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Blinking chimeras in globally coupled rotators
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ABSTRACT

In globally coupled ensembles of identical oscillators so-called chimera states can be observed. The chimera state is a symmetry-broken regime,
where a subset of oscillators forms a cluster, a synchronized population, while the rest of the system remains a collection of nonsynchronized,
scattered units. We describe here a blinking chimera regime in an ensemble of seven globally coupled rotators (Kuramoto oscillators with
inertia). It is characterized by a death-birth process, where a long-term stable cluster of four oscillators suddenly dissolves and is very quickly
reborn with a new reshu�ed con�guration. We identify three di�erent kinds of rare blinking events and give a quantitative characterization by
applying stability analysis to the long-lived chaotic state and to the short-lived regular regimes that arise when the cluster dissolves.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5105367

Coupled oscillators can synchronize if the coupling is attractive
or desynchronize if the coupling is repulsive. This basic e�ect
is captured by the famous Kuramoto-Sakaguchi model of phase
oscillators. However, if inertia is included, i.e., the units are rota-
tors,more complex regimes in between synchrony and asynchrony
can be observed. One such regime is a chimera pattern, where
some rotators form a fully synchronous perfect cluster, while the
others are nonsynchronized and all mutually di�erent. In this
paper, we report one such chimera characterized by an interest-
ing additional long-timedynamics.We call it a “blinking chimera”
because every once in a while an event occurs where the cluster
opens up and quickly closes into a new reorganized composition.
This event takes place on a time scale much shorter than that of
the very long chaotic transient, that is, the chimera pattern—the
system “blinks.” We describe in detail how the exchange between
the cluster and desynchronized units takes place.

I. INTRODUCTION

In the last few years, coupled oscillators proved to exhibit a
very rich variety of regimes, ranging from perfect synchronization
to extremely homogeneous asynchrony. Themost intriguing regimes
are the intermediate ones, especially when the oscillators sponta-
neously split into distinct groups/clusters. Among them, chimera
states are currently attracting a large interest. They are character-
ized by the coexistence of synchronized and desynchronized groups
of identical oscillators that, in spite of their indistinguishability, do

not all behave in the same way. The �rst chimera was discovered
by Kuramoto and Battogtokh1 in a one-dimensional medium of
nonlocally coupled phase oscillators. Since then, many setups have

been found, where symmetry is broken, giving rise to the simulta-

neous presence of synchronous and asynchronous subsets (see the

reviews in Ref. 2 for both theoretical analyses and the description of

experimental setups).

Furthermore, examples of chimera regimes within rather small
sets of oscillators have been reported.3 Recent studies have revealed

that chimera states can be quite complex. In particular, in breathing

chimeras,4–7 some oscillators join and leave the synchronous domain
because of oscillations of the governing order parameter.

In Secs. II–V, we report on a di�erent steady nonstationary
chimera. We describe a situation where a well-de�ned chimera per-
sists for a very long time and is suddenly destroyed; shortly afterward,
a new reshu�ed and long-lived chimera reforms. Since the reshuf-
�ing events are rather short compared to the long chimera stages,
we call this state “blinking chimera.” Noteworthy, in the dynam-
ics of networks, the notion of blinking systems is well established.8,9

There, switchings in the coupling and/or network topology are
imposed according to a prede�ned external protocol—for example,
periodic or random blinking. In our case, the blinking events are
not predescribed, but appear spontaneously due to the dynamical
rules.

The paper is organized as follows: we introduce the model
in Sec. II and describe the phenomenology of blinking events in
Sec. III. Next, we develop a quantitative characterization of blinking
in Sec. IV. We conclude with a discussion in Sec. V.
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II. THE BASIC MODEL

The Kuramoto-Sakaguchi model (KSmodel from now) of glob-
ally coupled phase oscillators is a widely used system to study syn-
chronization phenomena, for reviews, see Refs. 10–12. For identical
units, the KS model is exactly solvable,12–14 yielding either complete
synchronization (if the coupling is attractive) or an asynchronous
state with vanishing order parameter (if the coupling is repulsive).
The exact solution shows that chimera states, characterized by the
coexistence of fully synchronous (identical) oscillators with asyn-
chronous units, cannot arise.

Integrability breaks up if the original model is perturbed. One
popular extension of the KS model consists in including the e�ects
of inertia on the oscillating units, i.e., in replacing phase oscillators
with rotators,15–23

αφ̈i + φ̇i =
1

N

N
∑

j=1

sin
(

φj − φi − β
)

. (1)

Here, φi is the instantaneous phase of the i-th rotator, N is their
number, β is a constant phase shift (sometimes called “frustration”
in the literature), and, �nally, α is the (dimensionless) mass of the
rotators. A constant torque acts on all rotators and the equations
are written in the reference frame rotating with the corresponding
constant frequency (thus, the torque does not enter).

At this point, it is instructive to discuss an essential di�erence
between oscillators and rotators. For example, pendula can perform
both oscillations and rotations. When they are used in pendulum
clocks and in metronoms,24,25 they operate as self-sustained oscil-
lators. For these oscillations, a phase can be introduced, which is
di�erent from the angle variable φ in (1) and obeys a �rst-order (in
time) equation. Thus, for coupled oscillators (and for all setups of
coupledmetronoms), the usual �rst-order Kuramotomodel is appro-
priate; the model “with inertia” cannot be used for oscillators, but for
rotators only.

Systems of coupled rotators have been widely discussed in the
literature. In Refs. 15 and 26, diversity of torques has been shown
to result in a hysteretic transition to synchrony. E�ects of noise
and diversity have been treated analytically and semianalytically in
Refs. 27–29. One of the popular applications of the rotator model of
type (1) is power grids.17–19,26,30,31 In these applications, one does not
consider a mean �eld coupling like in Eq. (1), but a network of dif-
ferent producers and consumers of electrical power, with di�erent
values of torque and di�erent connectivities. Another much studied
setup is that of symmetric deterministic models where chimera states
emerge as a result of symmetry breaking. This is the case of a one-
dimensional medium with nonlocal coupling studied in Ref. 32 and
of two symmetric subpopulations with di�erent couplings (within
and between them) considered in Ref. 33. Here, we consider a setup
that is even “more” symmetric, since all pairwise interactions are
equal to one another. The phenomena we thus observe are entirely
due to the prescribed dynamics and cannot be attributed to diversity
among the oscillators, network topology, or noise.

For α → 0, system (1) reduces to the standard KS system,
describing the behavior of (identical) phase oscillators. Therefore, for
small α-values, the dynamics is expected to closely reproduce that
of the KS model. In the limit α → ∞, the system converges to the

Hamiltonian mean �eld model:11 a paradigmatic model for the study
of long-range interactions in the presence of a conservative dynamics.

We expect interesting and potentially new phenomena to arise
in the region where attraction and repulsion nearly balance each
other. This is indeed the parameter region where standard chimera
states are observed. More speci�cally, we have selected β = 0.53 · π ,
which corresponds to a weakly repulsive coupling in the KS model,
while in the KS model with inertia neither the fully synchronous
nor the splay states are stable. Additionally, in order to investigate
the role of inertia, we have selected a �nite and relatively large mass
α = 10. As for the number of oscillators, we assume N = 7: it is the
smallest system size for which blinking chimeras have been observed.
For N < 7, we have observed only either simple clustered or fully
disordered states.

III. PHENOMENOLOGY

In this section, we qualitatively describe chimera states and
their blinking; a quantitative characterization and a more thorough
analysis are postponed to Sec. IV.

The equations of motion (1) have been simulated by imple-
menting a standard 4th order Runge-Kutta integrator with a time
step of 1t = 0.01. Phases φi and frequencies φ̇i are initialized by
drawing them from random distributions, φi ∈ U(0, 2π) and φ̇i ∈
N (0, 1). Moreover, we have introduced numerical inhomogeneities
on the mass α of the order1α ' O

(

10−14
)

to prevent the oscillators
“clumping together” due to �nite �oating point precision. We clas-
sify the current con�gurations by identifying clusters of oscillators in
almost identical states. Two oscillators indexed by i and j are said to
belong to the same cluster when their distance d(i, j) < 10−10, where

d(i, j) =
√

δ(φi − φj)
2 + (φ̇i − φ̇j)

2
(2)

and δ = min(|φi − φj|, 2π − |φi − φj|) to take into account that φi is
equivalent to φ ± 2π .

A. Instability of the splay and the fully synchronous

states

Before describing the formation of the chimera state in detail, we
comment on the instability of the completely synchronous and the
fully-asynchronous (splay) solutions. The completely synchronous
state is given by φi = φj and φ̇i = φ̇j, ∀i, j, where all oscillators
collapse into a cluster. We study the stability of this cluster via
the transversal Lyapunov exponent [which tells us whether a vir-
tual pair of oscillators would be repelled or attracted by the clus-
ter, see Sec. IV and Eq. (4) below for a discussion]. The resulting
second-order equation for the transversal perturbation αδ̈ + δ̇ +
cosβδ can be solved analytically. The exponents are λ1,2 = (−1 ±√
1 − 4α cosβ)/(2α), yielding for the parameters under consider-

ation λ1 ≈ 0.047 and λ2 ≈ −0.147. Hence, the fully synchronous
cluster is unstable with transversal Lyapunov exponent λ ≈ 0.047.

The splay state is characterized by the frequencies φ̇i = 0, ∀i,
and an equidistribution of phases on the unit circle, φi = i ·
2π/N, i ∈ {0,N − 1}, N = 7 being the number of oscillators in the
system. It is di�cult to analyze the instability of this steady state
analytically, but numerical exploration is straightforward: one easily
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FIG. 1. Left panel: time series of rotator velocities in the chaotic chimera state. Red, blue, and green curves: isolated (not belonging to a cluster) units, black: cluster of 4 units.
Right panel: the full Lyapunov spectrum in the chaotic regime (green symbols, partially overlapped with black ones). It has two positive Lyapunov exponents (thus, this regime
can be characterized as hyperchaos), two zero LEs (due to two invariances—with respect to shift of time and with respect to shift of all phases), with all other exponents
being negative. One can see a degeneracy due to the presence of a cluster: there are two groups of three equal LEs (i = 5, 6, 7 and i = 9, 10, 11), which correspond to the
transversal directions of the cluster, see discussion of the transversal LEs below. Other exponents (black circles) coincide with those of the reduced system (3), where the
cluster configuration 4-1-1-1 is fixed so that the system is 8-dimensional and has 8 LEs.

observes that a small (of order 10−12) perturbation grows exponen-
tially with the exponent λ ≈ 0.1. Thus, both the fully synchronous
cluster and the splay state are unstable.

B. Formation of a chimera state

The free evolution from random initial conditions leads to the
formation of a chimera state, where four oscillators clump together
to form a cluster, while the three other oscillators remain isolated
from one another (we indeed refer to them as to “isolated units”).
We denote this chimera state as 4-1-1-1. It appears that this
state is a global attractor, as in our numerical simulations, we never
observed other con�gurations formed from random initial condi-
tions. Chimera states of this type have been observed in globally
coupled identical phase oscillators with delay and in globally coupled
Stuart-Landau oscillators.34–36 The average time for the formation of
a chimera is ≈ 1.8 · 103. The corresponding dynamics is chaotic, as
qualitatively visible in the left panel of Fig. 1, where we plot the time
series of the rotator velocities φ̇i. Here, all units are chaotic: those
belonging to the cluster and the isolated ones. On a more quanti-
tative level, the corresponding Lyapunov spectrum is plotted in the
right panel. It is composed of 14 exponents, two of which are indeed
larger than zero, two vanish (due to invariance under time translation
and under a homogeneous shift of the phases), while all the others are
negative.

In the spectrum, we also notice two triples of identical negative
exponents. As con�rmed below (see Sec. IV), they account for the
transversal stability of the 4-cluster. The remaining eight Lyapunov
exponents (see the �lled black circles in Fig. 1) contribute to the
dimension of the underlying attractor. By virtue of the Kaplan-Yorke
formula, DKY ≈ 4.8 represents an upper bound to the information
dimension.

No other con�gurations have been observed in the system (1)
for the same parameter values—neither fully synchronous states nor
chimera-type con�gurations with 2, 3, 5, or 6 elements in the cluster.

C. Blinking of chimera

The 4-1-1-1 regime described above is observed on a rela-
tively long-time scale, but it is not the asymptotic one. Over very
long-time scales, one observes a picture like in Fig. 2: rare events lead
to a reshu�ling of the cluster composition,with someoscillators leav-
ing the cluster and others joining. These reshu�ings are observed
continuously, and they are apparently independent random events
following a Poisson process with a rate ≈ 3.6 · 10−7 (corresponding
to a mean time ≈ 2.8 · 106 between the events). This follows from

FIG. 2. Pattern of the oscillators belonging to the four-oscillator cluster (marked
by black squares which are seen as bold lines) vs time. One can clearly see five
epochs with different cluster compositions. In epoch (a), oscillators 1, 2, 3, and 5
belong to the four-cluster. In epoch (b), oscillators 2, 3, 4, and 5; in (c), oscillators
1, 2, 3, and 7; in (d), oscillators 1, 2, 3, and 4; finally, in epoch (e), oscillators 1, 2,
3, and 6 belong to the cluster.
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FIG. 3. Distribution of time intervals between different reshuffling events.

an exponential distribution of interevent time intervals, presented in
Fig. 3.

The observed pattern of reshu�ing events shows that the
chimera state is not stationary, but blinking. Belowweprovide further
illustrations of this blinking and characterize it more quantitatively.

D. Destruction and reformation of a 4-1-1-1 chimera

state

Here, we describe in detail, mostly qualitatively, what happens
during the blinking (reshu�ing) events. In fact, we have found that
three di�erent reshu�ing scenarios can happen; they are presented
in Figs. 4–6.We refer to these cases as to A, B, andC.We �rst describe
scenario A with reference to Fig. 4; it will then be straightforward to
explain also the other two scenarios.

In the two panels of Fig. 4, we show distances between oscilla-
tors, de�ned according to Eq. (2), as a function of time (time o�set is
chosen arbitrarily at some instant around 1000 units prior the start of
reshu�ing). In this event, the initial 4-cluster con�guration contains
the units 4, 5, 6, and 7,while the reshu�ed 4-cluster contains the units
2, 4, 6, and 7. Accordingly, in the top panel, we depict distances from
unit 4, which belongs to the cluster both prior and after reshu�ing
(in the same way, we always choose the reference unit as belonging
to the cluster prior and after the event in top panels of Figs. 5 and 6).
In the bottom panel, we show distances between all the three pairs of
units not belonging to the cluster prior to reshu�ing.

In the top panel of Fig. 4, one can appreciate the presence of a
chaotic 4-1-1-1 state for t . 800. It is followed by a regular regime
during which the isolated unit 2 comes rather close to the 4-cluster.
In this regime, the 4-cluster is unstable and starts dissolving. Mean-
while, the units 1 and 3 come close to each other. The dissolution of
the 4-cluster, accompanied by the appearance of a 2-cluster emerg-
ing from the isolated units, continues until t ≈ 2000. Afterward, the
2-cluster dissolves and the dynamics again become chaotic. Around
t ≈ 3000, no clusters are observed. Four units are close to each other,
although they do not ful�ll our criterion for the de�nition of a cluster.
However, they start approaching each other and a new 4-cluster even-
tually forms in the sameway as observed when starting from random
initial conditions (cf. Sec. III B above). Typically, the unit which was
already close to the 4-cluster around t ≈ 1000, joins the novel cluster,
“exchanging” with one unit that leaves the cluster. However, in some
cases the temporary 2-cluster does not dissolve but enters the novel
4-cluster, exchanging with two units therein.

FIG. 4. Reshuffling of a 4-1-1-1 chimera state: scenario A. Top panel: dis-
tances of all oscillators from oscillator 4. Isolated oscillators at the beginning are 1,
2, 3, distances between them are depicted in the bottom panel. Around t ≈ 700,
a regular regime emerges from the chaotic 4-1-1-1 state, with one isolated
oscillator (here unit 2). Simultaneously, the 4-cluster begins to disintegrate (with
a rate λs) and two of the initially isolated units come close and form a 2-cluster
state (here units 1,3). (bottom panel, rate λc). Disintegration ends at t ≈ 2000 in a
chaotic state, where the units 2, 4, 6, 7 form a not so perfect 4-cluster (mutual dis-
tances are ≈ 10−2), while the units 1, 3 form a 2-cluster (see bottom panel), and
unit 5 is isolated. The 2-cluster begins to disintegrate with a rate λg ; this disinte-
gration ends around t ≈ 2800. From this moment on, the new 4-cluster becomes
more stable, the mutual distances reduce with the rate λr . At the end of the event,
at t ≈ 4000, a reshuffled configuration 4-1-1-1 appears.

The blinking event shown in Fig. 5 is quite similar to that of
Fig. 4, with the following di�erences: (i) now, during the regular state
arising at the beginning of reshu�ing (around t ≈ 1000), not one,
but two isolated units “orbit” close to the 4-cluster (here units 2 and
5); (ii) the disintegration of the 4-cluster is much faster than in Fig. 4;
(iii) the two isolated units that were close to the 4-cluster join the new
cluster, so there is always a 2 ↔ 2 exchange.

The blinking event in Fig. 6 is di�erent from those in Figs. 4
and 5: here there is no formation of a temporary 2-cluster. The
breakup of the 4-cluster (at 1000 . t . 1600) is faster than in case
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FIG. 5. Reshuffling of a 4-1-1-1 chimera state: scenario B. Top panel: dis-
tances of all oscillators from oscillator 4. Isolated oscillators at the beginning are
2, 3, 5; distances between them are depicted in the bottom panel. The process is
qualitatively similar to that of Fig. 4, but here in the regular stage around t ≈ 1000,
two isolated oscillators (2 and 5) are both close to each other and to the still
existing cluster; they eventually join the new 4-cluster.

Fig. 4, but slower than in case Fig. 5. At the end of this process, all the
units are separated, and a new 4-cluster begins to form, with a 2 ↔ 2
exchange. Sometimes, we observed that all 3 previously isolated units
join the new cluster so that also a 3 ↔ 3 exchange is possible. On the
other hand, since the formation of a new cluster is a statistical pro-
cess, it can happen that the �nal con�guration is formed of the same
units as the initial one.

IV. QUANTIFYING BLINKING EVENTS

The above description of the reshu�ing process suggests the
existence of regular (nonchaotic) temporary stages. To resolve them,
we proceed by performing simulations with four units “glued”
together to enforce the presence of a 4-cluster at all times. Such a
state (and, more generally, any clustered state) can be modeled also
with “reduced” equations, the identical elements of a cluster being
described by just one set of variables (ϕ, ϕ̇). Generally, if N rotators

FIG. 6. Reshuffling of a 4-1-1-1 chimera state: scenario C. Top panel: dis-
tances of all oscillators from oscillator 1. Isolated oscillators at the beginning are
2,3,5; distances between them are depicted in the bottom panel. At the end units
1,2,4,5 belong to the 4-cluster and units 3,6,7 are isolated.

build K clusters of sizes n1, n2, . . . , nK , with
∑

k nk = N, then Eq. (1)
can be rewritten as a smaller reduced system of K equations,

αϕ̈k + ϕ̇k = Im
(

Ze−iϕk−iβ
)

, Z =
K

∑

k=1

nk

N
eiϕk . (3)

In our case of a 4-1-1-1 chimera, we have K = 4 with
n1 = 4, n2 = n3 = n4 = 1. The reduced system (3) has the same
dynamics as the original system (1) so long as the 4-cluster persists.

In fact, simulations of the 4-1-1-1 chimera state with Eq. (3)
reveal that this regime is nothing but a very long pseudostationary
chaotic transient.37 The dynamics, eventually, collapses onto one of
the following four attractors:

A: a quasiperiodic 4-2-1 state, characterized by a 2-cluster, while
the isolated oscillator orbits close to the 4-cluster;

B: a quasiperiodic 4-2-1 state such that the 2-cluster orbits close
to the 4-cluster;
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C: a periodic 4-1-1-1 state, where three units remain asymptoti-
cally isolated; and

D: a periodic 4-3 state.

Upon performing 1000 simulations of the reduced model, starting
from random initial conditions, we found that roughly 54%, 31%,
13%, and 2% converge to attractor A, C, B, and D, respectively. We
have used the notations A, B, C, because these regular states corre-
spond to the scenarios A, B, and C discussed in Sec. III D. As for the
probability to observe the various scenarios in the original blinking
dynamics, they are approximately equal to the above reported rates,
themajor di�erence being that the stateD has been never observed in
the original system (1), presumably because the 4-cluster is destroyed
prior to the formation of the 3-cluster.

The reason why the attractors of the reducedmodel are not seen
as such in the simulations of the global system is that the 4-cluster
is transversally unstable in all of the above scenarios. Transversal
Lyapunov exponents can be determined by perturbing only the vari-
ables of the cluster (ϕk, ϕ̇k), while leaving themean �eldZ unchanged
(cf. the general discussion of transversal Lyapunov exponents in
Ref. 38). So the linear equation for a deviation (δk, δ̇k) from cluster
k reads

αδ̈k + δ̇k = −δkRe[Ze
−iβ−iϕk ]. (4)

In practice, the above equation, solved together with Eq. (3),
tells us whether a virtual pair of oscillators leaving cluster k would
be either attracted or repelled by the cluster. As Eq. (4) is two-
dimensional, it yields two transversal Lyapunov exponents; we are
interested in the maximal one that can be computed in the usual way
by virtue of the Benettin algorithm,38 i.e., by regularly renormalizing
the vector (δk, δ̇k) and averaging the logarithm of the norm.

The implementation of this approach during the pseudostation-
ary transient evolution of the 4-1-1-1 con�guration yields two
values that coincide with the two triples visible in the general Lya-
punov spectrum plotted in Fig. 1 and con�rm that the 4-cluster is
stable on average. In the case of the above mentioned four attrac-
tors, we instead �nd that the largest transversal Lyapunov exponent
is λA

t ≈ 0.0227 [for case A]; λB
t ≈ 0.1 [B]; λC

t ≈ 0.05 [C]; λD
t ≈ 0.17

[D], thus con�rming the instability of the 4-cluster.
Regular attractors do not only qualitatively correspond to the

initial states of the blinking events described in Sec. III D, but also
give a quantitative description of the disintegration of the 4-cluster:
the growth rates of the interoscillator distances in Figs. 4–6 corre-
spond to the values of the transversal Lyapunov exponents for cases
A–C.

Additional insight into cases A and B can be obtained from the
computation of the transversal Lyapunov exponents of the 2-cluster
in the corresponding 4-2-1 con�guration. In both cases, its value is
≈ −0.05. This quantity describes the rate λc with which 2-cluster is
formed, cf. Figs. 4 and 5.

The formation of a new 4-cluster from a nonclustered chaotic
regime is a statistical event. However, its late stage, where the cluster
is basically formed and the units are progressively approaching each
other, can be again compared with the transversal Lyapunov expo-
nents. In this context, the stable transversal exponent λt ≈ −0.014
of the 4-cluster in the chaotic regime (Fig. 1) is relevant, as it gives
approximately the convergence rate λr in Figs. 4–6.

Finally, the rate of disintegration of the two-cluster λg (bottom
panel of Fig. 4) can be explained as follows: this regime corresponds
to a temporary chaotic state in the �xed con�guration 4-2-1. Cal-
culations of the transversal Lyapunov exponent of the 2-cluster here
are not reliable, as this regime ends quite soon in one of the A, B, D
states. However, if one starts the con�guration 4-2-1 from random
initial conditions, in many runs, one observes that during the ini-
tial stages the transversal Lyapunov exponent of cluster 4 �uctuates
around zero, while the transversal LE of cluster 2 is ≈ 0.048. This
value corresponds to the rate λg of disintegration of the 2-cluster in
Fig. 4.

Summarizing, we explained the origin of blinking events via an
interplay of two properties of the system: structural, i.e., the compo-
sition of clusters, and dynamical, i.e., the complexity of the dynamics
and the resulting stability characteristics of clusters. During long
epochs a chaotic regimewith stable4-1-1-1 clustering is observed.
However, after a long but �nite time, chaos is succeeded by a reg-
ular regime, and this triggers a blinking event: �rst, the big cluster
becomes unstable and dissolves, and then from a chaotic disordered
state, a new chimera state with a reshu�ed composition emerges.

V. DISCUSSION AND CONCLUSIONS

In this paper, we reported on a novel state of blinking chimera
in a small system of seven identical rotators (phase oscillators with
inertia). The asymptotically stationary regime consists of a sequence
of long epochs each characterized by a (temporary) chaotic chimera
state with four oscillators synchronized into a single cluster and
three isolated ones. Such regimes are separated by relatively short
reshu�ing events when the composition of the synchronous cluster
is recon�gured. These rare events, which we call “blinking events,”
appear to be distributed according to a Poisson process with a very
small, but �nite rate. There are three types of such events (see the
above described scenarios A, B, and C); all of them are character-
ized by a regular (either periodic or quasiperiodic—depending on
the scenario) dynamics.

Altogether, the chaotic chimera state is not an attractor, but
rather a transient chaotic state, eventually ending in a temporary reg-
ular dynamics. The emergence of long chaotic transients is a well
known phenomenon in nonlinear dynamics:37 they typically arise
because of “holes” in phase space, where the trajectory suddenly
jumps out of the pseudoattractor. Identifying the speci�c conditions
for these events to occur is not an easy task: we leave it to future inves-
tigations. What makes the regime discussed in this paper di�erent
from standard chaotic transients is that once the temporary chaotic
state is over, another equivalent such regime emerges. In fact, the
three types of exit events all lead to unstable attractors. In practice,
during the blinking event, the cluster is transversally unstable and
it thereby starts disintegrating, leading to a short-lived nonchimera
stage. A new chimera con�guration of the type 4-1-1-1 “�nally”
forms, due to the transversal stability of this regime.

In order to clarify the quantitative properties of these processes,
we explored the dynamics of restricted systems with �xed cluster
compositions. This allowed us to calculate, via time averaging, the
transversal Lyapunov exponents governing the stability of the clus-
ters, without destroying the clusters themselves. The �xed con�gura-
tion4-1-1-1 allowed us to determine the basic unstable transversal
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Lyapunov exponents governing disintegration of the main 4-cluster.
In some cases, an intermediate 2-cluster is formed, with this forma-
tion being governed by the stable Lyapunov exponent of the 2-cluster
in the �xed4-2-1 con�guration. Finally, the rate of formation of the
new 4-cluster from the unclustered chaotic state is governed by the
stable transversal Lyapunov exponent of the 4-cluster in the chaotic
transient state of the 4-1-1-1 con�guration.

From the general viewpoint of topology of the dynamics in the
phase space of the system, the blinking chimera can be described as
follows: there is an invariant manifold where the states of four oscil-
lators coincide, while three di�er. This 8-dimensional manifold is
attractive for a set of large measures in the original 14-dimensional
phase space but is not a global attractor. On this invariant set, a
chaotic transient (chaotic saddle) sets in, characterized by a very
long lifetime: this regime corresponds to a chaotic chimera. Eventu-
ally, generic trajectories leave the chaotic saddle and approach one
of the sets (A, B, C) all characterized by a regular dynamics. On
these regular sets, the 8-dimensional manifold is transversally unsta-
ble so that trajectories leave it (the chaotic chimera is destroyed),
but then enter again the domain of attraction of the chaotic 8-
dimensional saddle, and a new, reshu�ed chimera is established.
Noteworthy, intermittent chaotic chimeras have been reported for
a two-population setup.33 However, no reshu�ing, and thus also no
blinking, was observed therein.

Preliminary simulations suggest that this phenomenon is not
peculiar of the parameters selected in this paper. However, in our
simulations, we never observed blinking chimera for less than seven
units. Therefore, in this short communication,we restricted ourselves
to a description of the minimal blinking chimera and do not discuss
other possible dynamical states of this system.
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