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We develop an approach for the description of the dynamics of large populations of phase oscillators
based on “circular cumulants” instead of the Kuramoto-Daido order parameters. In the thermodynamic
limit, these variables yield a simple representation of the Ott-Antonsen invariant solution [E. Ott and T. M.
Antonsen, Chaos 18, 037113 (2008)] and appear appropriate for constructing perturbation theory on top of
the Ott-Antonsen ansatz. We employ this approach to study the impact of small intrinsic noise on the
dynamics. As a result, a closed system of equations for the two leading cumulants, describing the dynamics
of noisy ensembles, is derived. We exemplify the general theory by presenting the effect of noise on the
Kuramoto system and on a chimera state in two symmetrically coupled populations.
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The study of ensembles of self-sustained (autonomous)
oscillators is relevant for many setups in physics (Josephson
junction and spin-torque oscillator arrays [1]), engineering
(stability of pedestrian bridges, coupled electronic oscilla-
tors, power grid networks [2]), chemistry (ensembles of
electrochemical oscillators [3]), and life sciences (colonies
of yeast cells, synthetic gene oscillators [4]). Of major
interest are collective phenomena, like synchronization, in
these ensembles.Many essential properties can be described
already within simple phase models valid at small coupling.
In this limit, only the dynamics of the phases of oscillators is
nontrivial, while the amplitudes are enslaved. The paradig-
matic model here is the Kuramoto model of sine-coupled
phase oscillators [5], demonstrating a nonequilibrium tran-
sition from asynchrony to synchrony [6].
Recently, remarkable progress has been achieved in the

description of the dynamics of order parameters for pop-
ulations of phase oscillators. Watanabe and Strogatz (WS)
[7] demonstrated partial integrability of a class of phase
ensembles, allowing reduction of the full dynamics of a
population ofN identical elements to a three-dimensional set
of equations for certain global variables, plus N − 3 con-
stants of motion. In the thermodynamic limit, where the
number of the constants of motion tends to infinity, this
integrability means invariance in time of the density of the
constants. The global variables have an especially trans-
parent form if the density of the constants is uniform—in this
case one obtains a closed dynamical system for the natural
order parameters of the system. These equations have been
obtained by Ott and Antonsen (OA) [8] with another
method, see Refs. [9,10] for interrelation of the two
approaches. In the full state space, the OA equations are
valid on a particular OA manifold, which is only neutrally

stable for identical oscillators (due to WS integrability) but
becomes weakly stable if one performs coarse graining for
nonidentical oscillators [11]. The simplicity of OA equa-
tionsmade them a popular tool in studies ofmany setups like
coupled ensembles [12], chimera states [13,14] consisting of
synchronized and partially synchronous parts, and common-
noise driven [15], excitable, and nonhomogeneous phase
oscillators [16,17].
The main goal of this Letter is to extend OA theory to the

case of noisy oscillators. For small noise, in the leading
order in noise intensity, we derive and analyze a closed
dynamical system for the two order parameters, describing
populations of noisy phase oscillators. Our main tool is the
reformulation of the full dynamics in terms of the circular
cumulants, which are related to the complex order param-
eters in the same way that cumulants of distributions of real
random variables are related to their moments. We stress
here that because the complex order parameters are
moments of a complex observable defined on the unit
circle circular cumulants have nothing in common with
Gaussian approximations sometimes used in theories of
collective dynamics [18].
We start with an ensemble of phase oscillators φkðtÞ

having the same natural frequency Ω, subject to a common
complex-valued external force hðtÞ, and to intrinsic (not
common) noise:

_φk ¼ Ωþ Imð2hðtÞe−iφkÞ þ σξkðtÞ; ð1Þ

where ξk are independent white Gaussian noises:
hξkðtÞi ¼ 0, hξkðtÞξmðt0Þi ¼ 2δkmδðt − t0Þ. In most appli-
cations, the force itself depends on the phases via mean-
field coupling, but to develop the theory, it is convenient to

PHYSICAL REVIEW LETTERS 120, 264101 (2018)

0031-9007=18=120(26)=264101(6) 264101-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.264101&domain=pdf&date_stamp=2018-06-25
https://doi.org/10.1063/1.2930766
https://doi.org/10.1103/PhysRevLett.120.264101
https://doi.org/10.1103/PhysRevLett.120.264101
https://doi.org/10.1103/PhysRevLett.120.264101
https://doi.org/10.1103/PhysRevLett.120.264101


write it in a general form. In the thermodynamic limit of an
infinite ensemble, its state can be described by the
distribution density wðφ; tÞ which obeys the Fokker-
Planck equation,

∂w
∂t þ

∂
∂φ ððΩ − ihe−iφ þ ih�eiφÞwÞ ¼ σ2

∂2w
∂φ2

: ð2Þ

It is convenient to introduce Fourier modes
wðφ; tÞ ¼ ð2πÞ−1½a0 þ

P∞
j¼1ðaje−ijφ þ c:c:Þ�, with a0 ¼

1 due to the normalization condition, and to write an
infinite system of equations for their evolution (cf. [16]),

_aj¼ jiΩajþjhaj−1−jh�ajþ1−σ2j2aj; j≥1: ð3Þ

Complex quantities aj ¼ heijφi are nothing else but the
Kuramoto-Daido order parameters [19] for the ensemble.
In the case of a population of nonidentical oscillators with

different natural frequenciesΩ (we assume that the forcingh
is still a common one), one can consider the Fourier modes
ajðΩ; tÞ as functions of Ω. It is natural to introduce order
parameters averaged over frequencies Ω with the distribu-
tion gðΩÞ: Zj ¼

R
gðΩÞajðΩ; tÞdΩ. This averaging takes an

especially simple form for the Lorentzian distribution of
frequencies gðΩÞ ¼ γ=πððΩ −Ω0Þ2 þ γ2Þ, where γ is the
characteristic half-width of the natural frequency band
around the central frequency Ω0. With the assumption that
all ajðΩ; tÞ are analytic in the upper half-plane of the
complex Ω plane (if they are analytic at certain time
instant t�, they will remain analytic for t > t�; see [8] for
details), the integral can be evaluated via residues:
ZjðtÞ ¼ ajðΩ0 þ iγ; tÞ. As a result, we obtain an infinite
system of equations for the order parameters Zj:

_Zj ¼ jðiΩ0 − γÞZj þ jhZj−1 − jh�Zjþ1 − σ2j2Zj: ð4Þ

We stress here that the analyticity property is important only
for the reduction of the sets of the Fourier modes to single
values calculated at a pole in the complex plane. For an
ensemble of identical oscillators (which formally corre-
sponds to γ ¼ 0) and for frequency distributions which
cannot be integrated via residues, analyticity is irrelevant,
and our method below does not rely on this property.
In the noise-free case σ ¼ 0, system (4) possesses an

invariant two-dimensional manifold, called the Ott-
Antonsen manifold [8]: Zn ¼ ðZ1Þn. The resulting equation
for the main order parameter Z1 has a simple form,

_Z1 ¼ ðiΩ0 − γÞZ1 þ h − h�Z2
1: ð5Þ

On the OA manifold, all the order parameters are deter-
mined by Z1, and hence, h is a function of Z1. Therefore,
Eq. (5) is a closed equation, the dynamics of which is easy

to analyze. This made the OA ansatz so popular in different
setups.
Our goal in this Letter is to develop a low-dimensional

description of the dynamics of the order parameters in the
presence of weak noise σ ≠ 0. The main idea is to
reformulate the general equations (4) in a cumulant form,
more suitable for the perturbation approach.
The order parameters Zn ¼ heinφi can be treated as

moments of the observable eiφ, and they can be obtained
from the moment-generating function

Fðk; tÞ ¼ hexpðkeiφÞi≡X∞

m¼0

ZmðtÞ
km

m!
; ð6Þ

as ZmðtÞ ¼ ð∂m=∂kmÞFðk; tÞjk¼0. The partial differential
equation for F follows directly from Eq. (4):

∂F
∂t ¼ ðiΩ0 − γÞk ∂

∂kF þ hkF − h�k
∂2

∂k2 F

− σ2k
∂
∂k

�
k
∂
∂kF

�
: ð7Þ

As in many other situations, it appears beneficial to
introduce circular cumulants ϰm via the power series of
the cumulant-generating function defined as [20]

ψðk; tÞ ¼ k
∂
∂k lnFðk; tÞ ¼

k
F
∂F
∂k ≡X∞

m¼1

ϰmðtÞkm: ð8Þ

For example, the first three circular cumulants are

ϰ1¼Z1; ϰ2¼Z2−Z2
1; ϰ3¼

1

2
ðZ3−3Z2Z1þ2Z3

1Þ:

The partial differential equation for ψðk; tÞ can be derived
by applying the operator ∂t to (8) and employing (7):

∂ψ
∂t ¼ ðiΩ0 − γÞk ∂ψ∂k þ hk − h�k

∂
∂k

�
k
∂
∂k

�
ψ

k

�
þ ψ2

k

�

− σ2k
∂
∂k

�
k
∂ψ
∂k þ ψ2

�
: ð9Þ

The infinite system of equations for the circular cumulants
can be obtained directly from (8), (9)

_ϰj ¼ jðiΩ0 − γÞϰj þ hδj1

− h�
�
j2ϰjþ1 þ j

Xj

m¼1

ϰj−mþ1ϰm

�

− σ2
�
j2ϰj þ j

Xj−1

m¼1

ϰj−mϰm

�
: ð10Þ

The advantage of circular cumulants is in a simple
representation of the Ott-Antonsen manifold. It
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corresponds to the case where all high cumulants vanish:
ϰm ¼ 0, m > 1, and the only nontrivial cumulant is
ϰ1 ¼ Z1. In this case the generating functions are ψðk; tÞ ¼
kZ1ðtÞ and Fðk; tÞ ¼ exp½kZ1�. One can easily check that
these generating functions are invariant solutions of
Eqs. (7) and (9) for vanishing noise σ ¼ 0, provided Z1

evolves according to Eq. (5).
For nonvanishing noise, generally all the cumulants are

nonzero. However, for small noise, one can expect the
cumulants with orders larger than one to be small. To reveal
the hierarchy of this smallness, it is instructive to write
explicitly the equations for the cumulants ϰ2 and ϰ3:

_ϰ2 ¼ 2iðΩ0 − γÞϰ2 − 4h�ϰ3 − 4h�ϰ1ϰ2
− 4σ2ϰ2 − 2σ2ϰ21; ð11Þ

_ϰ3 ¼ 3iðΩ0 − γÞϰ3 − 9h�ϰ4 − h�½6ϰ1ϰ3 þ 3ϰ22�
− 9σ2ϰ3 − 6σ2ϰ1ϰ2: ð12Þ

On the rhs of Eq. (11), there are “homogeneous” terms
∝ ϰ2 and “driving” terms∼ϰ3 and∼σ2ϰ21. If we assume that
the higher-order cumulants are smaller than the lower-order
ones, then the term ∼σ2ϰ21 determines the level of the
cumulant ϰ2, which appears to be ϰ2 ∼ σ2ϰ21. A similar
inspection of Eq. (12) yields leading “driving” terms ∼ϰ22
and ∼σ2ϰ1ϰ2, both have order ∼σ4. Thus, we conclude that
the smallness of the third cumulant is∼σ4. Inspection of the
full system (10) shows that an assumption jϰmj ∼ σ2ðm−1Þ is
consistent with the dynamics in all orders. A more detailed
analysis of the hierarchy of cumulants will be reported
elsewhere; below, we exploit the simplest approximation,
where we assume all the cumulants above the second one to
vanish. As it follows from the above discussion, accuracy
of this approximation is Oðσ4Þ. As a result, we obtain a
closed system of equations for the first and the second
cumulants (for simplicity of further notations, we omit the
index of Z1 and denote κ ¼ ϰ2):

_Z ¼ ðiΩ0 − γÞZ þ h − h�Z2 − σ2Z − h�κ;

_κ ¼ 2ðiΩ0 − γÞκ − 4h�Zκ − σ2ð4κ þ 2Z2Þ: ð13Þ

This system of two equations for two complex order
parameters Z and κ ¼ Z2 − Z2

1 generalizes the Ott-
Antonsen equation (5) to the case of small noise. Below,
we explore it in different setups.
It is instructive to examine the perturbation of the OA

probability density corresponding to the one nonvani-
shing second circular cumulant κ. With two nonvanishing
cumulants, the moment-generating function is FðkÞ ¼
exp½kZ þ κðk2=2Þ�. Assuming smallness of κ, we approxi-
mate it as FðkÞ ≈ ½1þ κðk2=2Þ� exp½kZ� and obtain for the
moments Zm ¼ Zm þ ½mðm − 1Þ=2�κZm−2. Summation of
the Fourier series with these Fourier coefficients yields
wðφÞ ¼ wOAðφÞ þ wCðφÞ, where

wOAðφÞ ¼
1 − jZj2

2πjeiφ − Zj2 ; wCðφÞ ¼ Re

�
π−1κeiφ

ðeiφ − ZÞ3
�
:

The perturbation wC is a function of the relative
phase φ − argðZÞ and depends on the parameter
Θ ¼ argðκÞ − 2 argðZÞ.
As a first application of the theory, we consider the effect

of noise on the standard Kuramoto problem, where the
ensemble is driven by the mean field itself, i.e.,
h ¼ ðε=2ÞZ, where ε is the coupling constant. By a
transformation to a rotating with frequency Ω0 reference
frame, we can set Ω0 ¼ 0. Now, system (13) takes the form

_Z ¼ −γZ þ ε

2
Zð1 − jZj2Þ − σ2Z −

ε

2
Z�κ;

_κ ¼ −2γκ − 2εjZj2κ − σ2ð4κ þ 2Z2Þ: ð14Þ

The dynamics of this model is simple: above the instability
threshold of the asynchronous state Z ¼ κ ¼ 0, which is
εc ¼ 2ðγ þ σ2Þ, the system evolves to a stable steady state:

jZj2 ¼ 1

2
−
3ðγ þ σ2Þ

2ε

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðε − γÞ2 þ 2σ2ðε − 3γÞ − 7σ4

p

2ε
;

κ ¼ −σ2Z2

γ þ 2σ2 þ εjZj2 : ð15Þ

Comparison of this solution with the numerical solution of
full equations. (4) in Fig. 1 shows that indeed the
approximation (14) has accuracy ∼σ4 in the whole range
of γ, including the case of identical oscillators γ ¼ 0.
In this figure, we also show predictions of the simplest

approximation, where one sets all higher circular

10-6

10-5

10-4

10-3

10-2

10-1

100

10-3 10-2 10-1

FIG. 1. Error of the approximate solution (15) as a function of
σ2 for ε ¼ 1 and different values of parameter γ: red open squares
γ ¼ 0.2, green open circles γ ¼ 0.05, blue open triangles γ ¼ 0.
Dashed line shows theoretical prediction ∼σ4. We show also
predictions of the simplified model where one sets κ ¼ 0, with the
corresponding filled markers. The error of this approximation is
∼σ2 (dotted line).
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cumulants, except the first one, to zero. In this approxi-
mation, system (13) reduces to one simple equation
_Z ¼ ðiΩ0 − γÞZ þ h − h�Z2 − σ2Z. The solution of the
Kuramoto model then reads jZj2 ¼ ðε − 2γ − 2σ2Þ=ε. As
it follows from comparison with solution (15), the error of
this approximation is of the order ∼σ2; this is confirmed by
calculations presented in Fig. 1. Thus, this approximation,
although it leads to very simple equations, does not catch
the effect of noise in the leading order, contrary to
system (13).
With the next example, we illustrate that small noise acts

as a factor, stabilizing a vicinity of the OA manifold in
systems of identical oscillators. The system suggested by
Abrams et al. [13] consists of two symmetrically coupled
populations (variables φ and ψ ) of phase oscillators. We
write this system with additional independent white noise
terms:

_φk ¼ Ωþ 1þ A
2N

XN

j¼1

sinðφj − φk − αÞ

þ 1 − A
2N

XN

j¼1

sinðψ j − φk − αÞ þ σξkðtÞ;

_ψk ¼ Ωþ 1þ A
2N

XN

j¼1

sinðψ j − ψk − αÞ

þ 1 − A
2N

XN

j¼1

sinðφj − ψk − αÞ þ σηkðtÞ: ð16Þ

Here, N is the size of the populations, α is the phase shift in
the coupling. Parameter A determines different coupling
strengths of intra- and interpopulation interactions. Noise-
free (σ ¼ 0) regimes have been analyzed in Refs. [9,13]; for
experimental realization of this setup, see [21,22]. In
Ref. [13], it was shown, using the OA ansatz, in a range
of parameters a regime where one population fully syn-
chronizes (i.e., ψ1 ¼ � � � ¼ ψN ¼ Ψ), while the other one
synchronizes partially (i.e., its order parameter Z ¼ heiφi
takes values 0 < jZj < 1), is stable. This chimera state in
the reference frame rotating with the phase of the second
population Ψ can be static (i.e., Ze−iΨ ¼ const) or periodic
(i.e., Ze−iΨ is a periodic function of time). In Ref. [9], it was
shown that the regimes studied in [13] are observed only if
the initial conditions lie on the OA manifold for the first
population. Because the OA manifold is not attractive, for
more general initial conditions, one more nontrivial fre-
quency is added: one observes a periodic regime instead of
a steady state and a quasiperiodic regime instead of a
periodic one. This is illustrated in Fig. 2(a). The dashed
green line shows a periodic solution on the OA manifold,
while the solid gray line shows a quasiperiodic regime for
the initial conditions away from the OA manifold. The
bifurcation analysis for the attracting regimes in system

(16) with intrinsic noise, performed in the thermodynamic
limit N → ∞ within the framework of Eq. (3), can be also
found in [16].
We now apply to system (16) the small-noise theory

developed above. In the presence of noise, both populations
are partially synchronous; thus, we have to write a system
of two equations of type (13) for two order parameters Z, Y
and for two corresponding second cumulants κ, ν. Here,
also enter two fields acting on the populations, H ¼
0.25½ð1þ AÞZ þ ð1 − AÞY�e−iα and F ¼ 0.25½ð1þ AÞY þ
ð1 − AÞZ�e−iα (we set Ω ¼ 0 because this parameter can be
excluded in the rotating reference frame):

_Z ¼ H −H�Z2 − σ2Z −H�κ;

_κ ¼ −4H�Zκ − σ2ð4κ þ 2Z2Þ;
_Y ¼ F − F�Y2 − σ2Y − F�ν;

_ν ¼ −4F�Yν − σ2ð4νþ 2Y2Þ: ð17Þ

Solutions of this system are shown in Fig. 2(b), with circles
for the same parameters as used in Fig. 2(a), but with
addition of a small noise σ2 ¼ 10−4. This solution practi-
cally overlaps with the solution of the full equations (3)
(solid blue line), where the infinite system (3) was
truncated at a large number of modes m ¼ 200. This
comparison confirms the quality of the cumulant approxi-
mation. Also, we show in Fig. 2(b) the OA solution for the
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FIG. 2. Panel (a): Noise-free chimera dynamics. Dashed green
line, periodic solution on the OA manifold; solid gray line,
quasiperiodic solution out of the OA manifold. Panel (b):
Dynamics in the presence of noise σ2 ¼ 10−4. Solid blue line
[solution of the full equations (3)] is overlapped by red circles
[solution of system (17)]. Dashed green line is the same as in
panel (a). Panel (c): Time evolution of the order parameters in the
noise-free case [bottom red line, this solution corresponds to the
gray solid line in panel (a)] for σ2 ¼ 4 × 10−5 (middle green line)
and for σ2 ¼ 10−4 (top blue line). Middle and top lines are shifted
for better visibility. All solutions start from the same initial
conditions out of the OA manifold.
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noise-free case [the same dashed green line as in panel (a)].
Importantly, the solution of system (17) is an attractor: we
checked this by starting from different initial conditions in
the (truncated as described above) full equations (3) [these
initial conditions cannot be tested within system (17)
because it is valid only for small higher cumulants and
not for generic initial states with potentially large higher
cumulants]. We illustrate convergence to the solution near
the OA manifold described by system (17) in Fig. 2(c).
With this example, we see that noise acts in a stabilizing

manner on the dynamics of the populations of identical
oscillators. The probability density evolves toward a state
close to the OA manifold. This state is well described, for
small noise, by the first and the second circular cumulants.
The distance to the OA manifold is visible even for small
noise [cf. distance between the green curve and the circles
in Fig. 2(b)].
In conclusion, we have developed an analytic approach

yielding closed equations for the collective modes for
ensembles of noisy coupled phase oscillators. The equa-
tions generalize the Ott-Antonsen approach, valid in the
noise-free situation, to the case of small noise. Our theory is
based on the reformulation of the dynamics in terms of the
circular cumulants. These new variables have a nice
property: all high cumulants vanish on the OA manifold,
thus providing a natural way to construct a perturbation
procedure, using the noise intensity as a small parameter.
Our equations account for the leading order in this
parameter.
For the Abrams et al. chimera model, we demonstrated

that small noise makes a neighborhood of the OA manifold
stable even for identical populations: a solution far from
this manifold converges to a σ2 vicinity of the OAmanifold,
where it can be described by the system derived in this
Letter. We expect this stabilizing effect of noise to be a
rather generic property. However, a systematic analysis of
different situations, especially of states far from the OA
manifold, where a nontrivial interplay between noise and
the deterministic dynamics may occur, is necessary to
clarify the problem.
The method of circular cumulants can potentially be

used to develop a perturbation approach for other situa-
tions, where the conditions of validity of OA theory are
slightly violated. These results will be reported elsewhere.
At this point, it is instructive to compare the cumulant
approach of this Letter with perturbation theory developed
in Ref. [23]. This theory [23] uses the Watanabe-Strogatz
formalism and provides results in terms of corrections to
the WS global variables. They are, however, different from
the usual order parameters used in this Letter; thus,
equations obtained here allow for a direct interpretation.
Our approach is, however, restricted to the thermody-
namic limit.
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