opposed to a normal network
where only two nodes are needed for a coupling connection.
This hypernetwork model may play an important role in
neuronal coupling [41–43].

As discussed above, for t → ∞, two clusters will form
with some constant final value of Z , one with the phase
of the mean-field arg(Z ) and the other one shifted by π :
arg(Z ) + π , as can be easily found from Eq. (16) by equating
the right-hand side to zero. A simple metric for describing
the distribution of the phases among the clusters is R := |Z|,
the Kuramoto order parameter amplitude. It relates to the
population of one of the clusters by R = |2N1/N − 1|, where
N1 is the number of oscillators in one of the two clusters.
When R = 0, the two clusters have equal size. When R = 1,
all the oscillators are in one cluster.

B. Integration of the WS equations for the Z2-mean-field model

Before we carry out numerical integration of WS equa-
tions, we introduce a method of visualizing the basins. As
discussed above, one needs to follow the evolution not only
for the set of coupled oscillators, but for all possible values
of phases that can be mapped to the space of the constants
ψ . Equivalently, we can use Eq. (16), and unidirectionally
couple an arbitrary number of oscillators to the field. These
oscillators, which we denote θ as passive traces, are influenced
by but do not contribute to the global field which depends on
the “active” phases ϕ j only

θ̇ = Im[Z2e−i2θ ] , (18)

where the mean-field is defined in Eq. (16). Variable of a tracer
θ is not indexed since we can use any number of them and they
take on any value between 0 and 2π .

Introducing passive oscillators gives us the advantage of
visualizing the field on the entire circle, because we can place
them anywhere on the circle to “test” the strength of the field,
and not just at those places where the active oscillators happen
to be. In this sense they are analogous to the fluid tracers in
hydrodynamical simulations or experiments. It will make the
motion of the points on the circle under the field obvious to
the eye, especially those near the unstable points.

For the Z2 mean-field model Eq. (16), the WS parameters
obey

ζ̇ = Z2(t ) − [Z∗(t )]2ζ 2, η̇ = 2 Im[Z2(t )ζ ∗]. (19)

Initial values of the WS parameters in our numerical sim-
ulation are chosen as ζ (0) = Z2(0) and η(0) = 0. Under such
an initial condition, the second WS equation η̇ = 0 at t = 0,
therefore it can be considered as a natural initial condition,
although it is not the only reasonable one. For instance,
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previous literature [31] has given two initial conditions as
options. One is the “identity conversion”, with the introduced
WS parameters all set to 0: |ζ (0)| = 0, arg[ζ (0)] = 0 and
η(0) = 0, which corresponds to when M1 is just the identity
operator at t = 0. The other is the “incoherent state,” which
corresponds to when the constants of motion is maximally
incoherently distributed, i.e., choose ζ (0) and η(0) such that
〈exp(iψ j )〉 = 0 (if no majority cluster exists). “Identity con-
version” was deemed unsuitable because even with different
initial sets of phases, the WS parameters start at the same point
in the three-dimensional phase space. However, our chosen
initial condition for the parameter, ζ (0) = H (0), does depend
on the initial phases. This initial condition is also more suited
to the complex representation of the WS system, as opposed
to the three real equations in Ref. [31] or like Eq. (14), since
ρ(0) := |ζ (0)| = 0 is a singularity there, and arg[ζ (0)] would
be undefined. For clarity, we define explicitly the argument of
ζ : 
 = arg(ζ ) as before.

As outlined above, numerical integration can be performed
either directly in variables ϕ, θ or in WS variables ζ , η with
additional transformation at each integration step from the
constants ψ j to the phases ϕ j , to calculate the mean-field Z .
Both methods match to a very good accuracy. Two examples
of the time evolution shown in Fig. 2 for two random initial
conditions (N = 20) illustrate this.

In Fig. 2, we highlight the trajectories of the two tracers
that end up exactly at asymptotic basin boundaries θ̃1 =

(t = Tsync)/2 + π/2 and θ̃2 = 
(t = Tsync)/2 − π/2 in ϕ-
space (corresponding to pole of M2 in ϑ-space at the final
synchronous state), where Tsync is the time at which some
synchronization threshold is reached during integration pro-
cess. These trajectories are time-varying basin boundaries.
This variation in time of basin boundaries is typically the
case not just for higher-order coupling like ∼Z2, but also
for the standard Kuramoto model. These variations make it
impossible to predict the initial locations of the basins, and
therefore also unable to predict the numbers of oscillators
in the final two clusters explicitly from the initial condition
alone. Because the basin boundaries being unstable trajecto-
ries in reverse time become attractive, their positions at t = 0
can be obtained by integrating back in time (under the correct
mean-field time evolution calculated forward in time), starting
from any point on the circle outside a small neighborhood
from the two poles of M−1

2 . The size of the neighborhood
ε → 0 under infinite forward integration time. Alternatively,
we can simply map the singular constant ψ̃ via Eq. (15)
with ζ (0) and η(0) as transformation parameters to obtain
basin boundaries ϕ̃ at t = 0. However, ψ̃ can only be known
after integrating to full synchrony: ψ̃ = 
(∞) − η(∞) + π .
Therefore, both methods of determining basin boundaries at
t = 0 require integration.

C. Comparison of the asymmetrical clustering under
Z2-mean-field model: Prediction and numerics

Here we discuss a way of approximating cluster distri-
bution just from initial data. As discussed above, the basin
boundaries rotate in the course of evolution. However, this
rotation is usually small, which means we could estimate
roughly the boundaries using the initial value of ζ (accord-

FIG. 2. Euler integration with h = 0.01 of the WS Eqs. (19) for
the Z2-mean-field model. They are simulated for two sets of random
initial conditions (phases are randomly drawn from uniform distribu-
tion from 0 to 2π ). Integration is carried out until two synchronized
clusters are formed. Gray lines are the tracers θ [Eq. (18)], which
are uniformly spaced initially on a circle, and passively coupled to
the global field of the active phases. The flow of 20 active phases
ϕ j are marked by purple or blue. Purple indicates if at time t , the
phase ϕ j transformed back from the constant ψ j does not need to
be added π , and blue indicates if it does, to ensure continuity of the
flow of the phases. Trajectories of WS parameter 
(t )/2 + π/2 and

(t )/2 − π/2 are in orange and green. Pink and red lines are the
trajectories of two tracers which end up at singular points ϕ̃1(∞)
and ϕ̃2(∞) (as discussed in Sec. III D). These unstable trajectories
are computed via Eq. (15) from the singular constant ψ̃ and the
saved values of ζ (t ) and η(t ). The intercepts of the red and pink
trajectories with horizontal axis match well the initial position of the
basin boundaries, where the tracers split.

ing to our choice of initial condition). This method will
therefore naturally involve an error corresponding to the
degree of rotations. Using the same expression as the final
singular points ϕ̃ : 
(∞)/2 + π/2 and 
(∞)/2 + 3π/2, we
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FIG. 3. Comparison between prediction and simulation of the
population sizes of the two clusters, plotted as a histogram of R
values, based on random initial conditions (uniform distribution
on a circle) for ensemble sizes N = 10, 20, 50, 100, 200, 500, 1000
(color-coded for N). Round markers: predictions of the cluster size
based on the basins estimated from initial states. Diamond mark-
ers: simulated results at steady state (data obtained from Ref. [26]
with permission of the author). The distributions nearly coincide
for R

√
N � 1, but for small R the estimated distribution does not

reproduce the drop in the density near the totally absent symmetrical
clustering state at R = 0.

approximate basin boundaries at initial time as 
(0)/2 + π/2
and 
(0)/2 + 3π/2. Since the initial condition is ζ (0) =
H (0) = Z2(0), this implies arg[ζ (0)] = 
(0) = 2 arg[Z (0)].
The number of oscillators falling into each basin (marked by
arg(Z ) + π/2 and arg(Z ) + 3π/2 at t = 0) yields therefore
an estimate for populations of the final clusters. In Fig. 3, this
estimation in the form of probability distribution is compared
with the correct final asymmetrical clustering distribution, as
a function of the metric R = |Z|, both axes scaled by

√
N .

This estimate is naturally not accurate because of the
rotation of the basin boundaries, however, it is able to explain
several features of the distribution. First, the asymmetry of
the distribution, i.e., the maximum of the distribution is not at
R = 0 (the symmetric clustering state), is present for both the
prediction and simulation. However, the location of the max-
imum is underpredicted by theory. Second, the

√
N scaling

law with respect to the ensemble size applies to both. In fact,
the successful scaling of the prediction based only on initial
conditions implies that the source of the steady state scaling
law lies in the initial condition and their finite sampling, not
in the dynamics.

According to the first observation, the source of this “sym-
metry breaking” in terms of particle distribution should in
part be related to the geometrical fact that the angle of the
particle mean-field arg[Z (0)] is not isotropic on the circle,
even if the underlying particle distribution is isotropic on
average. Because if arg[Z (0)] is isotropic, then we should
see a distribution more akin to the binomial distribution. This
is intuitive when one reflects on the meaning of arg[Z (0)]
as the direction of the average over-density of the initial
phase distribution. There will be by definition more phases on
the side where arg[Z (0)] is pointing toward, and fewer on the
side opposite to it. Naturally, the half circle spanning these

two sides marked by arg[Z (0)] + π/2 and arg[Z (0)] + 3π/2
will have unequal number of phases in these “approximate
basins.” However, our estimate is completely reliant on our
choice of initial conditions for the WS variables. The choice
is arbitrary due to over-determinedness of the transformed
equations. Therefore, another choice of initial conditions will
give another completely different estimate. The fact that our
estimate seems to explain some features of the final distribu-
tion speaks only for the “naturalness” of our choice of initial
conditions, justified by the WS Eq. (19). Conversely, another
cleverer choice might be able to exactly predict the final
distribution, if such a choice exists for all initial conditions.

Despite the partial explanation for the final asymmetrical
clustering, the estimate fails to predict the lack of states near
R = 0, as well as the complete absence of the symmetrical
state (two clusters being equally sized). This failure can only
be due to the dynamics of the system, which is not inferrable
directly from the initial conditions, even though the system
is fully deterministic. Specifically, in simulations, the R = 0
final state is completely absent, which is in fact due to the
weak instability at the symmetry state. An elementary linear
stability analysis of the symmetry states with N = 2 or N = 4
shows that the states (two clusters with sizes 1-1 or 2-2) are
weakly unstable, thus giving evidence of the weak instability
at the symmetrical state, justifying their absence from the
distribution.

D. Possibility for decreasing mean-field in the Z2-mean-field
model under positive coupling

The Kuramoto model with first-order mean-field coupling
is known to possess a Lyapunov function [31]. This means
that generic initial conditions (i.e., with an initially non-zero-
order parameter) monotonously evolve toward a synchronous
clustered state under attractive coupling (only initial states
with vanishing mean field do not evolve). This property is not
shared by the Z2 second-order coupling model we consider
here. It is possible, using symmetry, to construct special initial
conditions which lead to a monotonic decrease of the order
parameter. For example, we consider special symmetric eight
initial phase values as shown in Fig. 4(b) inset. The initial
value of the Kuramoto order parameter is nonzero, R > 0,
i.e., the system will evolve under Z2. However, the evolution
preserves the symmetry, so a formation of asymmetric clusters
is not possible. Numerical integration shown in Fig. 4(a)
demonstrates convergence toward an unstable configuration
with R = 0. One should note that numerical errors could
eventually destabilize this symmetric state due to symme-
try breaking, with a formation of two clusters with sizes 5
and 3 each, which should eventually be observed on a long
timescale.

V. DISCUSSION AND CONCLUSION

Our study provides an analytical extension of the
dimension-reducing formulation of globally coupled identical
phase oscillators under pure higher-order harmonic coupling,
and carries the analytical tradition of Watanabe-Strogatz the-
ory further, the same way Ref. [15] did in terms of the
OA theory for the Kuramoto model. Similar to the WS
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FIG. 4. (a) Flow of passive (gray) and active oscillator phases
(red). (b) Evolution of the mean-field amplitude R2. Inset in panel
(b): Special symmetric initial conditions.

formulation for a first harmonic coupling, we apply an anal-
ogous type of Möbius transformation from the space of the
original phases into the space of the transformed phases
(constants of motion) to obtain the three-dimensional WS
equations. We devise an argument to solve the apparent non-
unique transformation from the constants back to the original
phases. Numerical integration shows that the simulation based
on reduced WS equations matches the simulation based on the
phase equations.

As an example, the WS formulation of the Z2-mean-field
model, which exhibits asymmetrical clustering, is tested with
good numerical agreement to the phase model. The bound-
aries of the basins of attraction under such a model match
the pole in the Möbius map at the final steady state. The
asymmetric clustering can be explained, albeit partially via
the theory, explicitly from the initial distribution of phases.
The main obstacle is the fact that the pole only appear in the
Möbius map at the final synchronous steady state, and not at
intermediate and initial states. This makes it impossible to find

the initial basin boundaries without following the dynamics to
the final state.

We also report on a possibility for (unstable) desynchro-
nization to happen in the attractively coupled Z2-mean-field
model, a situation not observed in the classic Kuramoto setup.
This is an indication for complex non-monotonous transient
behaviours in identical ensembles with higher-order coupling.

Currently, both WS and OA formulations are limited to
pure l-harmonic coupling, and are not applicable to mixed
harmonics coupling. Besides this constraint on the form of
the coupling, these approaches are restricted also by the
connection topology (global coupling, or its modifications
like star graph [44], is usually required), and by the natural
frequency distribution of the oscillators (identical in the case
of WS, Cauchy in the case of OA). It appears promising to
extend the WS and OA theories via perturbation analysis, first
attempts in this direction have been reported recently [45,46].
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APPENDIX

Since the theory proposed in this paper—that phase vari-
ables with identical frequency globally coupled via pure
higher-order coupling is partially integrable—is in fact valid
at any order l , we provide in Fig. 5 an example where l = 5
for 20 oscillators with random uniform initial conditions.

Analogous to Fig. 2, where a second-order example is
provided, for l = 5 and a forcing term H = Z5 where Z

FIG. 5. Analogous to the Z2 case in Fig. 2, here a flow plot
for model ϕ̇ j = Im[Z5e−i5ϕ j ], for N = 20. Red curves are the basin
boundaries ϕ̃(t ).
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is the Kuramoto mean-field, Fig. 5 shows the phase flow
plot (along with passive tracers). As with the H = Z2 model
mentioned in the main text, we can find the basin bound-
aries of cluster formation numerically. Also note that it is

generally possible to arrive at a number of clusters smaller
than the order of coupling which gives the maximal num-
ber of clusters; in this case four clusters under fifth-order
coupling.
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