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ABSTRACT

We show that “stochastic bursting” is observed in a ring of unidirectional delay-coupled noisy excitable systems, thanks to the combinational
action of time-delayed coupling and noise. Under the approximation of timescale separation, i.e., when the time delays in each connection are
much larger than the characteristic duration of the spikes, the observed rather coherent spike pattern can be described by an idealized coupled
point processwith a leader–follower relationship.Wederive analytically the statistics of the spikes in each unit, the pairwise correlations between
any two units, and the spectrum of the total output from the network. Theory is in good agreement with the simulations with a network of
theta-neurons.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5093180

Excitable systems are basically in a resting state but can gener-
ate a strong output under a small but �nite forcing. A promi-
nent and very important example in neuroscience is a neuron,
which produces a spike when the input forcing is strong enough.
Under noisy action, an excitable neuron produces a sequence of
random spikes. In this paper, we show that, with an additional
time-delayed coupling, a network of noisy excitable neurons can
produce rather coherent bursts—sequences of spikes separated by
�xed delay times; the number of spikes in a burst is random. We
construct a point process model for this stochastic bursting and
derive analytically the properties of the interspike intervals and of
the correlations and the spectra.

I. INTRODUCTION

Processes in delay-coupled nonlinear elements have been
attracting a lot of attention in oscillators (or neurons),1–3 laser
dynamics,4 and complex networks.5,6 While for deterministic oscil-
lators the major interest is in synchronization phenomena, for noise-
induced processes time-delayed coupling is known to strongly a�ect
the coherence and the correlation properties of the processes.

There are two basic models of noise-induced processes: noise-
induced switchings between two stable states (resulting in a
telegraph-type stochastic process) and noise-induced pulses in an
excitable system. For the former situation, the cross correlations

between bistable units were investigated in unidirectional delay-
coupled networks7 by extending the theory of a lump bistable noisy
model with a delayed feedback.8 In the other approach, one studies
delay-coupled systems with noise within the mean �eld approxima-
tion framework,9,10 focusing on the evolution of the mean and the
variance of the order parameter while ignoring the correlation of dif-
ferent units. A full understanding of situations with more complex
coupling topology, e.g., for the all-to-all coupling,11 is still an ongoing
subject of research.

Noise-induced pulses in an excitable unit are one of the basic
models in neuroscience. In this context, delayed feedbacks and cou-
plings are very natural due to a �nite time of pulse propagation in
connecting synapses. In our previous paper,12 a novel delay-induced
spiking pattern, which we called “stochastic bursting,” was observed
in a single noisy excitable systemwith a time-delayed feedback (in the
context of neuroscience, this corresponds to an autapse with a �nite
propagation time). This stochastic bursting can be characterized
as a random sequence of quasiregular patches, with a pronounced
peak in the spectrum at the frequency corresponding to the delay
time.

In this paper, we extend the theory12 to the case of two mutu-
ally coupled excitable units and further to a simple, but widely used,
topology of an unidirectional delay-coupled network. After outlining
the main features and approximations behind the theory of one unit,
we describe “stochastic bursting” in two coupled units in detail. The
generalization to a chain of neurons will then be straightforward.
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II. BASIC MODEL AND PROPERTIES OF ONE UNIT

We consider in this paper a network of unidirectionally cou-
pled units, topology of which is illustrated in Fig. 1(a). The units are
generally di�erent, and the propagation times for the interactions are
also di�erent. Each unit is described with a prototypic model for an
excitable system, a noisy theta-neuron13 (or, in other contexts, called
an active rotator14),

θ̇i = ai + cos θi + εi(ai−1 + cos θi−1(t − τ̂i−1))+
√
Diξi(t). (1)

Variable θ is de�ned on a circle 0 ≤ θ < 2π . Here, parameters ai
de�ne the excitability property of the neurons. For ai < 1, there is
a stable and an unstable steady state for an isolated unforced unit,
and these states collide in a SNIPER bifurcation at ai = 1. Thus,
close to this threshold, the unit is excitable: a small noise or a small
force may induce a spike (nearly 2π-rotation of θ back to the stable
state on the circle). Parameter Di describes the intensity of the Gaus-

sian white noises ξi(t), with 〈ξi(t)〉 = 0, 〈ξi(t)ξj(t
′
)〉 = 2δijδ(t − t

′
).

Finally, parameters εi describe the strengths of delayed coupling. The
coupling force, amplitude of which is εi, is chosen to vanish in the
steady state of a driving unit. The forcing term on the r.h.s. of (1)
produced by one spike can be represented as

H(t) = a + cos2sp(t), (2)

FIG. 1. Panel (a): Schematic description of a ring of unidirectional delay-coupled
noisy systems, where a spike in neuron i induces a spike to neuron i + 1 after
delay time τi with probability pi . Panel (b): The spike trains in a two-neuron net-
work, obtained in direct simulations of Eq. (1). Values of parameters: a = 0.95,
D = 0.005, τ̂1 = 100, τ̂2 = 200, and ε = 0.14.

with2sp(t) being the deterministic trajectory connecting the unsta-
ble point (the threshold) with the stable one,

2sp(t) = 2 arctan

(

√

1 + a

1 − a
tanh

(√
1 − a2

2
(t − t0)

))

. (3)

III. NETWORK DYNAMICS AND THE POINT PROCESS

MODEL

To describe qualitatively the dynamics in the network, we start
with a noncoupled unit. For a small noise, it produces independent
spikes, constituting a Poisson process with rate λ. Calculation of this
rate is a standard task. One formulates the Fokker–Planck equation
for the evolution of the probability density of a noisy unit obeying
Eq. (1),

∂P(θ , t)

∂t
= − ∂

∂θ
[(a + cos θ)P(θ , t)] + D

∂2P(θ , t)

∂θ 2
. (4)

The stationary solution of (4) is

Pst(θ) = C

∫ θ+2π

θ

dψ

D
e−

∫ ψ
θ

a+cosϕ
D dϕ . (5)

Here, C is a normalization constant. Then, the probability current
yields the rate of spontaneous spike excitations,

λ = C
(

1 − e−
∫ 2π
0

a+cos θ
D dθ

)

. (6)

With coupling, i.e., with ε 6= 0, spikes of neuron i − 1 produce, with
a delay, a kick to its next neighbor i. Such a kick facilitates excitation,
so that it will cause a pulse in neuron i, as a combinational e�ect of
forcing andnoise, with probability pi. The timing of the induced spike
is slightly shifted to the forcing; we will denote this shift τ̄ and de�ne
a new e�ective delay τi = τ̂i + τ̄ (we will mainly consider the shift τ̄
as a �xed one but will brie�y discuss the e�ect of �uctuations of this
quantity in Sec. VI). Hence, to be more general, units are described
by di�erent quantities λi (rates with which they “spontaneously” pro-
duce spikes due to noise), pi (the probability with which a spike is
induced by the incoming force), and τi (time delay in forcing).

This allows us to describe the activity on the network as a point
process, in which we neglect the durations of the spikes (approxi-
mate them as delta-functions), compared to the delay times τ and
the inverse rate λ−1. This is well justi�ed for mammal brains, where
the characteristic duration of a spike is ∼1ms, while the delay time
and the characteristic time interval between noise-induced spikes are
of order ∼100ms.15,16 The spike occurred at time t in neuron i will
produce a kick on neuron i + 1 at time t + τ̂i and will generate a
spike in neuron i + 1 at time t + τi with probability pi, as depicted
schematically in Fig. 1(a).

Throughout the paper, in numerical illustrations, we use param-
eters a = 0.95, D = 0.005. The small additional delay is τ̄ ≈ 7; it is
much smaller than the characteristic delay times we use τ̂ & 100 and
the inverse of the spontaneous rate λ−1 ≈ 1506. For these parameters
of the neuron, we use the coupling strength ε = 0.14, for which the
probability to induce a spike by the forcing is p = 0.53 (for details of
the calculation of this probability, see Ref. 12). Empirically, this prob-
ability can be determined in simulations of one unit with a delayed
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self-feedback. One calculates the numbers of spikes, during a large
time interval, in dependence on the coupling strength N(ε). Then,

p(ε) = N(ε)− N(0)

N(ε)
. (7)

IV. TWO COUPLED UNITS

A. Statistics of interspike intervals

It is instructive to start with the case where there are only two
neurons in the ring, i.e., n = 2, and then to extend the theory to a
more general case with arbitrary n > 2. When n = 2, the two delay-
coupled neurons are denoted as i and j (i, j could be 1 or 2). We
simulate Eq. (1) and obtain spike trains with bursts of each neuron as
shown in Fig. 1(b). As outlined above, an idealized point process can
be constructed to describe the bursting phenomenon, as illustrated
in Fig. 2. We denote spontaneously generated spikes as leaders. Each
leader induces a �nite set of followers (induced spikes) and together
with them constitutes a coherent burst. In a burst, spikes in the two
neurons appear alternatively with time intervals τ1 and τ2. The num-
ber of spikes in a burst is random. Noteworthy, similar to the case of
one neuron with delayed feedback,12 the bursts can overlap; hence,
the analysis of the ISIs (interspike intervals) distribution of the spike
train in each unit is nontrivial. Compared to the single neuron case,12

here the leaders in each neuron will have random followers in both
neurons, as explained schematically in Fig. 2.

First, we determine the overall rate of the spikes in each unit.
The probability for a spike in unit i to induce a follower in the same
unit is pipj. Thus, the probability for a leader to have exactly m fol-
lowers in the same unit is (pipj)

m(1 − pipj). The average number
of followers in the same unit is

∑

m m(pipj)
m(1 − pipj) = (pipj)(1

− pipj)
−1. The total average number of spikes in a burst is 1 +

(pipj)(1 − pipj)
−1 = (1 − pipj)

−1. Therefore, the total rate of spikes
initiated in unit i is λi(1 − pipj)

−1. For the spikes in unit i, initiated
by a leader in unit j, we have to �rst �nd the rate of the �rst fol-
lowers in unit i, which is λjpj; the total rate of these spikes is thus
λjpj(1 − pipj)

−1. To sum, we obtain the total rate of spikes µi as

µi = lim
m→∞

(λi + λjpj)[1 + pipj + (pipj)
2 + · · · + (pipj)

m]

= λi + λjpj

1 − pipj
. (8)

To derive the statistics of the ISI, we assume that in one of the units,
there is a spike at time t and the next spike at time t′ > t, so that

the interspike interval is T = t′ − t. Three di�erent cases should be
distinguished, namely, T > τi + τj,T = τi + τj, and T < τi + τj. If
T < τi + τj, the spikes at t and t′ can be either spontaneous (leader)
or delay-induced ones, but in the latter case, they belong to di�erent
bursts, so they are independent. Therefore, the survival function, i.e.,
the probability that there is no spike in (t, t′), is determined by the
full rate µi from (8): Si(T) = exp(−µiT).

In contradistinction, for the case T > τi + τj, the spike at time
t′ in neuron i can only be from a spontaneous one (leader) in neuron
i itself or the �rst induced spike (with probability pj from neuron j).
These events are independent on the occurrence of a spike at time
t and have the total rate λi + λjpj. The probability that there is not
any spike in (t, t′) in neuron i is the product of three terms: the
probability to have no spikes in the interval (t, t + τi + τj] with the
survival function Sτb = exp(−µi(τi + τj)), the probability (1 − pipj)
not to have a follower for the spike at t, and the probability to
have no spike in the interval (t + τi + τj, t

′), where only the spon-
taneous total rate λi + λjpj applies with the survival function Sτa
= exp(−(λi + λjpj)(T − τi − τj)). Thus, the survival function for
the case T > τi + τj is

Si(T) = Sτb(1 − pipj)Sτa = (1 − pipj)e
−µi(τi+τj)−(λi+λjpj)(T−τi−τj).

(9)

Based on the above description, and on the relationship between
the cumulative ISI distribution Q(T) and the survival function S(T),
which reads Q(T) = 1 − S(T), the cumulative ISI distribution of
neuron i can be obtained as follows:

Qi(T) =
{

1 − e−µiT , T < τ̃ ,

1 − (1 − pipj)e
−µi τ̃−(λi+λjpj)(T−τ̃ ), T ≥ τ̃ ,

(10)

where τ̃ = τi + τj. We compare this expression with the results of
numerical simulations in Fig. 3. The point process described by
Eq. (10) agrees well with direct simulations of Eq. (1), where we
assumed the parameters of the two neurons to be the same, except
for the time delays that are di�erent.

B. Correlations and spectra

In the following, we derive the autocorrelation and the cross-
correlation functions of the spike trains and the corresponding power
spectrum and the cross-spectrum. The autocorrelation function is

FIG. 2. Schematic description of the point pro-
cess with the leader–follower relationship for two
neurons. A leader with a random number of its fol-
lowers forms a burst, and the followers could be in
both neurons. The leaders appear in both neurons.
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FIG. 3. Cumulative ISI distributionQ(T)
vs T for n = 2 [panel (a)] and n =
3 [panel (b)] in a ring of unidirectional
delay-coupled neurons. The black lines
are direct numerical simulations of Eq. (1),
where the values of parameters are cho-
sen as follows: for n = 2, τ̂1 = 100 and
τ̂2 = 200; for n = 3, τ̂1 = 100, τ̂2 =
200, and τ̂3 = 300. Values of a, ε, and
D are chosen as a = 0.95, ε = 0.14,
D = 0.005 for both cases. The red dotted
lines correspond to the point process with
Eq. (10) for cumulative ISI, where λ =
6.64 × 10−4, p = 0.53 are the same for
both cases. The effective time delays
are τ1 = 107, τ2 = 207 for the n = 2
case. τ1 = 107, τ2 = 207, τ3 = 307 for
the n = 3 case. The inset is a logarithmic
scale version to validate the piecewise-
linear spiking rate.

de�ned via a joint probability to have a spike in unit i within a
small time interval (t, t +1t) and a spike in unit j within the time
interval (t + s, t + s +1t), no matter whether or not there are any
spikes between t and t + s. The joint probability of these events is
de�ned as

Pij(t, t +1t; t + s, t + s +1t)

=
{

Wi(t, t +1t)Pij(t + s|t,1t), s ≥ 0,

Wj(t, t +1t)Pji(t|t + s,1t), s < 0.
(11)

Here, Wi(t, t +1t) = µi1t is the probability to observe a spike in
neuron i within the time interval [t, t +1t]. The quantity Pij(t +
s|t,1t) is the probability to induce a spike in neuron j at time t + s,
given a spike in neuron i at time t.

1. Correlations and spectra within one unit

We �rst calculate the conditional probability (11) for the same
unit. The conditional probability to have one induced spike is pipj;
this event happens with a time shift τ̃ ; the conditional probability for

the kth induced spike is (pipj)
k; it happens with delay kτ̃ . Therefore,

Pii(t + s|t,1t) = δ(s)1t + pipjδ(s − τ̃ )1t + · · ·

+ (pipj)
kδ(s − kτ̃ )1t + · · ·

=
∞
∑

k=0

(pipj)
kδ(s − kτ̃ )1t, s ≥ 0,

Pii(t|t + s,1t) = Pii(t − s|t,1t), s < 0,

(12)

where δ(·) is the Dirac delta function. Since the correlation func-
tion can be seen as the mean rate of the joint event, after substituting
Eqs. (11) and (12), the autocorrelation function is

Cii(s) = 〈(xi(t)− 〈xi〉)(xi(t + s)− 〈xi〉)〉

= 1

T

∫ T

0

dt lim
1t→0

Pii(t, t +1t; t + s, t + s +1t)

1t2

= µi

∞
∑

n=−∞
(pipj)

|n|δ(s − nτ̃ ), (13)
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where we use the fact that Pii is t-independent and have taken into
account that 〈xi〉 = µi.

Taking the Fourier transform of the correlation function, we
obtain the power spectral density

Sii(ω) =
∫ ∞

−∞
Cii(s)e

−iωsds = (λi + λjpj)(1 + pipj)

1 + (pipj)2 − 2pipj cosω(τi + τj)
.

(14)

The derivations above are based on the time series xi(t) repre-
sented as a sum of delta-peaks, i.e., xi(t) =

∑N
i=1 δ(t − ti). For a

train of realistic spikes, the shape function can be straightforwardly

taken into account as done in Ref. 12, namely, the spectrum (14)
should be just multiplied by the squared amplitude of the Fourier
transform of the pulse shape. For example, if observable (2) is
used, the spike train xi will be convoluted with the shape func-
tion H(t). Hence, the power spectral density and the cross-spectral
density in the following illustrations will be multiplied by the spec-
tral density of H(t), which we denote as SH(ω). For simplicity, in
the formulas below, we still use the delta-peak representation of xt ,
while we multiply by SH(ω) to compare with numerical correla-
tions and spectra obtained by simulations of Eq. (1). This compar-
ison is shown in Fig. 4(a); the theoretical predictions based on the
point process analysis agree well with the results of direct simulation
of Eq. (1).

FIG. 4. Panels (a)–(c) show the power
spectral density of neuron 1 and the
real part and the imaginary part of
the cross-spectral density S12, respec-
tively, for two delay-coupled neurons. The
blue lines are from direct simulation of
Eq. (1) and the red lines are the ana-
lytical results from Eqs. (14), (18), and
(19) for (a)–(c), respectively. Panels (d)–(f)
show the power spectral density and
the real part and the imaginary part of
the cross-spectral density S13, respec-
tively, for the ring of n = 3 neurons. The
blue lines show numerical simulations of
Eq. (1) with n = 3. The red lines are the
analytical results from Eqs. (27), (29), and
(30) for (d)–(f), respectively. The parame-
ter values in the simulation and the ana-
lytical expressions are chosen the same
as in Fig. 3. Noteworthy, all the power
and cross-spectral density are multiplied
by the power spectral density of the shape
function SH , similar to Ref. 12.
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2. Cross correlations and cross-spectra for two units

The conditional probability of the joint event between the two
neurons can be expressed similarly to formula (12) above:

Pij(t + s|t,1t) = piδ(s − τi)1t + · · ·

+ pi(pipj)
kδ(s − kτ̃ − τi)1t + · · ·

=
∞
∑

k=0

pi(pipj)
kδ(s − kτ̃ − τi)1t, s ≥ 0,

Pji(t|t + s,1t) = pjδ(s + τj)1t + · · ·

+ pj(pipj)
kδ(s + kτ̃ + τj)1t + · · ·

=
∞
∑

k=0

pj(pipj)
kδ(s + kτ̃ + τj)1t, s < 0.

(15)

This allows us to obtain the cross-correlation function of the two
neurons, by substituting Eq. (15) into Eq. (11), leading to Eq. (16),

Cij(s) = lim
1t→0

Pij(t, t +1t; t + s, t + s +1t)

1t2

= µi

∞
∑

n=0

pi(pipj)
nδ(s − nτ̃ − τi)

+ µj

∞
∑

n=0

pj(pipj)
nδ(s + nτ̃ + τj). (16)

The cross-spectral density is the Fourier transform of the cross-
correlation function,

Sij(ω) =
∫ ∞

−∞
Cij(s)e

−iωsds = µipi
e−iωτi

1 − pipje−iωτ̃
+ µjpj

eiωτj

1 − pipjeiωτ̃
.

(17)

It is instructive to present explicitly the real part

<{Sij} = pi(µi − µjpipj) cosωτi + pj(µj − µipipj) cosωτj

1 + (pipj)2 − 2pipj cosωτ̃
(18)

and the imaginary part

={Sij} = pi(µi − µjpipj) sinωτi − pj(µj − µipipj) sinωτj

1 + (pipj)2 − 2pipj cosωτ̃
(19)

of the cross-spectrum.
Unlike the power spectral density described by a real-valued

function (14), the cross-spectral density is generally a complex-
valued function. It is real-valued only when the two neurons are
totally identical, i.e., λi = λj = λ, pi = pj = p, and τ1 = τ2 = τ ,
resulting in a simple expression

Sij(ω) = 2λp(1 + p) cosωτ

1 + p4 − 2p2 cos 2ωτ
, (20)

which is very similar to the power spectral density of a single unit
(14). We compare the theoretical cross-spectra with simulations in
Figs. 4(b) and 4(c).

3. Correlation and spectra of the total output from

the network

If we consider correlations and spectra from the viewpoint of
the total network output, the cross correlations between all the pulses
should be calculated. A joint probability could be de�ned as having a
spike in any unit within a small time interval (t, t +1t) and a spike
in any unit within the time interval (t + s, t + s +1t), no matter
whether or not there are any spikes between t and t + s. The joint

probability P̂ of these events is the sum of all contributions,

P̂(t, t +1t; t + s, t + s +1t) =
2
∑

i=1

2
∑

j=1

Pij, (21)

FIG. 5. Power spectral density of the
total output from the networks with n =
2 [panel (a)] and n = 3 [panel (b)]. The
blue curves correspond to the simulation
results and the red lines are the theoret-
ical expressions [Eq. (23) for n = 2 and
Eq. (31) for n = 3]. Values of parameters
are chosen the same as in Figs. 3 and 4.
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FIG. 6. Cross-spectra between neu-
ron 1 and neuron 3 [panel (a) and
panel (b) for real and imaginary part,
respectively] and between neuron 1 and
neuron 4 [panel (c) and (d) for real
and imaginary part, respectively]. The
blue lines show numerical simulations
of Eq. (1) where values of parameters
are a = 0.95,D = 0.005, ε = 0.2, τi =
50 (i = 1, . . . , 10). The red lines are the
analytical results from Eqs. (29) and (30),
where λi = 6.64 × 10−4 is the same as
described in the n = 2 and n = 3 cases
and pi = 0.85 (i = 1, . . . , 10) is calcu-
lated from Eq. (7).

where Pij is described by Eq. (11). Thus, the correlation function is

Ĉ(s) = 1

T

∫ T

0

dt lim
1t→0

P̂(t, t +1t; t + s, t + s +1t)

1t2
=

2
∑

i=1

2
∑

j=1

Cij,

(22)
where Cij is described by Eq. (13) when i = j and by Eq. (16) when
i 6= j. The spectral density of the total output, i.e., of the observ-

able X(t) = x1(t)+ x2(t), is obtained as a Fourier transform of Ĉ(s),
leading to

SX(ω) =
2
∑

i=1

µi

1 − (pipj)
2 + 2pi(cosωτi − pipj cosωτj)

1 + (pipj)2 − 2pipj cosωτ̃
. (23)

As shown in Fig. 5(a), the theoretical spectra of the total output agrees
well with simulation results.

V. GENERAL NETWORK

The case of many neurons with n > 2 in the ring topology is a
direct extension of the n = 2 case as described above; thus, the analy-
sis follows the same steps, and only the expressions aremore involved.
First, we extend the cumulative ISI distribution for neuron i in the
ring as follows:

Qi(T) =
{

1 − e−µiT , T < T̃,

1 − (1 − P̃)e−µiT̃−µ̃i(T−T̃), T ≥ T̃.
(24)

Here, T̃ =
∑n

i=1 τi is the total round-trip delay time around the ring,

P̃ =
∏n

j=1 pj is the probability to have a completed round trip around

the ring, and µ̃i is the spiking rate of all �rst spikes in bursts that
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include neuron i,

µ̃i = λi + λi−1pi−1 + λi−2pi−2pi−1 + · · · + λi−n+1pi−1 · · · pi−n+1

= λi +
n−1
∑

l=1

λi−l

l
∏

j=1

pi−j. (25)

Here, λi is the rate of spontaneous spikes in neuron i itself, λi−1pi−1 is
the rate of spontaneous spikes in neuron i − 1 that induce also a spike
in neuron i, and so on. Noteworthy, due to the ring structure of the
coupling, λi is a periodic function, i.e., λi = λi+n = λi−n. The total
activity in the network is characterized by the rate µi, to which the
rates from all spikes (both leaders and followers) contribute. Thus,
similarly to Eq. (8), we get

µi = lim
m→∞

µ̃i(1 + P̃ + P̃2 + · · · + P̃m) = µ̃i

1 − P̃
. (26)

Di�erently formulated, the expression above follows from the fact
that a spike can havem followers (in the same unit) with probability
P̃m(1 − P̃).

Using the same method as in the n = 2 case described above,
we obtain the power spectral density of neuron i in the ring by the
Fourier transform of the correlation function (not presented),

Sii(ω) = µ̃i(1 + P̃)

1 + P̃2 − 2P̃ cosωT̃
. (27)

The cross-spectral density of spike trains in neuron i and neuron j is

Sij(ω) = µiP̄ij

e−iωTij

1 − P̃e−iωT̃
+ µjP̄ji

eiωTji

1 − P̃eiωT̃
, (28)

the real part of which is

<{Sij} = P̄ij(µi − µjP̃) cosωTij + P̄ji(µj − µiP̃) cosωTji

1 + P̃2 − 2P̃ cosωT̃
(29)

and the imaginary part of which is

={Sij} = P̄ij(µi − µjP̃) sinωTij − P̄ji(µj − µiP̃) sinωTji

1 + P̃2 − 2P̃ cosωT̃
. (30)

Here, Tij = τi + · · · + τj−1 is the delay time from neuron i to neuron
j along the direction of the ring, i.e., clockwise as depicted in Fig. 1,

with probability P̄ij =
∏j−1

l=i pl. Correspondingly, Tji = T̃ − Tij is the
delay time from neuron j to neuron i with probability P̄ji and P̄ijP̄ji =
P̃. The spectral density of the total output, i.e., X =

∑n
i=1 xi(t), from

the network is

SX(ω) =
n
∑

i=1

i+n−1
∑

j=i+1

µi

1 − P̃2 + 2P̄ij(cosωTij − P̃ cosωTji)

1 + P̃2 − 2P̃ cosωT̃
. (31)

In the case that all the units are totally identical, i.e., λi = λ, pi = p,

and τi = τ(i = 1, . . . , n), SX(ω) reduces to SX(ω) = nλ(1+p)

1+p2−2 cosωτ
.

Generally, the model works for any network size n, but for sim-
plicity, we choose n = 3 for comparison with numerics. The cumula-
tive ISI described by Eq. (24) and the spectra described by Eqs. (27),
(29), (30), and (31) agree well with the direct simulation of Eq. (1),
as shown in Figs. 3(b), 4(d)–4(f), and 5(b), respectively. Noteworthy,

similar to the case n = 2, the cross-spectrum Sij is generally a real-
valued function only if n is an even number and neurons i and j are
symmetric, i.e., |i − j| = n/2.

To further demonstrate that our theory works for a larger net-
work, we choose n = 10 and calculate the cross-spectra between
neurons at di�erent distances, e.g., between neurons 1 and 3 and
between neurons 1 and 4. As shown in Fig. 6, the analytical results
agree well with the simulations. Noteworthy, as ε goes larger, the
duration of the delay-induced pulse becomes shorter, leading to a
smaller empirical time shift τ̄ . In the case depicted in Fig. 6, τ̄ ≈ 5
for ε = 0.2.

VI. CONCLUSION

In conclusion, we investigated the stochastic bursting phe-
nomenon in n unidirectional delay-coupled noisy excitable systems.
Under the condition of time-scale separation, an idealized version
of coupled point processes with leader–follower relationship was
formulated. Roughly speaking, occurrence of stochastic bursting is
based on three ingredients: excitability of the system, excitatory cou-
pling with a �xed time delay, and noise. Excitability combined with
noise results in the spontaneous spikes with a constant spiking rate,
which are leaders of the bursts. A relatively weak coupling is not
strong enough to induce a follower deterministically, but it leads to
an increased probability to have a follower, characterized by the cru-
cial parameter p. The leader with the followers forms a burst, which
is rather coherent (because of the �xed time interval between the fol-
lowers, nearly equal to the delay time) but has a random number of
spikes in it.

To characterize the stochastic bursting, the cumulative ISI dis-
tribution was derived; simulations demonstrated a good agreement
with the theoretical prediction. Furthermore, via the calculation of
the joint probability of the spikes, both the autocorrelation function
of a single neuron spike train, the cross-correlation function of any
pair of neurons in the unidirectional ring, and the autocorrelation
function of the total output from the network are derived analytically.
Calculation of the spectra and of the cross-spectra is then straightfor-
ward. Noteworthy, the model in the present paper not only shows an
interesting coherent spiking pattern, but also provides an alternative
way to investigate the cross-spectrumof di�erent neurons beyond the
linear response theory (see, e.g., Refs. 17–20, to name a few), which
is widely used in the analysis of correlated neuronal networks.

Above we assumed, based on the time scale separation, that the
delay times are constants. A generalization to the case of random
delay times is also possible and will be presented in detail elsewhere;
here, we discuss a simple version of this analysis. The essential point
where the �xed delays appear is the representation of the correlation
function (13) as a sum of delta-peaks at times nτ̃ . If we assume the
delay times to be independent Gaussian variables with mean value
τ̃ and standard deviation κ , then one has to replace in (13) delta-
functions by Gaussian peaks δ(t − nτ̃ ) → (2nπκ2)−1/2 exp[−(t
− nτ̃ )2/(2nκ2)]. In the spectrum (14), this correction corresponds to
the replacement pipj → pipj exp[−nω2κ2/2]. Around the main fre-
quency peaks (i.e., with small values of n), the e�ect of this correction
is, as expected, small, due to the time scale separation κ � τ̃ .

In this paper, we restricted our attention to a unidirectional cou-
pling in the ring geometry because, here, overlapping of incoming
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spikes is not possible (or, better to say, is very unprobable under
the condition of the time-scale separation). Such an overlap hap-
pens, e.g., in a network of delay-coupling neurons demonstrating
polychronization;21 study of stochastic bursting in such a setup is a
subject of ongoing research.
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