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We demonstrate the existence of solitary waves of synchrony in one-dimensional arrays of oscillator
populations with Laplacian coupling. Characterizing each community with its complex order parameter, we
obtain lattice equations similar to those of the discrete nonlinear Schrödinger system. Close to full synchrony,
we find solitary waves for the order parameter perturbatively, starting from the known phase compactons
and kovatons; these solutions are extended numerically to the full domain of possible synchrony levels. For
nonidentical oscillators, the existence of dissipative solitons is shown.
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I. INTRODUCTION

The dynamics of oscillator populations attracts much in-
terest across different fields of science and engineering. The
paradigmatic and universal object of study is the Winfree-
Kuramoto model of globally coupled phase oscillators. It
demonstrates a transition to synchrony, characterized in terms
of the Kuramoto order parameter [1]. This effect is rele-
vant to many systems (lasers, biocircuits, and electronic and
electro-chemical oscillators [2]), which can be well described
within the mean-field coupling models. In the case where the
oscillators are organized as an ordered medium or a lattice
with a distant-dependent coupling, spatiotemporal patterns
can be observed. The most popular are standing chimera
states, where regions of synchrony and asynchrony coexist
[3], first reported for a one-dimensional (1D) medium by
Kuramoto and Battogtokh (KB) [4]. The smallest system to
observe chimera experimentally is that of two or three lumped
subpopulations [5]. Further experiments have been performed
with media of nonlocally coupled chemical oscillators [6] (up
to 1600 units).

While 1D chimera patterns are typically stationary so-
lutions, a size of which is a characteristic system size, a
possibility of localized traveling waves of the complex order
parameter in oscillatory media remains an open problem. In
this paper we report on solitary synchronization waves in
an 1D oscillatory medium with Laplacian coupling. Our first
model—a lattice of subpopulations of phase oscillators—can
be interpreted as a lattice generalization of systems of two
and three coupled oscillator communities, extensively studied
in Refs. [7,8]. The main tool of our analysis is based on the
Ott-Antonsen (OA) ansatz [9], allowing one to write closed
equations for the complex order parameter (see Ref. [10] for
applications of this ansatz to the KB-type chimeras). The
resulting model resembles the nonlinear Schrödinger (NLS)
lattice [11]; thus our model provides a link between the
theory of synchronization and the theory of solitons. We
find solitary waves in the lattice via a perturbation method,
starting with compacton solutions for the fully synchronous

case, and describe the full domain of existence of localized
waves for different levels of synchrony. Furthermore, we show
that for 1D arrays with diversity of natural frequencies and
with additional attractive coupling compensating this diver-
sity, waves of synchrony exist as dissipative solitons. To show
the generality of synchrony waves, we also demonstrate them
in an off-lattice model of a continuous oscillatory medium
with an interaction defined through a convolution integral. In
contradistinction to the KB setup, the interaction kernel is of
Laplacian type, the integral over which vanishes.

II. TRAVELING WAVES IN A LATTICE MODEL

A. Network of nearest-neighbor interacting subpopulation
of globally coupled phase oscillators

As a starting point, we consider an infinite 1D lattice
(index n) of nearest-neighbor interacting subensembles of M

globally coupled (in general, nonidentical) elements (index
m). In this case, the evolution of the phase ϕnm(t ) of the mth
unit belonging to population n is given by

dϕnm

dt
= ωnm +

n+1∑
ñ=n−1

Knñ

M

M∑
m̃=1

sin (ϕñm̃ − ϕnm − αnñ), (1)

where ωnm is the natural frequency of the mth oscillator in
community n, Knñ is the strength, and αnñ is the phase lag
of coupling between the oscillators in group n and those in
group ñ. Such a model in the case of two coupled populations
is known as the Abrams et al. model, possessing chimera
states and intensively studied recently (see Refs. [7,8] for
the theoretical analysis of two and tree populations, and
Ref. [5] for experimental realizations). Typically, frequencies
ωnm obey a known distribution g(ω). Following the works
[7–9], we take g(ω) to be the Cauchy distribution πg(ω) =
γ [(ω − ω0)2 + γ 2]−1. Here we assume that each subpopula-
tion is coupled only to the two nearest-neighbor communities
symmetrically with Kn(n±1) = κ , αn(n±1) = α, and to itself
with Knn = −2(κ + � ), αnn = α + β. Noteworthy, we may
set κ = 1 by rescaling time.
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The macroscopic state of the nth population is fully
characterized by the local Kuramoto order parameter Zn =
M−1 ∑M

m=1 eiϕnm . Physically, the amplitude of this complex
parameter describes the level of synchrony of the units be-
longing to group n: |Zn| = 0 if the phases are uniformly
distributed (full asynchrony), and |Zn| = 1 in the case of
full synchrony where the phases coincide. Partial coherence
of oscillators corresponds to 0 < |Zn| < 1. In the case of
infinitely large number M of particles per each community,
one can reduce the problem, using the OA ansatz [7–9], to
lattice equations with nearest-neighbor Laplacian coupling for
Zn(t ). The main steps of the procedure for deriving these
equations are as follows.

In the so-called thermodynamic limit M → ∞, it is natural
that the nth continuum of phase oscillators at each ω value
and at the time t can be characterized by its own probability
density function fn(ϕ, ω, t ), which evolves according to the
continuity equation

∂fn

∂t
+ ∂

∂ϕ
(unfn) = 0, (2)

where un(ϕ, ω, t ) represents the instantaneous velocity of
elements in population n and is respectively determined by
the expression

un = ω + Im[Hn(t )e−iϕ], Hn =
n+1∑

ñ=n−1

Knñe
−iαnñZñ. (3)

Here we introduce an auxiliary macroscopic field Hn(t ),
which describes the force on subgroup n.

According to the OA approach [7–9], we use a special
ansatz for the expansion of fn(ϕ, ω, t ) in a Fourier series with
respect to ϕ in the form of a Poisson kernel

fn(ϕ, ω, t ) = g(ω)

2π

⎧⎨
⎩1 +

∞∑
q=1

[
aq

n (ω, t )eiqϕ + c.c.
]
⎫⎬
⎭ (4)

(c.c. stands for the complex conjugate). After the substitution
of relations (3) and (4) into Eq. (2), we arrive at an exact
solution, so long as an(ω, t ) satisfies the equality

∂an

∂t
+ iωan + 1

2

[
a2

nHn(t ) − H ∗
n (t )

] = 0. (5)

Then we take into account that the local order parame-
ter Zn(t ) essentially represents the average of the complex
numbers eiϕnm over all phase oscillators belonging to com-
munity n, and it is therefore generalized [with the help of
probability density function fn(ϕ, ω, t )] as an integral in the
limit where M → ∞. Hence, one can express Zn(t ) in terms
of the OA manifold (4). Moreover, it is possible to evaluate
Zn(t ) analytically by contour integration, yielding to Zn(t ) =
a∗

n (ω0 − iγ, t ), if we use the assumption that the natural
frequencies ωnm are selected independently from the Cauchy
distribution with the width γ and the mean ω0 (the latter can
be set to zero by virtue of a transformation to the rotating
reference frame, i.e., below ω0 = 0 except in special cases).

Finally, considering the right-hand side of (5) at the
poles ω = ω0 − iγ , in the mesoscopic formulation we obtain
the following discrete system of coupled equations for the

complex order parameters Zn(t ) of subpopulations:
dZn

dt
= (iω0 − γ )Zn + 1

2

(
Hn − H ∗

n Z2
n

)
,

Hn = e−iα (Zn−1 + Zn+1 − 2Zn) + μZn. (6)

From (6) it is clearly seen that the phase shift α deter-
mines whether the Laplacian coupling is attractive, repul-
sive, or neutral. Here the complex parameter μ = μr + iμi =
2e−iα[1 − (1 + � )e−iβ ] defines the level of an additional local
(within the site n) interaction. Below we focus on the traveling
waves, and therefore the lattice is considered as an infinite
one; in numerics the system is taken much larger than the
domain depicted in figures, thus the boundary effects are
irrelevant.

B. Waves in a lattice with conservative coupling

1. Linear waves

We start with the conservative case: first, we set μ = 0 and
α = −π/2, corresponding to a neutral coupling; and second,
we assume all the oscillators to be identical, i.e., γ = 0. In
this case, spatially uniform solutions have the form Zn =
�eiψ with any 0 � � � 1, i.e., any level of homogeneous
synchrony is possible. Linear waves ∝ eiwt−ikn on top of such
a background have dispersion

w(k) =
√

1 − �4(1 − cos k). (7)

The phase velocity λph and group velocity λgr of the linear
waves described by this dispersion are determined by the
following relations λph =

√
1 − �4(1 − cos k)/k and λgr =√

1 − �4 sin k, respectively.

2. Compactons and kovatons

We now look for nonlinear solitary waves; the only param-
eter is the homogeneous level of synchrony �. It is instructive
to start with the degenerate case of full synchrony � = 1. As
it follows from relation w(k), in this case there are no linear
waves. In fact, because |Zn| = 1, the only nontrivial variable
is the phase of the complex order parameter, and the equation
for this phase is the same as for a lattice of neutrally coupled
phase oscillators, studied in Ref. [12]. With Zn = ei�n and
Vn = �n − �n−1, the dynamical equations can be reduced to
a simple lattice system

dVn

dt
= cos Vn+1 − cos Vn−1. (8)

Solitary waves in this fully synchronous lattice, compactons
and kovatons, have been thoroughly analyzed in Ref. [12];
here we briefly outline their main features. Traveling waves
Vn(t ) = V (τ ), where τ = t − n/λ, can be either compact
one-hump pulses (compactons) with velocities 0 < λ < λc =
4/π , or extended domains (kovatons) between two compact
kinks, connecting states V = 0 and V = π , with velocity
λ = λc. To find the form of a localized solution moving with a
constant velocity λ, we posit Vn(t ) = V (τ ) in (8) and arrive at
a delay-advanced equation. Integration of this equation yields

V (τ ) =
∫ τ+b

τ−b

[1 − cos V (τ̃ )] dτ̃ . (9)

Here b = 1/λ, and the choice of the integration constant
ensures that v = 0 is a solution. Then we numerically solve
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Eq. (9) using the Petviashvili iteration method [12]. This
allows us to determine numerically traveling waves in the
whole range of velocities 0 < λ � λc = 4/π .

3. Solitary waves close to compactons

Next, in the framework of Eqs. (6), we look for solitary
waves moving with constant velocities on top of a partially
synchronous homogeneous background with � < 1. Substi-
tuting Zn = ρne

iθn in (6), we obtain a system

dρn

dt
=

(
1 − ρ2

n

)
2

)(ρn−1 sin vn − ρn+1 sin vn+1), (10a)

dθn

dt
=

(
1 + ρ2

n

)
2ρn

(ρn−1 cos vn + ρn+1 cos vn+1 − 2ρn),

(10b)

where vn = θn − θn−1. We employ a traveling wave ansatz
ρn(t ) = ρ(τ ) and θn(t ) = θ (τ ) where τ = t − nb, and b =
1/λ is the inverse velocity, and we also assume that ρ(τ ) and
θ (τ ) satisfy conditions ρ(−∞) = ρ(+∞) = �, θ (−∞) =
θ−, θ (+∞) = θ+ (θ− and θ+ are two constants). In this case,
for convenience of the further analysis, it is useful to intro-
duce auxiliary variables r (τ ) = ρ(τ ) − � and v(τ ) = θ (τ ) −
θ (τ + b), which both tend to zero at τ → ±∞: r (±∞) = 0
and v(±∞) = 0. As a result, with the traveling wave ansatz,
the discrete lattice equations (10) reduce to delay-advanced
differential equations for the waveform r (τ ) and v(τ ):

dr (τ )

dτ
= {1 − [� + r (τ )]2}

2
{�[sin v(τ ) − sin v(τ − b)]

+ r (τ + b) sin v(τ ) − r (τ − b) sin v(τ − b)},
(11a)

dv(τ )

dτ
= {1 + [� + r (τ )]2}

2{� + r (τ )} {2�[cos v(τ )

+ cos v(τ − b) − 1] + r (τ + b) cos v(τ )

+ r (τ − b) cos v(τ − b) − 2r (τ )}

− {1 + [� + r (τ + b)]2}
2[� + r (τ + b)]

{2�[cos v(τ + b)

+ cos v(τ ) − 1] + r (τ + 2b) cos v(τ + b)

+ r (τ ) cos v(τ ) − 2r (τ + b)}. (11b)

We develop a perturbation approach allowing finding so-
lutions analytically for the case close to synchrony � � 1.
Introducing a small parameter ε = (1 − �) � 1, we write
r (τ ) = εr1(τ ) + o(ε2), v(τ ) = V (τ ) + εv1(τ ) + o(ε2). Here
V (τ ) = Vn(t ) is a compacton solution of (8). Substituting
these asymptotic expansion in ε into Eqs. (11a) and (11b)
into the first order smallness in ε, we obtain the following
linear inhomogeneous delay-advanced differential equations
for functions r1(τ ) and v1(τ ), respectively:

dr1(τ )

dτ
= [1 − r1(τ )][sin V (τ ) − sin V (τ − b)], (12a)

dv1(τ )

dτ
= v1(τ + b) sin V (τ + b)

− v1(τ − b) sin V (τ − b) + g(τ ), (12b)

FIG. 1. Numerically obtained form r (τ ) and v(τ ) (solid blue
line) of the soliton for λ = 1.01862 and � = 0.9 compared with
the leading approximation (13) and V (τ ) (red dashed line). In the
logarithmic scale (b, d) one can clearly see exponentially decaying
tails with oscillations.

where g(τ ) reads

g(τ ) = [r1(τ + b) − r1(τ )][2 + cos V (τ )] + [r1(τ − b) − 1]

× cos V (τ − b) + [1 − r1(τ + 2b)] cos V (τ + b).

Most important is the evolution of the correction εr1(τ ) to the
constant value �, so we consider only it below. Equation (12a)
allows us to represent r1(τ ) as an integral over the compacton
waveform

r1(τ ) = 1 − exp

{∫ τ

−∞
[sin V (τ̃ − b) − sin V (τ̃ )] dτ̃

}
. (13)

In this approximation the profile r1(τ ) is as compact as the
compacton of (8), i.e., it has superexponentially decreasing
tails. The exact localized solution of system (10) has ex-
ponentially decaying tails like usual solitons, because for
� < 1 this system possesses also linear waves. We compare
the approximate solution with the numerical solitary wave in
Fig. 1.

4. General traveling localized wave

For general parameters � and λ, we solve system (11)
for localized solutions numerically. Starting from an approx-
imation obtained analytically as outlined above, we apply an
iterative procedure based on the Newton method to find an
exact fixed point of these equations. The strategy is to start
from solutions very close to synchrony (i.e., � � 1), where
the shape of the solitary wave is known from the perturbation
approach and to change parameters gradually to remain in
the convergence domain of the Newton method. In this way,
solitons can be found in a large range of parameters, and the
borders of these ranges can be identified; see Fig. 2. There we
also illustrate shapes of solitary waves. Typical are one-hump
r (τ ) profiles for small velocities, and two-hump profiles for
large λ [Figs. 2(b) and 2(c)]. Tails of the solitons become
more wavy close to the lower border, which is essentially
determined by the resonance with the phase velocity λph of
linear waves. Close to the top border, the solitons look like
extended domains bounded by two humps [Figs. 2(d) and
2(e)]. All such solitons [which are essentially formed by two
kinks of variable v(τ ) that connect the states with v = 0 and
v = v∗ � π ] possess nearly the same height and the same
speed, but their width is not fixed. This feature is similar to
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FIG. 2. (a) Existence region (shadowed) of solitons. The dashed
and the dotted lines represent the maximal phase and group velocities
of the linear waves, respectively. (b, c) Solitons for � = 0.8 and
three different velocities: λ = 1.12096 (green solid line, point A in
panel a), λ = 0.85829 (red dashed line, point B), and λ = 0.58404
(blue dotted line, point C). (d, e) Two solitary waves having dif-
ferent widths, moving with practically the same constant velocity
λ = 1.13952 on top of a homogeneous background with � = 0.8.
(f): Space-time dynamics of two solitons with λ = 1.12096 and
λ = 0.85829.

the properties of kovatons in model (8). The maximal group
velocity λmax

gr of linear waves is not essential for the existence
of solitons, but rather for their visibility. From a compact
initial profile, solitons with velocity larger than λmax

gr dominate
the front edge zone; this occurs for � � 0.5015.

In Fig. 2(f) we show the results of direct numerical simu-
lations within the conservative case of the lattice (6), starting
from the solutions obtained by the Newton method. Solitons
are stable and do indeed propagate with constant velocities
and permanent shapes.

C. Destruction of waves due to dissipation and formation
of dissipative solitons

Above we have considered oscillator arrays with purely
conservative coupling. For |α| � π/2 the linear waves decay,
and one can expect that the solitons decay as well. We
illustrate this in Fig. 3. Here we start with a soliton found for
α = −π/2; during the propagation it gets destroyed.

Generally, there is another source of synchrony “noncon-
servation.” This is a diversity of oscillators, in particular
of their natural frequencies, characterized by parameter γ .
Desynchronizing effect of diversity can be compensated by
a local synchronizing coupling described by parameter μ in
(6). For γ �= 0, μ �= 0, only one uniform level of synchrony is
possible, given by the stationary solution of Eq. (6) with Hn =
μZn: �∗ = √

(μr − 2γ )/μr . In Fig. 4 we show what happens
to a localized initial perturbation in such a system. Here we
choose γ and μ in such a way that the homogeneous state has
the same level of synchrony �∗ = 0.8 and start with the same
initial condition as in Fig. 3. After an initial transient, this
solution evolves into a localized wave which is not similar to

FIG. 3. Evolution of the initial soliton (green line with triangles),
calculated for � = 0.8 and λ = 0.85307 in a lattice (6) with slightly
nonconservative coupling α = −0.496π . Profile at t = 47 is in red
with diamonds, profile at t = 94 is in blue with circles. The dashed
vertical lines show the soliton positions if α = −π/2, to illustrate de-
celeration. The amplitude of the soliton decreases, and the oscillating
tails become visible.

the conservative soliton, but nevertheless appears to be stable
and propagates with a constant velocity and a permanent
form. This solution can be attributed as a dissipative solitary
synchronization wave. In Fig. 5 we also show with direct
numerical simulations how the found dissipative soliton of
the complex order parameter propagates in a chain of the
interacting communities (1). One can see that the solitary
wave is robust despite the finite-size deviations from the OA
description.

III. SOLITARY WAVES IN A CONTINUOUS
OSCILLATORY MEDIUM

Above we have formulated the simplest model for Lapla-
cian coupling as a lattice of subpopulations; however, spatially
continuous systems with nonlocal coupling have similar prop-
erties (this is a well-known correspondence between lumped
and continuous systems). The setup we employ is close to the
KB model of a 1D oscillatory medium [4]:

∂ϕ

∂t
= Im(He−iϕ ), H (x, t ) = e−iα

∫
G(x − x̃)eiϕ(x̃,t ) dx̃.

(14)

FIG. 4. Formation of a dissipative soliton, moving with a con-
stant velocity λds ≈ 0.72. Snapshots at t = 20 (green line with
triangles), t = 210 (red line with diamonds), and t = 400 (blue line
with circles) for the numerical simulations of Eq. (6) with α =
−π/2, μ = 0.26 − 0.0595i, γ = 0.0468, and ω0 = 0.04879. Initial
conditions: a conservative soliton having velocity λ = 0.85307 and
propagating on top of a homogeneous background with � = 0.8.
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FIG. 5. Solitary wave simulated in a chain of oscillator pop-
ulations (1) with α = −π/2, β = −0.1256, � = 0.037927, γ =
0.0468, and ω0 = 0.04879, where each population consists of M =
2000 coupled elements. (a, b) Instantaneous phases. (c, d) Amplitude
of the complex order parameter (blue line with dots) compared with
solution of (6) (red line with crosses). Initial conditions: randomized
phases generated according to the OA theory and yielding the same
profile of Zn as the dissipative soliton of Fig. 4 has.

Here we assume all oscillators to be identical, so that their nat-
ural frequency can be set to zero by virtue of a transformation
to the rotating reference frame. Note, the integral in (14) is un-
derstood in the Lebesgue sense so that no spatial smoothness
of function eiϕ(x,t ) is needed. In Ref. [4] as well as in many
other studies of chimera patterns [3,13], the interaction was
assumed to be of a mean-field type, characterized by a nonzero
mean strength

∫
G(x)dx �= 0. Here, in contradistinction, we

choose a Laplacian symmetric coupling with a vanishing
mean value:

∫
G(x) dx = 0. The prototypic example of such

a kernel is the second-order derivative of the Gaussian

G(x) = Aσ−4(x2 − σ 2)e−x2/2σ 2
, (15)

where A is an amplitude (which determines the timescale and
thus can be arbitrary), and σ is a characteristic width of this
function (it is convenient for the further numerical analysis
not to set σ = 1 but to keep it as a parameter).

The analogy to the lattice model (6) becomes evident if
one introduces the coarse-grained complex order parameter
Z(x, t ) = 〈eiϕ(x,t )〉, where the averaging is performed over an
infinitesimally small neighborhood of site x. For Z(x, t ) one
can apply the OA reduction [3,9] to obtain

∂Z

∂t
= 1

2
(H − H ∗Z2),

H (x, t ) = e−iα

∫
G(x − x̃)Z(x̃, t ) dx̃. (16)

Noteworthy, the Lebegues integral over a nonsmooth phase
profile in (14) is transformed, by virtue of coarse graining,
to the Cauchy integral over the smooth order parameter in
(16). The integro-differential equation (16) is a continuous
counterpart of the lattice system (6) for identical elements.
Actually, the discrete model (6) considered above (with γ = 0
and β = 0) captures all the essential properties of Eq. (16)
and can be viewed as a simplification of the continuous
model (16), where a temporary instantaneous, integral relation
between Z(x, t ) and H (x, t ) is replaced by a nearest-neighbor
Laplacian coupling. From this formal point of view, the spatial
index n in (6) describes domains (of the characteristic size

σ ) that contribute to the coupling field H as “coarse-grained
macroscopic lattice sites.” The discrete OA equation (6) and
the corresponding system (1) for a nearest-neighbor interact-
ing network of phase oscillators, where at each site n there
is a large population of M units, are most suitable for the
analytical and numerical analysis of solitary synchronization
waves, however, we now present numerical evidence of such
traveling waves for Eq. (16) and the KB model (14) of a 1D
oscillatory medium with nonlocal interaction characterized by
the kernel (15).

Existence of solitary synchronization waves appears to be
a general property of 1D media with Laplacian coupling,
both discrete ones (6) and continuous ones (16). To find
within the framework of Eq. (16) spatially inhomogeneous
localized structures moving at constant velocities λ against
a homogeneous partially coherent background �, we again
employ the traveling wave ansatz Z(x, t ) = Z(ξ ), H (x, t ) =
H (ξ ), where ξ = x − λt . We represent the complex order pa-
rameter Z(ξ ) and the coupling field H (ξ ) in the form Z(ξ ) =
ρ(ξ )eiθ (ξ ), H (ξ ) = h(ξ )eiψ (ξ ), where ρ(ξ ), θ (ξ ), h(ξ ) and
ψ (ξ ) are real-valued functions of ξ . Substituting this in
(16) and introducing auxiliary variables r (ξ ) = ρ(ξ ) − � and
v(ξ ) = dθ/dξ , that both tend to zero at ξ → ±∞, we get a
system of integro-differential equations for r (ξ ) and v(ξ ):

dr

dξ
= −h[1 − (� + r )2]

2λ
cos(ψ − θ ), (17a)

dv

dξ
=− [1 + (� + r )2]

2λ(� + r )

[
dh

dξ
sin(ψ − θ ) + h

dψ

dξ
cos(ψ − θ )

]

− h2[1 + (� + r )4]

4λ2(� + r )2
sin(2ψ − 2θ ). (17b)

Here θ (ξ ), h(ξ ), and ψ (ξ ) can be found from the following
integral relations:

θ
(
ξ
) =

∫ ξ

−∞
v(ξ̃ ) dξ̃ , (18)

h(ξ )ei(ψ (ξ )+α) =
∫ +∞

−∞
G(ξ − ξ̃ )[� + r (ξ̃ )]eiθ (ξ̃ ) dξ̃ . (19)

We would like to note that it is convenient to use variables
r (ξ ) and v(ξ ) in numerical calculations, because we assume
that r (±∞) = 0 and v(±∞) = 0.

From (17)–(19), one can pass, using the standard dis-
cretization procedure, to a system of nonlinear equations
for fixed values of the parameters � and λ. We employ the
Newton iterative algorithm to numerically find a fixed point
of such a large-dimension system. It allows us to approximate
(with high precision) a localized solution of Eqs. (17) with
additional conditions (18) and (19). The Newton method has
a sufficiently good rate of convergence; however, when using
this approach, problems with the radius of convergence may
occur. Thus, it is necessary to use a priori information about
the structure of the solitary waves we are looking for. Because
the lattice equations (6) with nearest-neighbor Laplacian cou-
pling can be considered as a specific approximation for the
corresponding continuous model (16) with the kernel (15),
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FIG. 6. Solitary wave simulated in the model (14) with G(x ) =
2(x2 − 1)e−x2/2 and α = −π/2. (a, b) Instantaneous phases. (c, d)
Amplitude of the coarse-grained order parameter, locally averaged
with a Gaussian kernel e−x2/2ς2

with ς = 0.025 (blue line with dots).
The red bold line shows the evolution of the corresponding soliton
with λ = 0.91 on top of � = 0.75 within Eq. (16). One can see the
kink of the order parameter phase and the increased synchrony level
within this kink.

it is natural to obtained this relevant information from our
previous analysis performed in the framework of Eqs. (6).
To this end, we first of all set A = 2σ 2 and σ = 1/

√
3. In

this case, the function G(x) reaches its maximum (which is
approximately equal to 0.8925) in points x = ±1, and the
minimum value of G(x) is −2. We take one of the localized
solutions of (6) as a starting approximation for the Newton
iterative procedure. As a result, we numerically obtain a
representative of the class of traveling localized solutions of
the integro-differential equation (16) with the kernel G(x) in
the form (15) with A = 2σ 2 and σ = 1/

√
3. After that, in

order to construct solitary synchronization waves for another
values of σ , we implement the control-parameter continuation
ideology in the numerical calculations, which allows us to
remain in the convergence domain for the Newton method.

We illustrate in Fig. 6 the found solitary wave, together
with direct numerical simulations of the phase model (14)
(where for computational purposes we utilized discretization
of continuous variable x with grid size � = 0.00025 and used
randomzsed phases similar to Fig. 5). One can see that the
solitary synchronization wave is robust despite the finite-size
fluctuations due to a finite mesh.

IV. CONCLUSION

In conclusion, we have described solitary synchronization
waves in an array of oscillators with Laplacian coupling.
These waves are propagating with a constant velocity profiles
of the complex order parameter; they can be characterized
as kinks of the global phase, and within these kinks the
local synchronization level is higher than in the surrounding
background. In the limit of a fully synchronized background,
only the phase kinks remain, which coincide with previously
studied compactons and kovatons.

We presented traveling localized solutions for the simplest
lattice model, and demonstrated that they are also robust in
large populations with integral coupling terms. For identical
oscillators with conservative coupling, there is a family of
solitons with different velocities on different backgrounds,
similar to other conservative nonlinear wave systems such
as the NLS lattice. For nonidentical elements, a finite level
of synchrony can be maintained by attractive coupling; here
the solitary synchronization waves are dissipative solitons. A
more detailed analysis of this case will be presented else-
where.

While we focused only on solitary waves in this paper,
we can mention that general initial conditions typically lead
to rather complex, turbulent patterns of the order parameter.
If the initial profile is a localized bump on a constant back-
ground, typically at the propagating edges a system of solitary
waves is formed, and at large times the leading soliton with
the largest velocity is well separated from the waves behind it.
We, however, have not studied interactions and collisions of
the solitary waves.
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