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Abstract
We study the problem of robustness of synchronous

states to disorder in the chain of phase oscillators with
local coupling. The study combines a numerical deter-
mination of the existence and stability of synchronous
states with an analytical investigation of the role of the
phase shift and the level of disorder in the natural fre-
quencies in the destruction of synchrony. We show that
the presence of the phase shift facilitates robustness of
the synchronous regime, at least up to its certain thresh-
old value.
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1 Introduction
Synchronization is a basic concept of rhythms adjust-

ment of self-sustained periodic oscillators due to their
weak interaction. This adjustment can be described in
terms of phase locking and frequency entrainment. Syn-
chronization phenomena in large ensembles of coupled
systems often manifest themselves as collective coher-
ent regimes appearing via non-equilibrium phase transi-
tions. Despite a recent progress in studies of this phe-
nomenon in a wide range of systems [Dörfler and Bullo,
2014], there are still several less elaborated problems,

such as synchronization in disordered chains and lat-
tices. Recent studies [Kogan, 2009; Lee, 2009] have
been restricted to the simplest case of pure sine-coupling
of phase oscillators, which is strongly dissipative. An-
other approach to disordered lattices has been developed
in paper [Lapteva et al., 2015], which is based on the
reformulation of the problem in the basis of linear An-
derson (localized) modes with the main focus on weakly
nonlinear regimes.

Multistability [Tilles et al., 2011; Girnyk et al., 2012;
Niu, 2017], multiple basins of attractions [Delabays et
al., 2017; Ha and Kang, 2012], and traveling waves
[Hong and Strogatz, 2011] are some of the fundamental
phenomena directly related to equilibrium propeerties of
lattices of phase oscillators with both attractive and re-
pulsive phase couplings. Among other papers we would
like to mention very recent investigations [Matheny et
al., 2019], where quasi-sinusoidal oscillators with linear
nearest-neighbour coupling have been shown to mani-
fest exotic regimes, such as splay states, inhomogeneous
synchronization, clusters, and weak chimeras. It is also
important to mention exact analytical results by [Mihara
and Nedrano, 2019] for stability and the dynamics close
to the q-twisted states in a finite lattice of symmetrically
coupled identical phase oscillators.

In this study we go beyond these investigations mainly
by exploring disordered chains as the simplest case
of disordered lattices. Namely, we characterize syn-
chronous states in disordered one dimensional lattices
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of coupled phase oscillators. We considered disorder in
natural frequencies of oscillators, taking the phase shift
in the coupling, which determine whether interaction is
attractive or neutral, as the main parameter.

Previous studies, particularly the fundamental paper by
Ermentrout and Kopell [Ermentrout and Kopell, 1984],
describe the dynamics and the bifurcations of the syn-
chronous state in the case of zero phase shift in details.
The main goal of this paper is to extent this study to the
case of a non-zero phase shifts. In the framework of
this study we numerically determine the existence and
stability of synchronous states. The strategy is to start
with a vanishing disorder, where the synchronous states
have just a regular smooth profile, and to follow numer-
ically these stationary solutions by increasing the disor-
der level, for different sets of the frequencies, checking
for stability of the obtained solutions.

The paper is organized as follows. In the Section 2 we
state the problem and present the mathematical model
of the system under study. In Section 3 we first of all
present results for a chain with vanishing disorder, in-
cluding analytic description for synchronous regime in
case of smooth profile of the solution. Our main ana-
lytical tool for the study of such regimes for different
values of the phase shift is the quasicontinuous approxi-
mation. Then, applying an iterative procedure based on
the Newton method to calculate an exact fixed point of
lattice equations, we numerically find the domain of the
existence of the stationary solutions associated with syn-
chronous states in the disordered chains with the phase
shift. Moreover, here we confirm obtained results by di-
rect numerical simulations within the formulated model
of the chain of phase oscillators. In Section 4 we present
numerical study of the most interesting cases of the dy-
namics for non-zero disorder in natural frequencies in
the region, where according to our analysis, the station-
ary solution does not exist. A summary of main results
and plans for further studies can be found in Conclusion.

2 The Model
Let us consider the lattice consisting of N phase os-

cillators with a nearest-neighbour coupling. In this case
the evolution of the phase ϕn of each unit is given by the
following equation

ϕ̇n=σωn+sin(ϕn+1−ϕn−α)+sin(ϕn−1− ϕn−α),

(1)
where normalized natural frequencies ωn are chosen
from a continuous uniform distribution over a line seg-
ment [0, 1], parameter σ defines the level of disorder in
natural frequencies, and the phase shift α determines
whether the interaction between elements is attractive,
repulsive or neutral. Below we assume that the coupling
is strongly attractive, i.e. α ≤ 0.3. It is natural to set the
boundary conditions as follows:

sin (ϕ0−ϕ1 − α)=0, sin (ϕN+1−ϕN−α)=0, (2)

which corresponds to the free boundaries of the chain,
i.e. there are no elements with indexes n = 0 and
n = N + 1. Actually, the system (1) can be interpreted
as the Kuramoto – Sakaguchi model, which is relevant
to many physical, chemical and biological systems, e.g.
lasers, biocircuits, electro-mechanical oscillators [Math-
eny et al., 2019]. This model is the paradigmatic and
universal object of study, which allows one to describe
in details the phenomenon of synchronization.

Previous studies [Ermentrout and Kopell, 1984], de-
voted to the case of zero coupling phase shift, reveal
several nontrivial features of the dynamics of the system.
First of all, here up to certain values of disorder in nat-
ural frequencies of oscillators, one can find synchronous
states in the described system. Our main goal in this pa-
per is to investigate, how these synchronous states and
their stability are changing with the increase in the gov-
erning parameter α.

In order to accomplish this, we introduce differences
between phases of neighbouring elements, vn = ϕn+1−
ϕn, where n = 1, . . . , N , as it is described in Ref.
[Sieber and Kalmar-Nagy, 2011], so that the system un-
der study can be rewritten in the following form

v̇n=σ∆n+cosα(sin vn+1−2 sin vn+sin vn−1)
−sinα(cos vn+1−cos vn−1),

(3)

where ∆n = ωn+1 − ωn. The boundary conditions (2)
are transformed correspondingly:

sin(v1−α)=0, sin(vN−α)=0. (4)

According to Ref. [Ermentrout and Kopell, 1984], the
synchronous states can be interpreted as stationary solu-
tions of the system (3), i.e. v̇n = 0 (n = 1, . . . , N ) and
each vn in these states satisfy the following equality:

cosα(sin v̄n+1−2 sin v̄n+sin v̄n−1)
−sinα(cos v̄n+1−cos v̄n−1)+ σ∆n=0.

(5)

In the further exploration of the behaviour of the system
(1), we first of all analyze the solutions of system (3).
Our strategy is as follows. We present the analysis of
stationary solutions for the phase differences v̄n in the
system (5) for different values of the phase shift α and
σ = 0. Next, starting from a stable synchronous state for
σ = 0 and fixed α, we continue this solution along the
parameter σ of disorder in natural frequencies, and then
we investigate how existence and stability properties of
such stationary solutions depend on the values of α. Us-
ing this procedure for multiple sets of ωn, we obtain a
statistically averaged borderline of the domain of exis-
tence on the parameter plane α, σ, where the system un-
der consideration evolves to full frequency synchroniza-
tion in the process of long-term evolution. Furthermore,
we numerically study the situation, when the stationary
solution does not exist, and describe possible dynamical
regimes in this case.
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Figure 1. (a) The solution v̄(x) of equation (6) for N = 100
elements in the chain. Numerically calculated profiles are shown in
coloured markers for the values of phase shiftα = 0.1 (blue circles),
α = 0.2 (red asterics) and α = 0.3 (cyan diamonds). Analytically
obtained curves of the profile are marked using black solid (α = 0.1),
dashed (α = 0.2) and dotted (α = 0.3) lines, correspondingly. (b)
Values of the derivative dv̄/dx for the solution of the system (7) at
site x = L/2. The point, where it is crossed by dashed red line,
corresponds to critical value α∗.

3 Synchronous States in the Disordered Chain
3.1 Quasicontinuous Approximation in the Case of

Vanishing Disorder and Smooth Profiles of Sta-
tionary Solutions

Here we focus on the stable stationary solutions in the
discrete system of nonlinear equations (3). We start our
analysis with the case of σ = 0. It is well known that
under this condition system (3) has a stable stationary
solution v̄n = 0 for α = 0. Taking this fact as a ba-
sis of our study, we describe modification of this solu-
tion for quite small values of the phase shift α, and for
vanishing disorder σ = 0. In the considered case, it is
instructive to start our analysis with the quasicontinuous
approximation of the system (5). In order to do this, we
associate a discrete index n with a continuous variable
x, introducing a spatial step h. Then we approximate the
discrete operators in the left-hand side of (5) with spatial
derivatives, substituting v̄(x) and v̄(x± h) instead of v̄n
and v̄n±1, and expanding sin v̄(x± h) and cos v̄(x± h)
as the Taylor series expansion up to the second order. As
a result, we arrive to the following ordinary differential
equation for the function v̄(x):

h cosα d2

dx2 sin v̄ − 2 sinα d
dx cos v̄ = 0 (6)

with boundary conditions v̄(0) = −α and v̄(L) =
α, where parameter L is the length of the continuous

medium.
Double integration of (6) yields an implicit function

for variable v̄ of the following form

v̄(x)=
2 tanα

h

(
x−L

2

)
+

Q√
βγ

ln

∣∣∣∣∣β tan v̄(x)
2 +
√
βγ

β tan v̄(x)
2 −
√
βγ

∣∣∣∣∣ ,
(7)

where β = 2 sinα − Q and γ = 2 sinα + Q. Here a
constant Q can be found using the boundary conditions
as a solution of the transcendental equation

− Q√
βγ

ln

∣∣∣∣β tan α
2 +
√
βγ

β tan α
2 −
√
βγ

∣∣∣∣ + α=
L tanα

h
. (8)

The examples of the solution profiles v̄(x) are shown in
Figure 1a. Formally, solution (7) of Eq. (6) exists for all
α ∈ [0, π2 ).

Equation (6) is the quasicontinuous approximation of
(5) for σ = 0. However, we stress here that it is not an
actual asymptotic version of the lattice problem (5), be-
cause once the spatial length is normalized using the lat-
tice length, the small parameter (which corresponds to h
above) is eliminated, and higher-order terms are small to
the extend that higher-order gradients are small. In other
words, approximation (6) is not based on a small param-
eter, because real spacing between the sites of the con-
sidered chain is one. Hence, the higher-order terms are in
general of the same order as the lower-order ones. Thus,
the validity of this approximation may be supported only
by a comparison of its predictions with the numerical so-
lution of the discrete system of nonlinear equations (5).

According to our numerical calculations based on the
Newton method, the stationary solution of lattice equa-
tion (6) with profile close to the kink solution (7) with
h = 1 and L = N actually does not exist for values of
the phase shift α > α∗. We clearly see from our numer-
ical analysis that the critical value α∗ is determined by
the degree of smoothness of the solution (7) in its central
part close to x = L/2. The possible reason for it is as
follows. As it was mentioned above, the quasicontinuous
approximation is valid for smooth profile of v̄(x) defined
by (7). The increase in α above the threshold value α∗

leads to the case, when the derivative dv̄/dx at x = L/2
becomes comparable with the value of α/h (Figure 1b).
Therefore the critical value of α∗ can be calculated from
the following equation:

2 tanα∗
(
Q

2α∗ + 1

)
= α∗ (9)

Thus, the value of v̄n changes in an almost abrupt way
through the transition from the site with index n = N/2
to the sites with n = N/2 ± 1. Therefore the solution,
corresponding to the continuous approximation of the
system (6), can no longer be used for a valid description
of the solution of (5).



218 CYBERNETICS AND PHYSICS, VOL. 8, NO. 4, 2019

3.2 Numerical Continuation of the Stationary Solu-
tion to the Case of the Non-zero Level of Disor-
der

Now let us study an evolution of the stationary solution
of the system (5) in the presence of disorder, i.e. when
σ > 0. For this purpose we solve system (5) for the
synchronous state numerically. Starting from a smooth
profile of the phase differences vn obtained for the case
of vanishing disorder as outlined above, we apply an it-
erative procedure based on the Newton method to find
an exact fixed point of these equations. The strategy is
to start from solutions of (5) with σ = 0 and different
values of α, where the shape of the synchronous state is
known, and to change parameter σ gradually for fixed
values of α and ωn, to remain in the convergence do-
main of the Newton method. In this way, the solutions
can be found in a large domain of parameters α, σ, and
its borderlines can be identified for multiple sets of nat-
ural frequencies ωn.

Next, we analyze temporal stability of the stationary
solutions under discussion, for each set of natural fre-
quencies ωn and different values of parameters α and σ.
For this goal we linearize the lattice equations (3) with
boundary conditions (4), which are characterized by the
phase shift α and the level of disorder σ, near one of
such a synchronous state v̄n. Then, after applying some
necessary transformations to it, we finally analyze the
eigenvalues of a matrix with heterogeneous coefficients.

Here we present some details of basic calculations of
time stability of stationary solutions in the presence of
disorder. The main steps of this procedure are as fol-
lows. To study stability of the synchronous state with
certain values of α and σ and corresponding set of natu-
ral frequencies ωn we apply a substitution

vn(t) = v̄n + ṽn(t), (10)

where ṽn(t) describes a small deviation from the profile
v̄n, and accounts for all possible perturbations around
the given stationary profile v̄n. Substituting (10) into (3)
and linearizing the results with respect to the variation
ṽn(t), we get a system of linear evolutionary equations
for ṽn(t) in the following form:

dṽn
dt

= cos(v̄n−1 + α)ṽn−1(t)− 2 cosα cos(v̄n)ṽn(t)

+ cos(v̄n+1 − α)ṽn+1(t).
(11)

Solution of equations (11) is sought in the form of

ṽn(t) = ane
λt (12)

leading to the eigenvalue problem

λan = cos(v̄n−1+α)an−1−2 cosα cos(v̄n)an+cos(v̄n+1−α)
(13)

Therefore the stability properties of synchronous state
can now be investigated by analyzing the spectrum of
the time-independent eigenvalue problem (13).

In order to characterize the borderlines of existence
and stability of the stationary solution, we calculate
v̄n(α, σ) for different sets of individual frequencies ωn,
and for different values of the governing parameters
α > 0, σ > 0 as a C0-smooth (with respect to param-
eters) continuation of the zero solution vn(0, 0) = 0,
n = 1, . . . , N in case σ = 0, α = 0 for different sets
of natural frequencies ωn. Results of these calculations
are shown in Figure 2, where one can see several real-
izations of the borderline of stability of the stationary
solution (light blue lines), and their mean value (single
dark blue line) on the parameter plane α, σ, where each
realization of the described borderline corresponds to a
particular set of natural frequencies ωn. For a particu-
lar set of ωn, one can observe stationary solution for any
pair of parameters α, σ taken from the region below this
borderline.
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Figure 2. Biparameter map of the regimes. Here light blue lines cor-
respond to the borderlines of the region, where the stationary solution
is stable. Dark blue line corresponds to the mean value of these curves.
Letters A − E describe sets of parameters for which we present the
dynamical regimes below. At parameter setA one can observe the dy-
namics typical for the stationary solution, while at parameter setsB –
E different types of more complex dynamics are observed.

4 Numerical Studies of Dynamical Properties in the
Disordered Chain

Now let us describe numerically typical dynamical
regimes in the lattice within the framework of the initial
model (3), for several values of the parameters α and σ
inside and outside the region of existence of synchronous
solution (Figure 2). All the results presented here are ob-
tained for one fixed set of ωn; the dynamics of the system
under study for other possible sets of natural frequencies
is qualitatively similar.
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Figure 3. The typical dynamics of the stationary synchronous solu-
tion of the system (1) for vanishing disorder σ = 0.4, α = 0.1
(pointA in Figure 2). (a) Time series for the phases ϕn and (b) snap-
shots for phase differences vn.

First of all, we note that direct numerical simulations
confirm the presence of synchronous solution for vanish-

Figure 4. The dynamics of a complex non-stationary solution of the
system (1) for σ = 0.6, α = 0.1 (point B in Figure 2). (a) Time
series for phasesϕn and initial distribution of natural frequenciesωn,
(b) snapshots for phase differences vn. Here in coloured regions, one
may observe phase slips that are markers of loss of the stability of
synchronous state and the occurence of more complex dynamics in
the system. In non-coloured regions, the behaviour of oscillators is
close to a synchronous uniform rotation with insufficient quasiperiodic
deviations from given synchronous state, which are caused by phase
slips in neighbouring regions.

Figure 5. The dynamics of a complex non-stationary solution of the
system (1) for σ = 1, α = 0.1 (point C in Figure 2). (a) Time
series for phasesϕn and initial distribution of natural frequenciesωn,
(b) snapshots for phase differences vn. Coloured regions have the
same meaning as in Figure 4.

Figure 6. The dynamics of a complex non-stationary solution of the
system (1) for σ = 0.7, α = 0.3 (point E in Figure 2). (a) Time
series for phasesϕn and initial distribution of natural frequenciesωn,
(b) snapshots for phase differences vn. Coloured regions have the
same meaning as in Figure 4.
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Figure 7. The dynamics of the system for σ = 1, α = 0.3 (point
D in Figure 2). (a) Time series for phases ϕn and initial distribu-
tion of natural frequenciesωn, (b) snapshots for phase differences vn.
Coloured regions have the same meaning as in Figure 4.

ing disorder and the phase shift from the region α < α∗.
In Figure 3 one can see, after some transient process, that
the phases of all units are locked together and the phase
differences vn do not change in time (see Figure 3b).

Outside of the predescribed region, i.e. in the case of a
sufficient disorder in the oscillators’ natural frequencies,
one can observe more complicated dynamical regimes
in the system. In Figure 4 one can see, for parameter
values α = 0.1 and σ = 0.6, a complex non-stationary
regime with phase slips, which means the breakups in the
synchronous dynamics of the chain (1). Far beyond the
borderline of the existence of the stationary synchronous
regime, e.g. for parameter values α = 0.1 and σ = 1,
these phase slips become even more evident and rough
(see Figure 5). With the increase in the phase shift pa-
rameter up to the value α = 0.3, we observe that the
threshold value of σ, which is related to the first occur-
rence of the phase slips, increases. This fact is quite ev-

ident from the comparison of pairs of Figures 4-6 and
Figures 5-7.

5 Conclusion
In this paper we studied the robustness of the station-

ary solution in a disordered lattice of phase oscillators
against the phase shift parameter and the level of disor-
der in the natural frequencies. We focused on the case of
a smooth profile of the stationary solution. Under this
assumption, we have shown that the phase shifts in a
certain range make the regions of existence of the sta-
ble synchronous regime even wider in comparison to the
case of zero phase shift. This result may be counter-
intuitive, because a phase shift is believed to be harmful
for synchronization in this case.

Also, in this system we observe different patterns for
different disorder realization. Of the main interest were
stationary synchronous solutions. As we expected to see,
these clusters dominate weakly asynchronous states for
the phase shifts of the interaction close to zero. Dynam-
ically, the simplest cluster states are periodic or quasi-
periodic ones, while for a stronger disorder and a larger
number of clusters, chaotic states are expected.

This study is the first part of intensive investigations,
where the main goal is to find statistical properties of
the interplay between structural (characterized via spa-
tial configurations, e.g., clusters) and dynamical (char-
acterized via Lyapunov exponents, correlations, diffu-
sion properties) complexity. More specifically, we plan
to study complex states that appear in different non-
homogeneous chains of phase elements. A detailed an-
alytical and numerical study of such ensembles should
reveal basic features, stability conditions and bifurcation
scenarios of birth and death of complex states in such
systems. Here the interdisciplinary approach, where a
physical statistical analysis should be complemented by
a mathematical bifurcation analysis, is essential.
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