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c© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature,

2019

Abstract. We consider collective dynamics in the ensemble of serially connected spin-torque oscillators
governed by the Landau–Lifshitz–Gilbert–Slonczewski magnetization equation. Proximity to homoclinicity
hampers synchronization of spin-torque oscillators: when the synchronous ensemble experiences the homo-
clinic bifurcation, the growth rate per oscillation of small deviations from the ensemble mean diverges.
Depending on the configuration of the contour, sufficiently strong common noise, exemplified by stochas-
tic oscillations of the current through the circuit, may suppress precession of the magnetic field for all
oscillators. We derive the explicit expression for the threshold amplitude of noise, enabling this suppression.

1 Introduction

Synchronization transition in systems of coupled oscilla-
tors can be considered as a nonequilibrium order-disorder
phase transition [1–3]. Its manifestation is appearance of
a macroscopic mean field in the ordered phase, while in
the disordered phase macroscopic mean field vanishes in
the thermodynamic limit or fluctuates at a small level
in finite ensembles. This property can be used for a
coherent summation of the outputs of generators, which
being uncoupled have random phases and thus produce
a small output. Recently, this idea has been explored
for spin-torque oscillators (STOs) [4,5]. These nanoscale
spintronic devices generate microwave oscillations (in the
frequency range of several GHz), but the output is too
weak for applications. Thus, one has looked for different
schemes of coupling in order to synchronize the STOs. One
possibility is magnetodipolar coupling of vortex-based
STOs, explored in references [6–14]. Another popular
setup is electric coupling through the common microwave
current [15–23].

Studies of serial arrays of STOs have shown that they
are not easy to synchronize – quite often, instead of
desired coherent oscillations, complex asynchronous or
partially synchronous states are observed [24]. To over-
come this asynchrony, schemes with additional periodic
external field [25] or with delay in coupling [26] have been
suggested. One of the goals of this paper is to find out,
why synchrony is so vulnerable in STO arrays, contrary to
predictions of simple models based on the Kuramoto-type
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equations [14,16]. Below, we demonstrate that the rea-
son is in the homoclinic (gluing) bifurcation of the limit
cycles [18,27,28], close to which the transversal instability
of the synchronized state becomes enormous.

In the second part of the paper, we explore effect of
noise on the synchrony. We consider fluctuations in the
common microwave current, which does not directly vio-
late synchrony and can even facilitate it [29,30]. However,
presence of a common load makes the effect of noise
nontrivial. We demonstrate that under certain conditions
a strong enough common noise can lead to oscillation
death: a steady state which without noise is unstable,
becomes stabilized, so that the oscillations of magnetic
field disappear.

The layout is as follows: in Section 2 we briefly explain
the physical mechanisms and present the governing equa-
tions for the single spin-torque oscillator. Increase of the
current through this STO destabilizes its state of equilib-
rium and gives rise to periodic oscillations. In Section 3
we introduce three exemplary circuits with serially con-
nected identical STOs and discuss the onset of oscillations
in each circuit. In Section 4 we show that further evolu-
tion leads through the formation of homoclinic orbits in
the partial phase spaces of the oscillators. The transver-
sal multiplier, responsible for the stability of collective
oscillatory states, diverges at the homoclinic bifurcation,
resulting in extremely strong instability of synchronous
oscillations. Finally, in Section 5 we consider dynamics
under the influence of the noisy common current and
discuss the conditions under which the fluctuations of cur-
rent are able to suppress the oscillations and effectively
restabilize the state of equilibrium.
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2 Spin-torque oscillator: governing equations

In a serially connected circuit, interaction of spin-torque
oscillators takes place by means of the common elec-
tric current. In this way, instantaneous magnitude of the
current becomes an explicit parameter in dynamical equa-
tions of every oscillator. Since the current is common,
its value is obtained through the self-consistent closure
of the system. Details of the closure depend on the total
number of oscillators in the circuit, on possible hetero-
geneities in the ensemble and on the circuit configuration:
presence of capacitors, inductances and other elements.
However, parameterization in terms of the current can be
performed for every single unit separately; hence, many
relevant dynamical properties of the ensemble, including
the stability of the equilibrium states, can be derived from
the equations of motion of the solitary oscillator.

Consider a spin-torque oscillator in the circuit. In the
simplest variant, it comprises two magnetic layers sepa-
rated by the nonmagnetic spacer (Fig. 1). In the thicker
layer the magnetization is constant, whereas in the thin-
ner one it can freely rotate. When the electric current
passes through the thick magnetic layer, the electrons
interact with magnetic field and become spin-polarized.
Injected into a thin free magnetic layer, this polar-
ized current induces precession of magnetization. The
macroscopic description of this process is delivered by
the Landau–Lifshitz–Gilbert–Slonczewski magnetization
equation. Below, we largely follow the notation of [17].
For the unit vector m of magnetization in the free layer,
the LLGS equation reads

dm

dt
= −γm×Heff + αm× dm

dt
+ γβJm× (m×M0),

(1)

where the last term, as shown by Slonczewski [31], char-
acterizes the current-driven spin transfer. Here, α denotes
the Gilbert damping coefficient, γ is the gyromagnetic
ratio, whereas the effective Landau–Lifshitz field Heff con-
sists of three components: the external magnetic field Ha,
the uniaxial anisotropy field Hk directed along the axis
of easy magnetization, and the demagnetizing contribu-
tion Hdz. In the spin-transfer term, M0 is the constant
magnetization of the thick fixed layer, β characterizes the
material properties of the free layer, and finally (but most
importantly in our context), J is the instantaneous cur-
rent through the element. By means of this current, every
oscillator is coupled to the circuit and, thereby, to the rest
of the ensemble. Depending on its design, the circuit can
play a role of the passive load (purely resistive circuit)
or, in presence of capacitors and/or inductances, possess
its own degrees of freedom. Notably, J = J(t) is, in gen-
eral, time-dependent: spin-transfer changes back and forth
the magnetoresistance of the spin-torque oscillator (for
quantitative description of this process see [15]), therefore
equation (1), taken out of the context of the surrounding
circuit, is essentially non-autonomous.

On aligning the x- and z-axes of the coordinate system
with directions of, respectively, the external field Ha and
the demagnetization field Hdz, equation (1) turns into the

Fig. 1. Spin-torque oscillator in the circuit.

coupled equations for the components of m:

1

Γ

dmx

dt
= Hdzmymz + α

(
(Ha +Hkmx)(m2

y +m2
z)

+Hdzmxm
2
z)
)
− βJM0(m2

y +m2
z)

1

Γ

dmy

dt
= Hdzmz(αmymz −mx)−Hkmx(αmxmy +mz)

−Ha(αmxmy +mz) + βJM0(mxmy − αmz)

1

Γ

dmz

dt
= (Ha +Hkmx)(my − αmxmz)

−αHdz(m2
x +m2

y)mz + βJM0(mxmz + αmy),

(2)

where Γ abbreviates the factor γ/(1 + α2). Choice of the
coordinate system implies that the coefficientsHa andHdz

are positive; the value of Hk, without restrictions, can be
viewed as positive as well.

2.1 States of equilibrium and their stability

Since the vector m is orthogonal to the rhs of equation (1),
its length is conserved, while orientation can vary in time.
Accordingly, the partial phase space of a single spin-torque
oscillator is the two-dimensional spherical surface. For a
set of N such oscillators, the phase space is a direct sum
of N spheres, augmented by directions which correspond
to independent global variables of the circuit (e.g. volt-
age). A look at the equations (2) shows that a magnetic
moment m, if set parallel to the external field Ha, stays
constant and preserves orientation: if, originally, the off-
field components my and mz vanish identically, they will
not be excited, and precession of m would not arise. For
a single oscillator, there are two such states of equilib-
rium, characterized by mx = ±1. For the whole ensemble
this implies that every element which, in the course of
evolution, gets exactly parallel to Ha, remains in that
equilibrium position forever and does not contribute to
generation of the electromagnetic field. Notably, these
states of equilibrium exist independently from the circuit
composition and from the value of the current J through
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the stack of STO units: what is influenced by J , is their
stability1.

Consider, first, a single STO. There are two possibilities
for the equilibrium: m is oriented either along the external
field Ha or in the opposite direction. In the equations (2)
the terms containing the current J are proportional to
linear and quadratic terms in my, mz. Therefore, lin-
earization near the states with mx = ±1 (and, hence, the
stability of those states) depends only on the value of the
time-independent component of J . The equilibrium value
of J is dictated by the configuration of the circuit into
which the oscillators are included. Below, we will list a
few exemplary circuit configurations and explicitly express
the respective values of J through the value of the external
current I; however, until the end of the current section we
use the symbol J for parameterization of dynamics near
the equilibria.

To begin with, we characterize the state with mx = 1:
magnetization along the external field Ha. The character-
istic equation reads

λ2 + 2λ

(
α

(
Ha +Hk +

Hdz

2

)
− βJ

)
+ (1 + α2)

(
β2J2 + (Ha +Hk)(Ha +Hk +Hdz)

)
= 0

(3)

(here β denotes the product βM0, and the factor Γ is
absorbed in the time units).

Since the last term of equation (3) is positive, two eigen-
values cannot have opposite signs. If the current J is
absent or sufficiently weak, the equilibrium is stable; it
gets destabilized in the Hopf bifurcation at

J = JH =
α

β

(
Ha +Hk +

Hdz

2

)
. (4)

The second equilibrium, with magnetization directed
opposite to the external field Ha (mx = –1), looks
intuitively unstable. This is indeed true, as long as the cur-
rent J is not too large. The corresponding characteristic
equation is

λ2 + 2λ

(
βJ + α

(
Hk −Ha +

Hdz

2

))
+ (1 + α2)

(
β2J2 + (Hk −Ha)(Hk −Ha +Hdz)

)
= 0.

(5)

For J < Jst =
1

β

√
(Ha −Hk)(Hk −Ha +Hdz), the last

term is negative, and the steady state is a sad-
dle. At J = Jst the pitchfork bifurcation stabilizes this
equilibrium.

For generic values of Hk, Ha, Hdz the value Jst exceeds
JH by the order of 1/α. Since the Gilbert damping coeffi-
cient α is typically of the order of 10−2 [32], this ensures
a broad range of values of J in which one equilibrium
state is an unstable focus whereas another one is a saddle

1 Besides the states with mx = ±1, there may be other stationary
directions of m. Their existence, in contrast, depends on the param-
eters of the problem and on the circuit details; in examples known
to us, such states are unstable.

point, regardless of the design of the circuit into which
the STO elements are serially included. Within this range
of J , every unit in a set of identical spin-torque elements
performs oscillations, and later we will show that at least
in some part of the range those oscillations cannot be
synchronized.

In stack of N STO, each element can occupy any of two
possible equilibrium positions, hence there are altogether
2N collective states of equilibrium. Consider the config-
uration with N+ ≥ 0 oscillators having mx = 1 and the
remaining N− = N −N+ units with mx = −1. Eigenval-
ues that characterize growth/decay of small deviations for
the former oscillators obey equation (3); each of them is
N+-times degenerate. Eigenvalues of the oscillators with
mx = −1 are described by equation (5); their degree of
degeneracy equals N−. At J < Jst this collective equilib-
rium possesses N− real positive Jacobian eigenvalues, at
J > JH it possesses 2N+ complex eigenvalues with posi-
tive real parts. Therefore, collective “mixed” states with
part of the oscillators aligned with the field Ha whereas
the rest is directed strictly opposite to it (i.e. N+N− > 0),
are unstable at all values of the current J . As for the
“pure” states of equilibrium, the state in which all mx are
aligned with the field is stable (unstable) below (above)
JH ; the state with all magnetization vectors antiparallel
to the field is a saddle with N equal positive eigenvalues
for J < Jst and becomes stable beyond Jst.

For further progress, we need to know how the value
of J is related to the control parameters of the setup, i.e.
to the total current I that flows across the circuit: that
relation differs over different arrangements of the circuits.
Before discussing various circuits, is is convenient to lower
the order of dynamical system, using the conservation of
length of the vector m and proceeding from (mx,my,mz)
to spherical angles θ and ϕ: mx = sin θ cosϕ, my =
sin θ sinϕ, mz = cos θ. In the set of N spin-torque oscilla-
tors each element is characterized by its own instantaneous
angles θi and ϕi; for the ith unit, equation (2) becomes

dθi
dt

= (αHa − βJ) cos θi cosϕi

−(Ha + αβJ) sinϕi + αSi − Ti

sin θi
dϕi

dt
= −(αHa − βJ) sinϕi

−(Ha + αβJ) cosϕi cos θi − Si − αTi, (6)

where the symbols Si and Ti denote, respectively,
the combinations (Hdz + Hk cos2 ϕi) sin θi cos θi and
Hk sin θi sinϕi cosϕi [17]. Compared to (2), the time
units are rescaled by the factor Γ.

The set of N pairs of equations (6) is the main build-
ing block for all circuit configurations; particularities of
circuits enter these equations as soon as J is expressed
through the control parameters of the circuit.

3 Circuits with serially connected STOs:
equations of motion

Interaction within the set of STOs is mediated by the
time-dependent common current J(t) through the stack;
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variations of J(t) are caused by variable magnetoresis-
tance of the units. Spin transfer changes the instantaneous
resistance of the STO: decreases it, when magnetization
in the free layer is aligned with the external field, and
enhances it when the magnetization includes a compo-
nent, directed opposite to the field. As demonstrated
in [15], the value of magnetoresistance is a harmonic
function of the instantaneous angle φmM0

between the
magnetizations m and M0, adequately represented by
cosφmM0

. The lowest value of resistance, rp, is achieved in
the case when both magnetizations are parallel; the high-
est one, rap, corresponds to antiparallel magnetizations.
In our configuration, M0 is directed along the x-axis,
hence cosφmM0 = mx. Accordingly, the resistance of the
STO is

r(t) =
rp + rap

2

(
1− εmx(t)

)
,

where ε denotes the ratio (rap − rp)/(rap + rp), so that
0 < ε < 1.

Below, while treating the stacks of N serially con-
nected STOs, we assume that the units are identical: they
share the values of constants α, β, Ha, Hk, Hdz, ε. Due
to serial connection of the STOs, the x-component of
magnetization is effectively averaged over the stack:

r(t) =
rp + rap

2
(1− ε〈mx〉) (7)

with

〈mx〉 =
1

N

N∑
i

sin θi cosφi. (8)

In the collective state of equilibrium with individual vec-
tors of magnetizations of all STOs directed along (or
opposite to) the external field, 〈mx〉 = 1 (respectively,
〈mx〉 = −1). In the mixed equilibrium state, 〈mx〉 =
2N+/N − 1.

Consider three exemplary circuits with N serially con-
nected STOs where the governing parameter is the con-
stant external current I: the purely resistive load, a circuit
with capacitor parallel to the stack, and a circuit with the
LC element.

3.1 Resistive load

In this configuration, sketched in the left panel of Figure 2,
an ohmic load R is set parallel to the STO stack. The
common current through the STOs is

J(t) = I
R

R+ r(t)
=

I

1 + ρ(1− ε〈mx〉)
, (9)

where 〈mx〉 is given by (8) and ρ is the ratio of resistances:

ρ =
rp + rap

2R
.

I

I

R

}N STO units

(a)

J
C

I

I

}N STO units

(b)

J

L
C

I

I

}N STO units

(c)

J

Fig. 2. Serially connected STOs in exemplary circuits:
(a) resistive load, (b) circuit with a capacitor, (c) LC circuit.

On substituting (9) into equation (6), we obtain a set of
2N equations

dθi
dt

=

(
αHa −

I β

1 + ρ(1− ε〈mx〉)

)
cos θi cosϕi

−
(
Ha +

αI β

1 + ρ(1− ε〈mx〉)

)
sinϕi + αSi − Ti,

(10)

sin θi
dϕi

dt

= −
(
αHa −

I β

1 + ρ(1− ε〈mx〉)

)
sinϕi − Si − αTi

−
(
Ha +

αI β

1 + ρ(1− ε〈mx〉)

)
cosϕi cos θi

i = 1, . . . , N.

The resistive circuit is passive: there are no independent
variables besides 2N angular coordinates of the STOs.
Substituting the corresponding values of 〈mx〉 into (9)
renders equilibrium value of the current J :

J =
I

1 + ρ(1± ε)
,

with the sign before ε in the denominator being taken
opposite to the sign of 〈mx〉. By inserting this expression
into equations (3–5), we relate the eigenvalues of the equi-
libria and the threshold IH of the Hopf bifurcation to the
external current I.

3.2 Circuit with a capacitor

Introduction of a capacitor parallel to the stack (central
panel of Fig. 2) raises the order of the dynamical system2.
In this configuration the current J through the stack is
related to the external current I by

J(t) = I − C Γ
dV

dt
,

where C denotes the capacitance and V is the voltage dif-
ference on the stack; the factor Γ translates the derivative
into the rescaled time units of equations (6). On combining
this with V = r(t) J(t) and introducing the dimensionless

2 Due to the ohmic resistance of the STOs, below this configura-
tion is referred to as the “RC-circuit”.
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voltage u =
2V

I (rp + rap)
, equations (6) turn into

dθi
dt

=

(
αHa −

βIu

(1− ε〈mx〉)

)
cos θi cosϕi

−
(
Ha +

αβIu

(1− ε〈mx〉)

)
sinϕi + αSi − Ti

(11)

sin θi
dϕi

dt
= −

(
αHa −

βIu

(1− ε〈mx〉)

)
sinϕi − Si − αTi

−
(
Ha +

αβIu

(1− ε〈mx〉)

)
cosϕi cos θi,

i = 1, . . . , N.

with additional dynamical relation

du

dt
= ω

(
1− u

(1− ε〈mx〉)

)
, (12)

where ω denotes the parameter combination (inverse
characteristic time)

ω =
2(1 + α2)

γ (rp + rap)C
. (13)

Altogether, dynamics is governed by 2N + 1 equations.
Since in this circuit the segment parallel to the stack

bears no ohmic resistance, for every steady state the cur-
rent J through the stack is the whole external current I.
Therefore, while determining stability and eigenvalues of
the equilibria, the symbol J in equations (3)–(5), should
be substituted by I.

3.3 LC-circuit

Including the inductance L and capacitance C parallel to
the stack of STOs (right panel of Fig. 2) turns the circuit
equation into

LCΓ2 d
2V

dt2
+ V = r(t) J(t) = r(t)

(
I − C Γ

dV

dt

)
. (14)

On combining (6) with (14), we arrive at the system of
(2N + 2) ODEs [20]:

dθi
dt

= cos θi cosϕi (αHa − βI(1− w))

− sinϕi (Ha + αβI(1− w)) + αSi − Ti

sin θi
dϕi

dt
= − sinϕi (αHa − βI(1− w))− Si − αTi
− cosϕi cos θi (Ha + αβI(1− w))

du

dt
= ω w

dw

dt
=

Ω2

ω

(
(1− w) (1− ε〈mx〉) − u

)
, (15)

Table 1. Values of parameters, used in simulations.

Hdz Hk Ha α β ε ρ ω Ω

1.6 0.05 0.2 0.01 10/3 0.3 1 1 1.5

where the variable u, like above in equation (12), is

the rescaled voltage V , the variable w =
C Γ

I

dV

dt
is the

rescaled time derivative of V , the parameter ω is defined
in (13), and the additional characteristics of the circuit is
its eigenfrequency Ω (expressed in units of rescaled time):

Ω =
1

Γ
√
LC

.

For this configuration, like in the previous case, J(t) = I−
C Γ dV/dt, therefore J in the characteristic equations (3)
and (5) should be directly substituted by external current
I; in particular, the threshold of the Hopf bifurcation IH
equals to (4).

Further configurations of the circuit can be treated
along the same lines: combination of Kirchhof equations
that describe the circuit dynamics with a set (6) of 2N
equations for individual oscillators.

4 From the Andronov-Hopf bifurcation
to homoclinics and beyond

In absence of the external current I there is no precession
of magnetic field: each STO is at the stable equilibrium
with mx = +1. For a single unit, increase of I across
the bifurcational value (4) leads to the onset of periodic
oscillations. Further analysis relies on numerical integra-
tion. The parameter values, employed for simulations, are
summarized in Table 1.

In all three exemplary setups the same bifurcation sce-
nario takes place: when the current I is increased, the
oscillation grows in amplitude and undergoes the homo-
clinic bifurcation at which it becomes bi-asymptotic to the
saddle equilibrium with mx = −1. Due to the symmetry
of the governing equation (2) with respect to simultane-
ous change of sign of the off-field components my and mz,
homoclinic orbits exist in pairs, therefore a periodic solu-
tion does not disappear at homoclinics; instead, periodic
states recombine in the course of the so-called “glu-
ing bifurcation” [33]3. Transformation of the attracting
trajectory in that bifurcation is sketched in Figure 3.

Divergence of period T at the bifurcational parameter
value Ihom, shown in Figure 4, follows the logarithmic
law: T ∼ − log |I − Ihom|. The prefactors on different sides
from Ihom differ due to the change of the orbit shape at
the bifurcation [28]: As seen in Figures 3b and 3c, the
cycle of oscillation below Ihom is unique and includes two
passages near the saddle point. In contrast, beyond the
critical value there are two symmetric orbits, each of them

3 A technical condition that guarantees stability of recombin-
ing closed orbits is the negative sum of two leading eigenvalues of
Jacobian at the saddle equilibrium; this holds in the case of the
considered STOs [28].
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Fig. 3. Recombination of attracting orbits in the gluing bifur-
cation. Shape of attracting trajectories in the plane (a) and
spherical (b, c) projections. Dashed curves: orbit segments on
the reverse side of the sphere. (b) Unique limit cycle before the
gluing; (c) two symmetric limit cycles after the gluing.
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Fig. 4. Period of oscillations for an individual STO: (a) resis-
tive load, (b) RC circuit, (c) LC circuit. Common parameter
values: Hdz = 1.6, Hk = 0.05, Ha = 0.2, α = 0.01, β = 10/3,
ε = 0.3. Resistive: ρ = 1; RC and LC: ω = 1; LC: Ω = 1.5.

containing just one passage near the saddle per rotation
period.

For an isolated STO, the periodic orbit is stable
throughout the whole parameter range of its existence.
For an ensemble of STOs, the synchronous periodic state
in which all units share the instantaneous values of θ
and ϕ, is obviously a solution as well; however, it may
be unstable with respect to perturbations that disturb
the coincidence of coordinates in the oscillating cluster.
In this situation, stability of the periodic state can be
characterized in terms of the so-called “evaporation mul-
tiplier” µe that characterizes stability of the synchronous
cluster against “evaporation” of its constituents, by quan-
tifying within a period of oscillations the growth factor
of the distance between the cluster and an infinitesimally
displaced unit [34]. The value of µe is recovered from the
solution on the time interval (0, T ) of the equation in nor-
mal variations near the synchronous trajectory; in those
linearized equations, the contribution of perturbed unit

1

10
4

10
8

10
12

 0  40  80

|µ
e
|

period T

(d)

e
xp

(λ
+

T
)

1

10
4

10
8

10
12

10
16

 0  40  80  120

µ
e

period T

(e)

e
xp

(λ
+

T
)

1

10
4

10
8

10
12

 0  40  80

µ
e

period T

(f)

e
xp

(λ
+

T
)

1

10
4

10
8

10
12

 0.01  0.02  0.03

| µ
e
 |

current I

(a)

1

10
4

10
8

10
12

10
16

 0.005  0.01

µ
e

current I

(b)

1

10
4

10
8

10
12

 0.005  0.01

µ
e

current I

(c)

Fig. 5. Evaporation multiplier for the synchronous periodic
oscillation. Left column (a, d): resistive load, middle column
(b, e): RC circuit, right column (c, f): LC circuit. Parame-
ter values: see Figure 4. In the panel (a) the dashed part of
the curve (to the right from the peak) corresponds to nega-
tive values of µe. In the bottom row, solid and dashed curves
correspond, respectively, to the current ranges below Ihom and
above Ihom; dotted straight lines show plots of exp(λ+T ).

into the global field is neglected. Within this setup, µe is
the leading multiplier of the monodromy matrix (in our
case, with each unit having two coordinates θi and ϕi, this
is a 2 × 2 matrix). If |µe| < 1, the cluster is stable with
respect to splitting4.

Numerically recovered dependence µe(I) for exemplary
configurations is plotted in Figure 5. The common feature
for all circuits is apparent strong divergence of µe(I) at
I = Ihom. Otherwise, stability differs for different setups.
For the resistive load (curve in Fig. 5a) the oscillating clus-
ter becomes unstable with respect to splitting immediately
after its birth in the Andronov–Hopf bifurcation (recall
that for a solitary unit the periodic orbit stays asymp-
totically stable); divergence at I = Ihom is followed by the
parameter interval in which µe is negative, and, somewhat
later, by stabilization of synchrony (the multiplier enters
the unit circle at µe = −1). The clusters in RC and LC
contours, in contrast, are stable near the birth of the peri-
odic solution, lose stability shortly before the homoclinic
bifurcation and remain (weakly) unstable for all values of
I beyond the bifurcation. The most remarkable effect is
the extremely sharp growth of µe(I) for periodic solutions
close to homoclinicity; there, the distance in the phase
space between the cluster and the detached unit grows

4 This inequality guarantees return to the cluster of sufficiently
weakly displaced units but does not imply global attractivity of the
cluster: according to numerics, even when the inequality is fulfilled,
setting the STOs at random initial conditions almost never ends up
with convergence of all oscillators to the synchronous limit cycle [20].

https://epjb.epj.org/


Eur. Phys. J. B (2019) 92: 160 Page 7 of 12

by many orders of magnitude within a single turn in the
phase space. This effectively prohibits existence of stable
synchronous oscillations in the adjacent parameter range.

The singularity of the evaporation multiplier at homo-
clinicity is enrooted in the divergence of period. Con-
sider linearization of the flow near the synchronous
time-dependent trajectory. To compute µe, the ini-
tial disturbance x(0) should be set on the appropriate
eigenvector of the monodromy matrix; then logµe =

log
(
‖x(T )‖/‖x(0)‖

)
≈
∫ T

0
λ(t)dt where λ(t) is the lead-

ing eigenvalue of the instantaneous Jacobian matrix. Near
homoclinicity, the system spends the prevalent propor-
tion of time in the very slow motion across the vicinity of
the saddle point where λ(t) is virtually indistinguishable
from the positive eigenvalue λ+ at the saddle: the larger
root of equation (5). Therefore the integral (and with it,
the evaporation multiplier) is dominated by exp(λ+T ). In
Figure 5 where the evaporation multiplier is plotted versus
the period of the orbit, the dependence µe ∼ exp(λ+T ) is
doubtless. Notably, the prefactor before the exponent at
the pre-homoclinic branch is the squared prefactor at the
post-homoclinic branch (cf. its double distance from the
dotted line in the logarithmic vertical scale of the bottom
plots); this owes to the fact that the periodic orbit tra-
verses the region, non-adjacent to the saddle, twice below
Ihom but once above Ihom.

The exponential growth of the evaporation multiplier
near homoclinicity is generic: at the critical parameter
value, local dynamics near the synchronous limit cycle
occurs in the subspace that is tangential to the plane
in which the equilibrium, participating in the homoclinic
bifurcation, has its local unstable manifold. During the
long epoch in which the motion is directed along that
manifold, generic distances grow as exp(λ+t). The same
arguments should ensure the instability of synchronous
nearly homoclinic one-cluster oscillation in every other
setup with generic global coupling of units5.

In the situations that lack the symmetries ensuring the
gluing of periodic orbits at the saddle point, the “usual”
homoclinic bifurcation takes place, with periodic state
existing only on one side of the bifurcation parameter
value. In accordance with the above reasoning, this col-
lective periodic solution should lose stability with respect
to splitting of the synchronous cluster well before the
homoclinicity.

Remarkably, destabilization of synchronous states close
to homoclinic trajectories has a counterpart in the dynam-
ics of distributed systems. In many translationally invari-
ant spatial systems governed by partial differential equa-
tions, evolution of spatially homogeneous solutions is
finite-dimensional. Certain types of attractors for such

5 The effect can be reversed with the help of the specially tai-
lored non-generic scheme of coupling to the global field: if the
coupling involves only the coordinates corresponding to the local
stable manifold of the saddle, the relevant eigenvalue becomes neg-
ative. Accordingly, the evaporation multiplier exponentially shrinks
as a function of the growing period T , and at the bifurcation parame-
ter value the synchronous cluster becomes superstable! In the current
setup of serially coupled STOs, however, this seems hardly feasible.
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Fig. 6. Snapshots of collective states in the LC circuit with
N = 100 STOs. Filled red circles: positions of individual oscilla-
tors. Filled blue circles: clusters of oscillators (numbers indicate
respective populations.) (a) Periodic state with two clusters;
(b) disperse state where all STOs are disjoint; (c) chimera-like
state, combining clusters with isolated oscillators.

finite-dimensional dynamics, including the homoclinic tra-
jectories and temporally periodic solutions close to homo-
clinic orbits, were shown to be generically unstable with
respect to spatial perturbations in the form of longwave
modulation [35,36]. The situation discussed in the present
manuscript is reminiscent of that effect: here, the ensem-
ble of finite size replaces the continuum that is present
in the PDE context. In both cases, the uniform (syn-
chronous) dynamics is described by a low-dimensional
set of equations that in appropriate parameter ranges
possess attracting periodic solutions close to the homo-
clinic trajectories, and in both cases these regimes yield
to perturbations that disturb the uniformity.

Numerical experiments with the STO ensembles beyond
the threshold values of constant current I in different cir-
cuit configurations disclose, mostly, complicated dynam-
ical states with various degrees of asynchrony [20,24]; in
Figure 6 we exemplify a few of them by projecting all mag-
netization vectors onto the same spherical surface. Within
this representation, in the course of temporal evolution
the instantaneous states of the units typically move along
narrow ring-shape bands.

5 Action of common noise

From the point of view of applications, a reasonable way
to interfere into dynamics is to introduce temporal vari-
ations for the external current I. Since the same I(t) is
perceived by all STO units, it can be viewed as a common
time-dependent signal which affects the whole ensemble.
Below we restrict ourselves to the case of modulation with
white Gaussian noise: I(t) = I0

(
1 +
√

2D ξ(t)
)

; in this

parameterization, I0 renders the time-average value of the
current, whereas D is the intensity of the δ-correlated
Gaussian random variable ξ(t).

5.1 Governing equations

5.1.1 Resistive case

We begin with the stack of STO with resistive load.
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On substituting the expression for the modulated cur-
rent into equation (10), we arrive at the set

dθi
dt

=

(
αHa −

βI0(1 +
√

2D ξ(t))

1 + ρ(1− ε〈mx〉)

)
cos θi cosϕi

−

(
Ha +

αβI0(1 +
√

2Dξ(t))

1 + ρ(1− ε〈mx〉)

)
sinϕi + αSi − Ti,

(16)

sin θi
dϕi

dt

= −

(
αHa −

βI0(1 +
√

2Dξ(t))

1 + ρ(1− ε〈mx〉)

)
sinϕi − Si − αTi

−

(
Ha +

αβI0(1 +
√

2D ξ(t))

1 + ρ(1− ε〈mx〉)

)
cosϕi cos θi,

i = 1, . . . , N.

The random variable ξ(t) enters these equations at 4N
places, assuming the same value in all of them.

5.1.2 STO stack with RC circuit

In the circuit with the capacitor, introduction of the mod-
ulation of the current does not change the 2N governing
equations (11) for N individual spin-torque oscillators (up
to replacing the symbol I by constant I0). The only mod-
ification concerns the equation for the voltage (12) which
now reads

du

dt
= ω

(
1 +
√

2D ξ(t)− u

(1− ε〈mx〉)

)
, (17)

with D, like above, being the intensity of the Gaussian
white noise ξ(t). Accordingly, the common noise directly
influences dynamics only via the global variable u.

5.1.3 STO stack with LC circuit

For time-dependent current I(t) = I0

(
1 +
√

2Dξ(t)
)

, the

ensemble is governed by equations

dθi
dt

= U(t) cos θi cosϕi −W (t) sinϕi + αSi − Ti

sin θi
dϕi

dt
= −U(t) sinϕi −W (t) cosϕi cos θi − Si − αTi

du

dt
= ω w

dw

dt
=

Ω2

ω

(
(1 +

√
2Dξ(t)− w)

×(1− ε

N

∑
j

sin θj cosϕj)− u
)
, (18)

with explicit functions of time
U(t) = αHa − β(1− w)I0

(
1 +
√

2Dξ(t)
)
,

W (t) = Ha + α(1− w)βI0

(
1 +
√

2Dξ(t)
)
.
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Fig. 7. Intermittent alignment to the external magnetic
field at high intensities of common noise. I0 = 0.01, D = 40.
(a) Circuit with purely resistive load, ρ= 1. (b) Circuit with
RC load, ω= 1. Other parameter values: see Figure 4.

Thereby, in the system of equations the same value of the
random variable ξ is employed at 4N + 1 places.

5.2 Collective dynamics in presence of common noise:
phenomenology

Ensemble dynamics, recovered at D > 0 by numerical
integration of the stochastic equations of motion for
N = 100 and N = 200 STOs at the values of average
current beyond the threshold of the Hopf bifurcation,
reminds, in most of the cases, disperse states in the deter-
ministic setup. Neither durable states with synchronous
oscillations of all or, at least, of the bulk of the ele-
ments, nor persistent clusters were observed. In all studied
types of circuits, simulations at low values of D feature
asynchronous dynamics of individual STOs; instantaneous
states of magnetization vectors form bands on the surface
of the unit sphere; when the noise intensity is raised, the
bands become wider, and now and then separate units
temporarily leave the bands, performing large excursions
over the sphere. This behavior seems to be largely insensi-
tive to the initial conditions: the same kind of dynamical
states evolves from the narrow distributions near partic-
ular points of the sphere and from random homogeneous
scattering over the spherical surface.

5.2.1 Serial stacks of STO with resistive and RC load:
intermittent alignment with the external field at high
intensity of common noise

At very large amplitudes of noise, D � 1, temporal evolu-
tion in the stacks with purely resistive load and with the
RC load displays a certain kind of intermittency. From
time to time, all magnetization vectors align themselves
to the permanent external field; on the surface of the
sphere this is seen as temporary contraction of the ensem-
ble to the equilibrium point with mx = 1. In the plots of
mx(t) (Fig. 7), these stages are represented by horizontal
plateaus.

Recall that in this range of values of the average cur-
rent, the state of magnetization along the external field
is unstable. The plateaus at mx = 1 owe to repetitive
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Fig. 8. Snapshots of collective states in the LC circuit with
N = 100 STOs at different time values. Filled red circles:
positions of individual oscillators.

-0.5

0

 0.5

0  200  400  600

<
m

y
>

, 
<

m
z
>

t

<my>

<mz>

10-3

10-2

10-1

0  200  400  600

<
m

y
>

, 
<

m
z
>2

2

t

<my>
2

<mz>
2

Fig. 9. Temporal evolution of the mean off-field components
at I = 0.01, D = 0.5 with N = 100. Other parameter values:
see Figure 4c.

macroscopic segments of time in which the local running
average over ξ(t) is sufficiently negative, so that the real
parts of the instantaneous leading Jacobian eigenvalues at
the steady state are temporarily driven deep into the neg-
ative domain. This ensures short-term sustainment of the
unstable equilibrium.

5.2.2 Serial stacks of STO with LC load: ensemble
contracts to a point

In the case of the STO stack included into the LC circuit,
alignment with the external field becomes permanent. In
the range of moderate noise values, magnetic moments of
all STOs, regardless of the ensemble size and of their initial
orientation, gradually converge to the state with mx = 1:
all of them become parallel to the external magnetic field.
For the ensemble of 100 STO units, subsequent stages of
the evolution on the unit sphere are shown in Figure 8.

Instantaneous individual magnetizations, initially ran-
domly scattered over large areas of the sphere, gradually
evolve into the broad fuzzy (and non-uniformly populated)
ring-shaped band revolving around the equilibrium con-
figuration mx = 1; as time goes on, the band contracts
and finally shrinks to a point. Convergence to mx = 1
implies gradual vanishing of the off-field components my

and mz. To visualize this process, we plot in the left panel
of Figure 9 temporal dependencies for the averaged values
〈my〉 and 〈mz〉. In the course of time, irregular evolution of
off-field averages is replaced by ordered oscillatory decay.
Since smallness of 〈my〉 and 〈mz〉 does not exclude ring-
like configurations of units, we present in the right panel
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rrent. Transversal Lyapunov exponent as a function of average
current I0 at fixed noise intensity D (left panel) and as a
function of D at fixed I0 (right panel). Parameter values: see
Figure 4a.

of Figure 9 the evolution of mean squared characteristics
〈m2

y〉 and 〈m2
z〉.

In the deterministic setup this range of the cur-
rent I corresponds to the unstable collective equilibrium
with mx = 1 and to angular precession of the magnetic
moment. We see that in the LC configuration of the circuit
the action of sufficiently strong common noise is able to
stabilize the equilibrium and to suppress precession com-
pletely. Notably, this phenomenon bears the threshold
character: for it to occur, the intensity of noise should
exceed the certain level.

5.3 Collective dynamics in presence of common noise:
local analysis

Since the same noise acts upon all identical units, the sys-
tem of stochastic equations admits a synchronous solution
in which the instantaneous values of all θi as well as of
all ϕi coincide. Stability of this solution is characterized
in terms of the transversal Lyapunov exponent: the aver-
age growth rate of disturbances, splitting the synchronous
dynamics. Below we study dependence of this character-
istics on the average current I0 and noise intensity G for
all considered types of STO circuits.

5.3.1 STO with resistive and RC load: absence
of noise-induced large-scale stabilization

We start with the purely resistive circuit. Dependence of
the transversal Lyapunov exponent on I0 and D is shown
in Figure 10.

Recall that in the deterministic case D= 0, the evap-
oration multiplier µe of the periodic solution diverges at
the value of I corresponding to homoclinicity. As a conse-
quence, the transverse Lyapunov exponent λtr, that for a
closed orbit with period T equals log(|µe|)/T , tends to the
largest eigenvalue of the Jacobian matrix at the equilib-
rium. In presence of noise, the system spends less time in
the vicinity of the equilibrium where the instability rates
are especially high; this results in broadening and soft-
ening of the peak in the dependence of λtr on I0. This
tendency is apparent in the left panel of Figure 10: the
higher the noise intensity D, the broader the maximum
of λtr. Over large intervals of I0 the weak noise shifts λtr
downwards; this results in ranges of I0 with mildly nega-
tive transversal Lyapunov exponent. The effect, however,
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remains local in the phase space and does not seem
to influence global dynamics of the STO ensembles: as
already mentioned, unless the initial distribution of oscil-
lators in the ensemble is extremely narrow, simulations
show no convergence to the synchronous 1-cluster solu-
tion. The stronger noise, exemplified in Figure 10 by the
curve for D = 10−1, raises the value of λtr everywhere
outside the immediate vicinity of the homoclinic singular-
ity, and amplifies the instability of the synchronous state.
In the right panel the same transversal Lyapunov expo-
nent is plotted as a function of noise intensity at several
fixed values of the average current I0; except the narrow
region adjoining the deterministic case, λtr appears to be
a roughly monotonically growing function of D.

Proceeding to the case of the STO stack with the RC
load (Fig. 11), we observe that here, as well, introduction
of the noisy modulation of the common current broad-
ens and softens the peak of the transversal Lyapunov
exponent, rendering λtr, over the large parameter ranges,
positive. Summarizing, in neither of these two circuit
configurations does the common noise facilitate synchrony.

5.3.2 STO in the LC circuit: noise-induced oscillation
death

The situation in presence of the LC load is qualitatively
different from the discussed cases. Figure 12 shows the val-
ues of the transversal Lyapunov exponent computed for
different combinations of the average current I0 and noise
intensity D. As seen in the left panel, like in the previously
discussed cases, the action of noise softens and widens the
maximum of the transversal Lyapunov exponent. There is,
however, an apparent difference: the maximum not only
becomes broader, but, in contrast to the cases of resistive
load or the circuit with a capacitor, it gets shifted from
the place of homoclinic bifurcation in the deterministic
system towards higher values of I0. At sufficiently large
noise intensity D, the transversal exponent λtr stays neg-
ative in the broad range of I0. The right panel of Figure 12
presents the same results from the different perspective;
variation of noise intensity at several fixed values of I0. In
the right half of the plotted range of D, the dependence
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of λtr on D becomes virtually linear, with negative slope.
Remarkably, within numerical accuracy all curves λtr(D)
intersect in the same point.

Recall that for moderate intensity of noise (in the right
panel of Figure 12 this corresponds to D > 0.4) simula-
tions of ensemble of noise-driven STOs in the LC circuit
have demonstrated trapping of all oscillators by the equi-
librium state. In the context in which all trajectories
eventually end up at the equilibrium, the Lyapunov expo-
nents turn into the real parts of the eigenvalues of the
Jacobian at that equilibrium. The real part of two leading
eigenvalues equals

λ = −α
(
Ha +Hk +

Hdz

2

)
+ β (1− w(t))I(t)

= −α
(
Ha +Hk +

Hdz

2

)
+βI0

(
1− w(t)− ξ(t)w(t)

√
2D
)
,

where the stochastic variable w(t) (the rescaled time
derivative of the voltage u), is governed by the last of
equation (18), and the overline denotes averaging over
time.

To estimate ξ(t)w(t) we utilize the fact that the equi-
librium value of u equals 1 − ε and assume that near
the equilibrium the variable w(t) obeys the Gaussian
distribution centered at zero. In this way we derive

ξ(t)w(t) =
Ω2(1− ε)

2ω

√
2D

and, finally, arrive at

λ = β(I0 − IH)− Ω2(1− ε)β I0
ω

D

= β

(
I0 −

α

β

(
Hk +Ha +

Hdz

2

))
− Ω2(1− ε)β I0

ω
D.

(19)

Notably, this expression involves, without exception, all
parameters of the stochastic differential equations (18).
The last term (recall that ε < 1 by definition) shows that
the noise always lowers the effective value of λ.

https://epjb.epj.org/


Eur. Phys. J. B (2019) 92: 160 Page 11 of 12

 0

 0.1

 0.2

 0.3

 0.4

 0.002  0.004  0.006  0.008

D

I
0

I
H

N=100

N=200

Fig. 13. Stabilization border for N = 100 and N = 200. Solid
line: theoretical prediction (20). Crosses and circles: numeri-
cally determined threshold values of D for the ensembles of,
respectively, 100 and 200 STOs. Gray background: region of
stability for the equilibrium with mx = 1.

For I0 > IH , the Lyapunov exponent of the equilibrium
in the absence of noise is positive. Stochastic trajecto-
ries only seldom (if at all) visit the neighborhood of the
equilibrium, therefore the value of this exponent stays
local, dynamically irrelevant and is not related to the actu-
ally observed value of the leading Lyapunov exponent for
generic non-stationary trajectories. Increase of the noise
intensity weakens the instability, leading to the gradual
decline of λ. Finally, on crossing the critical value

Dtrap =
ω

Ω2(1− ε)

(
1− IH

I0

)
(20)

the equilibrium gets stabilized and turns into the global
attractor. Henceforth, linearization in its vicinity domi-
nates also the global Lyapunov exponent and becomes
well visible at its plots. Remarkably, the value of Dtrap is
a monotonically growing bounded function of the average

current I0: noise with intensityD > Dg =
ω

Ω2(1− ε)
guar-

antees trapping of all oscillators at arbitrary values of the
current (under employed values of the circuit parameters,
Dg ≈ 0.635).

The estimate (19) turns out to be rather accurate:
in all our simulations for D > Dtrap, the relative dis-
crepancy between the theoretical prediction (19) and
numerically computed value of the Lyapunov exponent
of the stochastic trajectory never exceeded 0.8%.

Linear dependence on the noise intensity D explains
both the linear character of the curves in the right part of
Figure 12 and the fact of intersection of all curves in the
right panel of Figure 12 in the same point6.

On the parameter plane spanned by the average cur-
rent I0 and the noise intensity D the region of trapping,
adjoining the region in which the equilibrium is stable,
lies to the right from Ihopf (Fig. 13); its lower boundary
branches from zero and grows in the direction of Dg at
larger values of I0.

Notably, this stabilization of the equilibrium by com-
mon noise with subsequent trapping of the ensemble can

6 All curves λ(D) = c + I0(a − bD) with constant a, b, c and
arbitrary I0 intersect at D = a/b.

hardly be called a collective phenomenon: the ensemble
size N enters neither equation (19) for the Lyapunov expo-
nent nor the expression (20) for the critical noise intensity.
A single spin-torque rotator in the LC circuit with I0 > IH
would be attracted to the equilibrium mx = 1 as well,
whenever the noise intensity D exceeds the threshold
(20). Numerically, we estimated the threshold for ensem-
bles of different sizes, by maximizing over hundreds of
realizations the values of D at which macroscopic parts
of the ensemble were still not trapped after t = 105.
These critical values display practically no variation when
the ensemble size is doubled (cf. crosses and circles
in Fig. 13). Only the relaxation time, required for trap-
ping of the last ensemble element shows a slight increase
for the larger N .

5.4 Discussion

A natural question is: why does the LC circuit under
common noise enable complete trapping of the ensem-
ble whereas the other configurations of the circuit fail
to feature durable stabilization of the equilibrium? The
explanation is given by the way in which the individual
and the collective (if present) variables are affected by the
common noise. In the circuit with purely resistive load,
governing equations for the angular variables explicitly
include the random term ξ(t). Although the instantaneous
value of the leading equilibrium eigenvalue contains terms
proportional to ξ(t), in the long run these terms average
out and bear no influence on the overall value λ of the
Lyapunov exponent (although, as we have seen, within
finite time windows this value can stay negative, featuring
a kind of intermittent stabilization). In contrast, equations
for the angular variables in the stochastic circuit with the
capacitor do not contain random terms; there, noise is
explicitly present only in the governing equation for the
global (collective) variable u (rescaled voltage). This pres-
ence, as well, adds the term ∼ξ(t) to the expression for the
instantaneous eigenvalue, but this term again averages out
and does not influence λ. Finally, dynamical description
of the circuit with the LC load involves noisy terms both
in the angular variables and in one of the global variables.
As a result, the expression for the instantaneous leading
eigenvalue of the Jacobian (cf. Eq. (19)) contains the prod-
uct of two random terms, and the non-zero average value
of this product serves for the systematic noise-induced
shift of λ.

6 Conclusion

The main goal of this paper was to focus on peculiari-
ties of the STOs that strongly affect their synchronization
properties. We show that the gluing bifurcation implies
divergence of the evaporation multiplier, responsible for
stability of the synchronized cluster. This phenomenon
is intrinsic to the STO dynamics and cannot be miti-
gated by variations of the load; the only way to avoid
the instability appears to select external control parame-
ters to be far away from the homoclinic transition. We also
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analyzed another important factor influencing the dynam-
ics of STOs, namely fluctuations of the current through
the array. Here we observed a novel feature of suppression
of oscillations, which can be interpreted as noise-induced
oscillation death. Here a distribution of the external noisy
input between the stack of STOs and the parallel load
is important: only an LC load leads to an effective shift
of the Hopf bifurcation and eventual stabilization of the
steady state by noise.
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