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Supercritical Kuramoto oscillators with distributed frequencies can be separated into two disjoint groups: an
ordered one locked to the mean field, and a disordered one consisting of effectively decoupled oscillators—
at least so in the thermodynamic limit. In finite ensembles, in contrast, such clear separation fails: The mean
field fluctuates due to finite-size effects and thereby induces order in the disordered group. This publication
demonstrates this effect, similar to noise-induced synchronization, in a purely deterministic system. We start
by modeling the situation as a stationary mean field with additional white noise acting on a pair of unlocked
Kuramoto oscillators. An analytical expression shows that the cross-correlation between the two increases with
decreasing ratio of natural frequency difference and noise intensity. In a deterministic finite Kuramoto model,
the strength of the mean-field fluctuations is inextricably linked to the typical natural frequency difference.
Therefore, we let a fluctuating mean field, generated by a finite ensemble of active oscillators, act on pairs of
passive oscillators with a microscopic natural frequency difference between which we then measure the cross-

correlation, at both super- and subcritical coupling.
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I. INTRODUCTION

Synchronization—the mutual adjustment of frequencies
among weakly coupled self-sustained oscillators—is a promi-
nent example of the emergence of order in out-of-equilibrium
systems in physics, engineering, biology, and other fields
[1-3]. In large ensembles, it appears as a nonequilibrium
phase transition, where the organizing action of sufficiently
strong mutual coupling wins over the disorganizing action of
the diversity in natural frequencies. The paradigmatic model
of this phenomenon, created by Kuramoto [1,4], is fully
solvable in the thermodynamic limit [1,5]. The characteristic
feature of the Kuramoto-type synchronization transition is the
coexistence of two subgroups of oscillators in the partially
synchronized state: the oscillators in the ordered group are
locked by the mean field and coherently contribute to it, while
the disordered units are not locked and rotate incoherently.
With increasing coupling strength, the former group grows in
size, as more and more oscillators are locked by the increasing
mean field.

The qualitative features, established in the thermodynamic
limit, remain approximately valid for finite ensembles. Here,
similar to finite-size effects in equilibrium phase transitions,
the order parameter, i.e., the macroscopic mean field, fluc-
tuates with an amplitude that depends on the ensemble size
in a nontrivial way [6—10]. These fluctuations are most pro-
nounced close to the criticality and can be attributed to weak
chaoticity of the finite population dynamics [11,12].

The goal of this paper is to show that the finite-size
fluctuations of the mean field have an additional effect on the
population—quite counterintuitively an ordering effect: the
disordered oscillators become correlated pairwise, while in
the thermodynamic limit the cross-correlations disappear. Be-
low, we consider two basic setups to show this phenomenon.
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First, we study a population in the thermodynamic limit, but
with the mean field being subject to external white noise
fluctuations (Sec. II). This ideal setup allows for an analytic
solution, showing the dependence of the cross-correlation
between the oscillators on the fluctuation intensity and on the
natural frequency difference. In the second setup (Sec. III),
we numerically quantify the cross-correlation due to the
intrinsic finite-size-induced fluctuations of the mean field,
first for super- and then for subcritical coupling. This latter
case is similar to other organizing macroscopic manifestations
of finite-size fluctuations such as finite-size-induced phase
transitions [13,14] and stochastic resonance [15]. In fact, this
ordering action of finite-size fluctuations can be qualitatively
traced to the effect of synchronization by common noise,
known for identical and nonidentical oscillators, which are
either coupled or uncoupled [16—-19].

II. MEAN FIELD WITH EXTERNAL FLUCTUATIONS
IN THERMODYNAMIC LIMIT

A. Stationary mean field

Before discussing the mean-field model with external fluc-
tuations, we first quantify ordered and disordered states in
the Kuramoto model of mean-field coupled oscillators in the
thermodynamic limit where no fluctuations are present. The
model is formulated as follows: Oscillators are described by
their phases ¢, and are coupled via the complex mean field

Z=Re® = ["dy [ dQP(p|Q)g(Q)e as
@ = Q+ eIlm(Ze ™). (1)

Here Q are natural frequencies distributed according to a
unimodal density g(€2), and P(¢|€2) is the probability density
of oscillators with natural frequency £2.
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The theory of synchronization, developed by Kuramoto
[1], predicts the existence of a critical value of the coupling
constant ¢, beyond which the macroscopic mean field and the
frequency of the global phase assume constant values, R > 0
and Q := @, respectively. Oscillators with natural frequencies
which satisfy |Q — Q| < &R are locked by the mean field,
i.e., rotate with €2, and constitute the ordered part of the
population. Oscillators at the tails of the natural frequency
distribution with |Q2 — Q| > &R each rotate with a different
average frequency and constitute the disordered part.

To quantify order and disorder in the system, we calcu-
late the pairwise cross-correlations between the oscillators.
First, we perform a shift to the mean-field reference frame
@ := ¢ — . In the ordered part, the oscillators have constant
phases @ and are thus perfectly correlated. To calculate cross-
correlations in the disordered part, the phases $ cannot be used
directly, because their probability density on the circle is not
uniform: it is proportional to P(¢|Q) ~ |Q — Q — eRsin ¢| ™!
[3], i.e., it is a wrapped Cauchy distribution. This distribution
is fully characterized by the first harmonic z = (¢"?) = ig(1 —
V1 —¢g72), where g := (R — Q)/(¢R) and (-) is the average
over oscillator phases @ with density P(®|Q2). The phases @
can be transformed to uniformly distributed phase variables
Y by virtue of a Mobius transform [20]

expliy] = (expli¢] — 2)/(1 — z" expli@]). 2)

Straightforward calculations show that v =: v = (Q —

Q) —q‘z)l/ 2, where v denotes the observed frequency
of the oscillator. Because the transformed phases ¥ rotate
uniformly, with their frequency v now depending only on
intrinsic frequency €2, we can straightforwardly apply the
synchronization index—a measure for the cross-correlation of
two phases [21]—as

yi2 = [{exp[i(¥2 — YD) 3)

For two phase variables uniformly rotating with different
frequencies v; and vy, this yields zero, and thus the pairwise
cross-correlation vanishes exactly in the disordered domain,
independently of how close the parameters of the oscillators
are. Conversely, this cross-correlation is exactly 1 in the
ordered domain.

B. Mean field with external fluctuations

Our next goal is to show that nonvanishing cross-
correlations appear in the disordered part if the mean field
contains added external noise. We consider a simple modifica-
tion of the Kuramoto model (1): Z =R exp[iﬁt] +6[& @)+
i&(¢)], with constants R, Q and Gaussian random processes
&1(t), £&(r) of noise strength & with (&;()&;(t")) = 28;;6(t —
t') and (£;(t)) = 0. We assume noise to be weak, so that it
does not significantly change the individual statistical prop-
erties of the oscillators (the distribution remains a wrapped
Cauchy distribution; see Ref. [22] for a quantification of small
deviations due to weak Gaussian noise). However, as we will
see, it induces cross-correlations in the disordered region. Per-
forming the same transformation to obtain uniformly rotating
phase variables ¢ as above, we obtain for the transformed
phase variables ¥ a set of Langevin equations with common

noise terms 1y, 12:

¥V =v—(a+bsiny)n;(r) + ¢ cos ¥ na(1). “

Here n(¢), n2(¢) are mutually uncorrelated Gaussian
white noise forces common to all transformed phases
v, (mi(t)n; (') = 28;;8(t —¢') and  (n(1)) =0; v =
Q-1 - q_2)1/2 is the observed frequency as above;
parameters a = £2RG /v, b = ¢ (Q2 — Q)/v, and ¢ = &5 are
the effective noise strengths.

We now consider two oscillators ¥, ¥, of type (4). We
assume parameters of these oscillators to be close: vi = v +
p/2 and v, = v — p/2, with p < v. To calculate the cross-
correlation function (3), we first write, starting from (4), the
Langevin equations for the difference @ = | — v, and the
sum B8 = Y| + ¥, of the transformed phase variables:

. L«
a=p— (a1 —a)m@)— (b1 +b) smzcosgm(t)
— (b1 — by) cos % sin g n1(t) — 2c¢ sin % sin g (1),
- o . B
B =2v — (a1 +a)ni(t) — (b1 + b2) cos o sin n1(t)

.o o
— (b1 — by)sin 5 cos g n1(t) + 2c cos 5 cos g ().

This system yields a Fokker-Plank equation for the density
W (e, B, t), which, by virtue of averaging over the fast rotating
variable B with the method of multiple scales [23], can be
reduced to the following equation for the density of the phase
difference w(«, t):

d d b by)? 92
v +'08_ocw _ [% +02}W[(1 — cosa)w]
by — by)? 92 92
= %W[(l + cosa)w] + (a; —az)zww.

&)

The terms on the r.h.s. of this equation are of second order in
the small parameter p, and therefore we can neglect them. As
a result, only the weighted sum of noise terms o2 := (b; +
b)) /4 + 2 ~ &26%{1 + [(Q — Q)/v]?} is relevant.

The stationary solution of this equation can be straightfor-
wardly written as an integral; the calculation of the cross-
correlation y = [{e/®)| = |ffﬂ w(a) exp(i) dee| reduces to
a nontrivial integration, which nevertheless can be expressed
explicitly:

y? =14 4d*[ci>(2d) + si*(2d)]
—4d[ci(2d)sin(2d) — si(2d) cos(2d)],  (6)

where ci and si are the cosine and sine integral functions,
and the ratio d between the frequency mismatch p and the
weighted noise strength 02, d = p/o?, is the only parameter.
This cross-correlation function (cf. Fig. 4 below, black solid
line) tends to 1 for d < 1 and decays as y ~ 1/d as d > 1.
Thus, our main analytical result (6) shows that common exter-
nal noise added to the mean field induces cross-correlations in
the disordered domain, with a characteristic cross-correlation

length proportional to the noise intensity p ~ 2.

032210-2



MICROSCOPIC CORRELATIONS IN THE FINITE-SIZE ...

PHYSICAL REVIEW E 100, 032210 (2019)

The physical explanation of this cross-correlation lies in
the stabilizing effect of the common noise: its action on
an oscillator leads to a negative Lyapunov exponent, which
results in complete synchronization of identical oscillators
[16,17]. For nonidentical oscillators, the difference in the nat-
ural frequencies prevents complete synchrony, but the phases
are most of the time kept close to each other by noise, with
occasional fast phase slips [24] that account for the observed
frequency difference.

II1. FINITE-SIZE MEAN-FIELD FLUCTUATION

As demonstrated above, microscale cross-correlations ap-
pear in the disordered domain of the Kuramoto model in
the thermodynamic limit with external mean field noise. A
natural question arises, if also the intrinsic order parameter
fluctuations in deterministic finite ensembles generate such
microscale cross-correlations. The essential parameter here
is ensemble size N. Simple estimations based on the theory
above show that the cross-correlations are rather small be-
tween typical pairs of oscillators: For an ensemble of size N,
the characteristic frequency mismatch between the oscillators
isp~N —1 However, in order to create sizable fluctuations
of the mean field, N must be small. If one assumes 2 ~ N~ !,
then a typical value of the parameter d = p/o? will be close
to unity, which is too large for the cross-correlations to be
observable (see Fig. 4 below).

A. A model with active and passive oscillators

The size of the ensemble dictates not only the size of
the intrinsic fluctuations of the mean field, which tends to
have an organizing effect on the phases, it also determines
the typical natural frequency mismatch of a given pair of
oscillators, which tends to have an disorganizing effect on
their phases. According to (6), the cross-correlation between
the phases with a typical natural frequency difference for
typical mean-field fluctuation intensity (both depending on N)
is small. The probability to find a pair with a much smaller
than average natural frequency difference is high, but then
again it is difficult to disentangle different effects on such
singular pairs. However, this problem can be resolved if the
fluctuation level (or the effective noise strength) is decoupled
from the range of natural frequency differences.

To decouple the two opposing effects, we introduce a
modification of the Kuramoto model, where the oscillators
are of two types: active ones ¢; (j=1,2,...,N) with
natural frequencies Q?, and passive ones (tracers) ¢y (k =
1,2, ..., M) with natural frequencies €2;. The oscillators of
both types obey the same equation (1). However, only the ac-
tive oscillators contribute to the mean field: Z = Rexp[i®P] =
N~ Z’;’:l explig;]. Here N is the number of active oscilla-
tors, while the number of passive ones M can be arbitrary
(and they can have any distribution of frequencies). One can
say that passive oscillators “test” the mean field created by
active oscillators, similarly to how ideal fluid tracers “test”
the flow of a fluid. The passive oscillators do so at different
frequencies, especially at those not presented in the active set.
A similar technique has been used in Ref. [25] to determine
the frequency of chaotic signals via locking.

Equivalently, the system of active-passive oscillators can
be considered as a large network

. & .
o=t ijKk, sin(g; — ¢r), (7)

where Kj; =1 if the phase ¢; belongs to the active set,
and K;; = 0 otherwise. Experimentally, such a coupling has
been directly implemented in a set of 2816 optically coupled
periodic chemical Belousov-Zhabotinsky reactors [26].
Similar setups are often used in systems with long-range
interactions, for example, in restricted N-body problems in
gravitational systems. Heavy bodies such as planets, stars,
and galaxies contribute to the gravitational field in which they
move, while other, lighter particles move in the same field,
but their contribution to the field is negligible. In a more
general context of interdisciplinary applications of complex
systems, the division into active and passive agents occurs by
itself in macrosocial opinion formation processes. In social
media, a few forward thinkers (or influencers) lead the public
discourse by writing texts and comments, while the opinions
of a large number of passive users (followers) remain hidden:
they follow the discussion without contributing to it [27].

B. Fluctuations beyond the synchronization transition

As we show below, using tracers, the microscale cross-
correlations (and other interesting features) can be easily
detected. In this subsection, we illustrate these features for
a partially synchronized state of the finite-size Kuramoto
model and in Sec. III C for a state below the synchronization
transition.

First, we give a qualitative picture of the cross-correlations.
Figure 1 shows a snapshot of phases for a population of
N = 50 active oscillators together with a set of M = 5 x 10*
tracers. The natural frequencies of the active ones are sampled
from a normal distribution with zero mean and unit variance,
for which the critical coupling constant in the thermodynamic
limit is &, ~ 1.6. The microscale ordering effect becomes
evident if one zooms in to increasingly smaller scales, from
Fig. 1(a) to Fig. 1(c). Figure 1(c) shows the characteristic
correlated state profile of the tracers’ phases, consisting of
ruptured nearly horizontal bars. A bar is formed due to the
ordering action of the fluctuations of the mean field, which
synchronize passive oscillators with close frequencies. Rup-
tures appear when oscillators with higher frequencies make
an additional rotation (a phase slip) with respect to oscillators
with smaller (but similar) frequencies. In Fig. 1(c) one can
clearly see a fresh phase slip around €2 = 1.7145, an older
less pronounced phase slip around €2 & 1.717, and several
old phase slips that have almost disappeared. The phase slips
become less visible over time because of the stabilizing effect
reflected in a negative Lyapunov exponent as outlined above.

The microcorrelated structures like Fig. 1(c) are ob-
served in all disordered domains visible in the global picture
[Fig. 1(a)]. Additionally, macroscopically ordered regions are
seen close to the active oscillators not entrained by the mean
field (with €; = 1.0) [Fig. 1(a)]. Here the tracers are synchro-
nized to the active units (like the satellites are trapped by their
planet’s gravitational field). This is because the fluctuations
of the mean field are in fact not completely random, but
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1.710 1.715 1.720

FIG. 1. Snapshot of passive oscillators (black dots) and active
oscillators (large red dots) phases plotted against natural frequencies
for a finite ensemble of 50 active oscillators (not all shown). The
mean field is created by the active oscillators with natural frequencies
drawn randomly from a Gaussian distribution (same sample as in
Fig. 2) at slightly supercritical coupling ¢ = 1.85 (same in Fig. 2).
Three zoom levels of factor 10 are marked by shaded areas. Arrows
in panel (c) point at ; ~ 1.7145 and €, ~ 1.72 for a new and an
old phase slip, respectively. See the Supplemental Material [28] for
an animated version of this figure. One second in the video equals
one time unit.

contain relatively strong nearly periodic components from the
nonentrained active oscillators. These components suffice, at
least for small ensembles, to fully entrain tracers with natural
frequencies close to a common active oscillator.

Now we quantify pairwise cross-correlations of the passive
phases in Fig. 1. We calculate the cross-correlation coeffi-
cient (€2, A) for two tracers with natural frequencies 2 —
A/2, Q4 A/2 according to (3). To this end, we need to
perform the Mobius transformation (2) to obtain uniformly
distributed phase variables . First, we calculate the time-
dependent difference between the tracer phases and the mean-
field phase @(¢) = @(t) — ®(¢). We then average these phases
over time, z¥ = (exp[i®]), which gives the empirical value of
the parameter characterizing the wrapped Cauchy distribution
of @. Then the Mobius transform (2) is applied. To check that
we indeed obtained the uniformly distributed phase variable
¥, we calculate the first harmonics z¥ = (exp[iv/]) and com-
pare it to z% [Fig. 2(a)]: one can see that indeed the transfor-
mation yields a uniformly distributed set of phase variables
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FIG. 2. Observed cross-correlation as defined by Eq. (3) of pas-
sive oscillators coupled to the mean field Z of 50 active oscillators
against their natural frequencies (mean (R) = 0.58, variance o} =
3.5 x 1073), shown for various levels of frequency mismatch A be-
tween passive oscillators. (a) Absolute value of the (time-averaged)
first harmonic of individual passive oscillators before (z?, blue
circles) and after (z¥, red squares) the Mébius transform. z¥ drops
to near zero after the transformation, which shows that ¥ is now
uniformly rotating. (b) Observed vs natural frequencies of passive
(line) and active oscillators (dots). Gray vertical lines in panels
(b) and (c) mark the natural frequencies of the active oscillators.
(c) Synchronization index y between pairs of passive oscillators with
natural frequencies 2, = A/2.

(within reasonable tolerance), because the amplitudes of the
time averages of their first harmonics become very close to
zero after the transformation.

In Fig. 2(b) we show the observed frequencies of the
tracers and the active oscillators. One can clearly see
synchronized neighborhoods of active units as plateaus in
this graph. Outside the plateaus, the tracers are not locked,
and their observed frequency varies continuously with their
natural one. It is in these domains outside the plateaus
that the microscale cross-correlations can be observed and
measured, as illustrated in Fig. 2(c). Here we show values of
the cross-correlation coefficient y (€2, A) for several values of
frequency mismatch A: cross-correlation is nearly perfect for
A <1073, while for A > 0.01 the values of the coefficient
typically do not exceed 0.5.
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FIG. 3. The cross-correlations of passive oscillators coupled to a
mean field of 50 active ones at ¢ = 1 (same natural frequency sample
as Fig. 2). The mean field Z fluctuates around zero; see Ref. [10].
(a) Cross-correlations in the linear scale; (b) the same in logarithmic
scale to resolve the region y < 1. Markers and colors as in Fig. 2(c).

C. Fluctuations below the synchronization transition

To show that the effect of microscopic cross-correlations
occurs for subcritical values of coupling constant ¢ as well, we
present the calculations of the cross-correlations for an ensem-
ble of N = 50 oscillators with natural frequencies randomly
sampled from the standard normal distribution, and ¢ = 1 in
Fig. 3. For this relatively small coupling, the complex mean
field fluctuates around zero; see, e.g., Ref. [10]. Therefore, a
transformation of the phases to uniformly rotating ones (¢ —
Y¥) is unnecessary, contrary to the case of a nonvanishing
mean field at stronger coupling (Figs. 1 and 2). For better
visibility of both high and low cross-correlations, we present
in Fig. 3 the cross-correlation constant y (€2, A) in linear and
logarithmic scales. The multiple locked regions relate to the
frequencies of active oscillators. The central region around
Q =~ 0 corresponds to the frequency of a synchronous cluster
that has already been formed by the oscillators at the center
of the locking region, even though this cluster is still not large
enough to ensure the existence of a macroscopic mean field.
The figure shows that the microscopic cross-correlations are
of a universal nature and can be observed both below and
above the synchronization transition.

Finally, we illustrate in Fig. 4 a dependence of the cross-
correlations on the noise level. Unfortunately, a quantitative
comparison with the theoretical prediction (6) is not possible
because the intrinsic fluctuations due to the finite-sized effect
are very far from being delta-correlated, as is assumed in the
analytical theory. Nevertheless, for a qualitative comparison,
we calculated the autocorrelation function of the mean field,
which has a peak at zero and pronounced oscillations due
to the nearly periodic contributions of particular oscillators.
As a measure of the noise intensity we took the diffusion
coefficient of the complex order parameter Z of the active
oscillators. Furthermore, we have chosen only nonlocked pas-
sive units. One can see that the scaling relation y = y(A/o?)
follows at least qualitatively the theoretical curve (6), although
a huge diversity of the observed cross-correlations, due to the

10° e e T T T T
L -S .
v ( l
-1
10 C Nosc . ]
[ e=1 e=1.85 ]
r % 25 * 25 l 1
I 0 50 u 50 i
100 100
I A 200 A 200 4 1
il | Ll Ll Ll Ll \\\
10* 103 10 le’1 10° 10!

FIG. 4. Comparison of the observed cross-correlation y in sub-
and supercritical ensembles (¢ =1 and 1.85 with open and filled
symbols, respectively) of different sizes Nos. = 25, 50, 100, 200 with
the theoretical expression (6) (solid line). The data points were
generated in experiments as in Figs. 2 and 3. The median of all y
for which y(1072) < 0.5 (thereby excluding locked passive oscil-
lators) is represented with error bars that mark the 25th and 75th
percentiles, respectively. The value d = A/o? is determined from
the average over 02 = 2¢>D{1 + (| — ®|/A)?} with diffusion co-
efficient D, which was integrated from the autocorrelation function
of R. For each ensemble size, only one set of natural frequencies is
represented.

“coloredness” of the intrinsic finite-size mean-field fluctua-
tions, is also evident.

IV. CONCLUSION

In summary, we have shown that the fluctuations of the
mean field in the Kuramoto model, either externally im-
posed on the ensemble of infinite size or naturally induced
in the finite-sized model, lead to the appearance of cross-
correlations in the disordered part of oscillator populations.
These cross-correlations result from the competition between
synchronization by common noise and desynchronization due
to the parameter differences (usually the differences in the
natural frequencies). We have developed an analytical theory
of these cross-correlations for a mean field being a constant
(in a properly rotating frame) plus additional Gaussian white
noise, summarized in expression (6). This theoretical result is
directly applicable to models similar to the Kuramoto model,
e.g., to the Kuramoto-Sakaguchi model, where the mean field
of a population is subject to external fluctuations. In the
derivation of (6) we explicitly restrict the mean-field coupling
to the first harmonics of the oscillator phases only. The case
of a more general Daido-type coupling function requires extra
analysis, although qualitative arguments imply that the cross-
correlations will be observed there as well.

Furthermore, we have numerically characterized pairwise
cross-correlations between passive oscillators driven by the
intrinsically fluctuating mean fields in a finite ensemble
at two different coupling strengths, super- and subcritical,
respectively. In both cases, the mean field contains nearly
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periodic components, therefore there exist locked regions
where high values of pairwise cross-correlations arise due to
resonant locking. Between these locked regions, the cross-
correlations decay with an increasing frequency mismatch,
which is in a qualitative agreement with the theory based on
white noise. The rather good quantitative agreement between
white noise theory and finite Kuramoto model is surprising,
because, due to the dominant nearly periodic components in
the fluctuating mean field, fluctuations in the finite Kuramoto
model are far from being “white”.

Overall, the effect is expected to be most pronounced in
situations where finite-size fluctuations are anomalously large
(populations with equidistant natural frequencies at subcritical
coupling appear, as our preliminary calculations show, to
belong to this class).

We expect that this phenomenon is not restricted to the
mean-field coupling and can be observed in other large
systems where synchronized and disordered subpopulations
coexist. A prominent example here is a chimera state in a

one- or two-dimensional oscillatory medium with long-range
interactions [29]. A population of oscillators driven by two
mean fields [30] also demonstrated nontrivial regimes with
a coexistence of ordered and disordered subpopulations. In-
deed, chimera states are defined as the coexistence of coherent
and noncoherent domains among identical oscillators, and
finite-size fluctuations [31] may lead to cross-correlations
in the disordered domain; this issue is currently under
consideration.
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