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Delay-induced stochastic bursting in excitable noisy systems
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We show that a combined action of noise and delayed feedback on an excitable theta-neuron leads to rather
coherent stochastic bursting. An idealized point process, valid if the characteristic timescales in the problem are
well separated, is used to describe statistical properties such as the power spectral density and the interspike
interval distribution. We show how the main parameters of the point process, the spontaneous excitation rate,
and the probability to induce a spike during the delay action can be calculated from the solutions of a stationary
and a forced Fokker-Planck equation.
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I. INTRODUCTION

Time-delayed feedback and noise are factors that sub-
stantially contribute to complexity of the dynamical behav-
iors. While noise generally destroys coherence of oscilla-
tions, there are situations (e.g., stochastic and coherence
resonances) where it plays a constructive role leading to
a quite regular behavior [1,2]. Also delayed feedback can
either increase or suppress coherence of oscillators [3–5].
Interplay of delay and noise is important for neural systems,
where it has been studied both on the level of individual
neurons [6], of networks of coupled neurons [7], and of rate
equations [8].

A significant progress in understanding of an interplay of
noise and delayed feedback has been achieved for bistable
systems [9,10]. Furthermore, variants of the bistable dynamics
with highly asymmetric properties of the two states have
been adopted to describe excitable systems under delay and
noise [6,7,11]. In this paper we develop another approach
to the dynamics of excitable noisy systems with a delayed
feedback. We investigate a theta-neuron model [12], which
is a paradigmatic example of an excitable system in math-
ematical and computational neuroscience. Under the action
of a small noise, this system demonstrates a random, Poisson
sequence of spikes. For the stochastic excitable theta neuron
model, the interspike interval distribution and the coefficient
of variation have been analyzed analytically in Refs. [13,14].
We will show that a small additional delayed feedback (large
feedback can significantly modify the dynamics, see, e.g.,
Ref. [15]) leads to an interesting partially coherent spike
pattern which we call stochastic bursting. Bursting describes a
general phenomenon with quiescent periods following periods
of rapid repeated firing and is thought to be important in
communication between neurons and synchronization [16].
In our present paper, the bursts themselves appear at random
instants of time and have random duration, but inside each
burst the spikes are separated by nearly constant time inter-
vals. Contrary to the bistable models, in our description we
consider only the excitable state as stochastic one, while the
excitation itself is deterministic.

The paper is organized as follows. We first formulate the
basic model in Sec. II. Then, in Sec. III we formulate a
point process description of the stochastic bursting, and derive
statistical properties such as the distribution of inter-spike in-
tervals and the power spectral density. In this description there
are two parameters, the rate of excitation and the probability
for delayed feedback to induce a spike. The latter quantity is
nontrivial, and we describe approaches to its calculation in
Sec. IV. We discuss the results in Sec. V.

II. MODEL FORMULATION

In this paper we study the dynamics of an excitable system
subject to noisy input and delayed feedback. The model is
described by a scalar variable θ defined on a circle:

θ̇ = a + cos θ + ε[a + cos θ (t − τ )] +
√

Dξ (t ). (1)

Here parameter a defines the excitability properties, parame-
ter D describes the level of external noise [which we assume
to be Gaussian white one, 〈ξ (t )〉 = 0, 〈ξ (t )ξ (t

′
)〉 = 2δ(t −

t
′
)], and ε is the amplitude of a delayed feedback. The

feedback is chosen to vanish in the steady state of the system.
Model Eq. (1), without delayed feedback, is very close to
the theta-neuron model [12], extensively explored in different
contexts in neuroscience (where inclusion of noise is very
natural, while a delayed feedback is often attributed to the
autapse effect, cf. [17]), and to the active rotator model [18].
In Eq. (1) we assume a simple additive action of the delayed
feedback and of noise. For theta-neurons, one quite often
explores multiplicative forcing, where the force terms are
multiplied with factor (1 − cos θ ) (cf. Ref. [19]; notice that
our variable is shift by π to the variable used in Ref. [19]).
However, as will be clear from the analysis below, this brings
only small quantitative corrections to the results, while the
main qualitative conclusions remain valid – because the most
sensitive to forcing region in the phase space is around θ ≈
−π , and in this domain the factor (1 − cos θ ) is nearly a
constant.

For |a| � 1 the autonomous theta-neuron (without noise
and feedback) is in an excitable regime: there are two nearby
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FIG. 1. A sketch of the theta-neuron model Eq. (1). In (a), the
red trajectory from θu to θs represents a spike, while the black curve
shows relaxation without a spike. Panel (b) depicts how the “phase
particle” evolves in the effective potential U (θ ), either overcoming
the barrier (with probability p), or returning back to the equilibrium
θs (with probability 1 − p).

stationary states, one stable and one unstable. Both noise and
the feedback can kick the system from the stable equilibrium
so that it produces a “spike.” Our goal in this paper is to
describe statistical properties of the appearing spike train.
Prior to the full analysis, we briefly outline relatively simple
cases of the purely deterministic dynamics (no noise) and of
the purely noisy dynamics (no delayed feedback).

A. Deterministic case

An autonomous theta-neuron (one sets ε = D = 0 in (1))
with |a| � 1 is an excitable system with one stable fixed
point at θs = arccos(−a) and another unstable fixed point at
θu = 2π − arccos(−a). One can represent the dynamics as an
overdamped motion in an inclined periodic potential

θ̇ = −dU

dθ
, U (θ ) = −aθ − sin θ, (2)

for which θs is a local minimum and θu is a local maximum;
see Fig. 1. As parameter a is close to the value of a SNIC
bifurcation a = 1, the distance θu − θs is small (correspond-
ingly, the barrier of the potential is small as well) and already
a small external perturbation can produce a nearly 2π -rotation
of θ . The form of the spike can be represented as a trajectory
that starts at θu, ends at θs , and reaches the maximal value at
time instant t0:

�sp(t ) = 2 arctan

[√
1 + a

1 − a
tanh

(√
1 − a2

2
(t − t0)

)]
. (3)

Let us now consider deterministic model (1) with delay, i.e.,
the case D = 0. The system still has a locally stable equilib-
rium θs . However, for large enough ε it can possess stable
periodic oscillations. Indeed, a perturbation of the equilibrium
can result in a spike Eq. (3). After the delay time τ , a force

εH (t ) = ε[a + cos �sp(t )] (4)
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FIG. 2. Critical value of ε in dependence on the delay time τ in
the deterministic case with a = 0.95. The inset is the asymtotic value
at large delay times εc in dependence on excitability parameter a.

will act on the theta-neuron. For a sufficiently large value of
ε it will produce a new spike, etc. In Fig. 2 we show critical
values of ε that depend on the delay time τ as well as the
excitability parameter a. Clearly, εc → 0 if the excitability
parameter a approaches the bifurcation value aSNIC = 1. De-
pendence on the delay time is also rather obvious: for large
delays the critical value εc is delay-independent, while for
delays comparable to the pulse duration [which is, according
to Eq. (3), ∼ (1 − a2)−1/2] there is a blocking effect which
mimics a refractory period for a neuron after a spike.

B. Noisy case

If there is no time-delay feedback, i.e., ε = 0, but noise is
present, D > 0, the spikes can be induced by noise. The model
is well-described in the literature [20], here we briefly outline
the features required for consideration of the more complex
case with delay. The dynamics is especially simple for small
noise: in this case, most of the time the system stays in a
neighbourhood of the stable state θs , and the excitations are
rare. The sequence of spikes builds a Poisson process with
a constant spiking rate λ, which is equal to the probability
current J of the corresponding Fokker-Planck equation

∂P (θ, t )

∂t
= −∂J

∂θ
= − ∂

∂θ
[(a + cos θ )P (θ, t )]

+D
∂2P (θ, t )

∂θ2
. (5)

The stationary solution of Eq. (5) is

Pst (θ ) = C

∫ θ+2π

θ

dψ

D
e− ∫ ψ

θ
a+cos ϕ

D
dϕ. (6)

Here C is the normalization constant, so the current is repre-
sented as

λ = J = C
(
1 − e− ∫ 2π

0
a+cos θ

D
dθ

)
. (7)

In the limit of small noise, this exact expression reduces
to the Kramers escape rate over the potential barrier: λ ≈

1
2π

√
U

′′ (θs )|U ′′ (θu)| exp{−�U/D}.
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FIG. 3. Panel (a) is the periodic solution in the deterministic case
when ε > εc. In this deterministic case we simulate Eq. (1) by the
Euler method with discret time interval dt = 0.01. Panel (b) shows
the noisy case without delayed feedback, i.e., ε = 0, with the spike
train obeying the Poisson statistics. Panel (c) is the case with both
noise (D = 0.005) and delayed feedback (ε = 0.14), showing the
stochastic bursting phenomenon. Spike trains in panels (b) and (c)
are obtained through simulation Eq. (1) by the Euler-Maruyama
method with discrete time interval dt = 0.01. Many spikes with
the interval close to τ are induced, depending on the delay force
amplitude. The parameters are a = 0.95, τ = 500.

III. DELAY AND NOISE-INDUCED BURSTING
AS A POINT PROCESS

Our main interest here is in the combination effect of time
delay and noise with D 	= 0, ε 	= 0. We illustrate the dynam-
ics in Fig. 3(c), where we compare it with the purely periodic
dynamics in the deterministic case [Fig. 3(a)] and with the
Poisson sequence of spikes for delay-free case [Fig. 3(b)].
In Fig. 3(c) one can see randomly appearing spikes, like in
case Fig. 3(b), and “bursts” of several spikes separated by the
delay time τ [like in case Fig. 3(a)]. Qualitatively, this picture
illustrates the two sources of spike formation: (i) due to a fluc-
tuation of the noise driving, this source is delay-independent,
and (ii) delay-induced spikes which appear due to a combi-
national effect of delay forcing and noise. We call the former
spikes “spontaneous” ones, or “leaders,” and the latter spikes
as “induced” ones, or “followers.” An exact analytic approach
to the noisy dynamics is hardly possible, because in presence
of delay feedback and noise, the system is non-Markovian.
Therefore we will next formulate an idealized point process
model, which generalizes the Poisson point process in absence

of the delayed feedback. Then, in Sec. IV we will discuss
how to calculate parameters of this point process. Since the
possibility of applying the point process model is based on
the separation of timescales, it is required that the length of
the pulse is much smaller than the characteristic interspike
interval, which is either the delay time, or the characteristic
time interval between the spontaneous spikes. We assume this
conditions to be fulfilled, and use in numerical examples the
parameters that ensure the timescale separation.

A. Point process model

Point processes are widely used to mathematically model
physical processes that can be represented as a stochastic
set of events in time or space, including spike trains. The
spike train can be viewed as a sequence of pulses, fully
determined via the spike appearance times tj . In the case
each spike is considered as a δ pulse, we have

∑
j δ(t − tj );

more generally we can write
∑

j H (t − tj ), where H is the
waveform Eq. (4). In our model, we adopt the leader-follower
relationship to describe the spiking pattern of type shown in
Fig. 3(c). The spikes which appear when the delay feedback
is weak, i.e., solely due to a large fluctuation of noise, we
call “spontaneous” ones. As delay plays no role for these
spikes, they form a Poisson process with rate λ, as described in
Sec. II B. Each spontaneous spike produces, after delay time
τ , forcing Eq. (4). During this pulse forcing, the potential bar-
rier decreases and there is an additional enlarged probability
to overcome the barrier and to produce a “follower” spike.
We denote the total probability to induce the follower spike
as p (correspondingly, the probability to have no follower
is 1 − p). Of course, each induced spike can also produce a
follower, with the same probability p. Thus, a leader spike
induces a sequence of exactly L followers with probability
�(L) = pL(1 − p).

The two parameters, λ and p, fully describe the point
process, consisting of “bursts” as shown in Fig. 4. Each burst
starts with a leader, which appears with a constant rate λ, these
leaders form a Poisson process. The followers are separated
by the time interval τ , their number in the burst is random
according to the distribution �(L). Noteworthy, the bursts can
overlap.

Below we discuss statistical properties of the point process
following from the described model. It is rather simple to ob-
tain the overall density of spikes. Indeed, the average number
of followers of a leader is

∑∞
L=0 L�(L) = p

1−p
, and hence the

overall spike rate is

μ = λ

(
1 + p

1 − p

)
= λ

1 − p
. (8)

Because the process is stationary, the probability to have a
spike in a small time interval (t, t + �) does not depend on t

and is equal to μ�. Correspondingly, the probability that in a
finite time interval T there is no one spike is exp[−μT ].

B. Interspike interval distribution

Now we derive the interspike interval (ISI) distribution,
employing the renewal theory [21,22]. Given a spike at time
t and the next spike at time t ′, the probability to have no
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FIG. 4. Schematic description of the point process. The black
high pulses represent the spontaneous spikes (leaders) while the
red low ones represent the delay-induced spikes (followers) (the
difference in the height of spikes is just a schematic way to classify
the events into leaders and followers, while they are of the same
height in reality). A leader with a random number of its followers
form a burst. The whole process can be viewed as a superposition of
sub-processes with a fixed number of followers.

spike in the interval [t, t ′] is called survival function. Let us
separate the ISI, i.e., T = t ′ − t , into three different cases,
namely, T > τ, T = τ and T < τ . If T < τ , the spikes at t

and t ′ can be either spontaneous (leader) or delay-induced
ones (followers of spikes preceding that at t), so the survival
function is determined by the full rate μ: S(T ) = exp(−μT ).
In contradistinction, for the case T > τ , the next spike can
be only a spontaneous one. The probability that there is no
spike in [t, t ′] is the product of three terms: the probability to
have no spikes in the interval [t, t + τ ) with survival function
Sτb = exp(−μτ ), the probability (1 − p) not to have a fol-
lower for the spike at t , and the probability to have no spike
in the interval [t + τ, t ′], where only the spontaneous rate
λ applies with the survival function Sτa = exp(−λ(T − τ )).
Thus, the survival function for the case T > τ is S(T ) =
Sτb(1 − p)Sτa = (1 − p)e−μτ−λ(T −τ ). Based on the above de-
scription and the relationship between the cumulative ISI dis-
tribution Q(T ) and the survival function Q(T ) = 1 − S(T ),
the cumulative ISI distribution can be obtained as follows:

Q(T ) =
{

1 − e−μT , T < τ,

1 − (1 − p)e−μτ−λ(T −τ ), T � τ.
(9)

According to the relationship between the cumulative ISI
distribution and the ISI distribution density P (T ) = Q′(T ),
we can also obtain the ISI distribution density:

P (T ) =
⎧⎨
⎩

μe−μT , T < τ,

pe−μτ δ(T − τ ), T = τ,

λ(1 − p)e−μτ−λ(T −τ ), T > τ.

(10)

We compare the obtained ISI distribution with the numerical
result in Fig. 5.
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FIG. 5. Cumulative ISI distribution Q(T ) vs T . The blue curve
shows numerical simulations of Eq. (1), the dashed red curve cor-
responds to the point process with Eq. (9), where λ = 6.64 × 10−4

is calculated from Eq. (7) and p = 0.53 is calculated from Eq. (20).
The upper two curves with a jump at T = τ correspond to the delay
case with ε = 0.14, while the lower two ones correspond to the
case without delay, i.e ε = 0. The inset in a logarithmic scale is to
show the coincidence of the slopes, which validates the point process
representation of the original model. Parameters are a = 0.95, D =
0.005, and τ = 500.

C. Power spectral density

Next, we discuss correlation properties of the point pro-
cess. The spike train in our model can be represented as
a superposition of sub-trains having a fixed number L of
followers; see Fig. 4 for an illustration of this superposition.
Let us denote H (t ) the shape of a spike [it is a δ function
for the point process model, but for a real process it is given
by Eq. (3)]. Then the time series can be written as sum of
subseries of bursts of size L + 1:

x(t ) =
∞∑

L=0

GL(t ) ⊗ YL(t ) ⊗ H (t ), (11)

where terms GL and YL describe the leaders and the followers
for the bursts of size L + 1:

GL(t ) =
∑

i

δ
(
t − t iL

)
; YL(t ) =

L∑
l=0

δ(t − lτ ). (12)

The leaders of a sub-series of bursts of size L + 1 form a
Poisson process with the rate λ�(L), and the followers form
a periodic set of spikes with separation τ . Here symbol ⊗
denotes a convolution.

According to the property of convolution and the inde-
pendence of the subseries for different L, the power spectral
density is the sum of spectral densities of the series; inside
each subseries we have a product of spectral functions:

Sx (ω) =
∞∑

L=0

SGL
(ω)SYL

(ω)SH (ω). (13)
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Here SGL
(ω) is the power spectral density of the spontaneous

spikes, which have the Poisson statistics. The power spectral
density of the Poisson process is a constant [23]:

SGL
(ω) = λ�(L) = λ(1 − p)pL. (14)

The term SYL
(ω) is the power spectral density of the set of L

points separated by time interval τ , i.e.,

SYL
(ω) =

∣∣∣∣
∫ ∞

0
YL(t )e−iωtdt

∣∣∣∣
2

= 1 − cos(L + 1)ωτ

1 − cos ωτ
. (15)

Finally, SH (ω) is the power spectral density of the shape
function

SH (ω) =
∣∣∣∣
∫ ∞

−∞
H (t )e−iωtdt

∣∣∣∣
2

.

Summarizing, we obtain the following expression for the
power spectral density of the spike train:

Sx (ω) =
∞∑

L=0

1 − cos(L + 1)ωτ

1 − cos ωτ
λ(1 − p)pLSH (ω)

= λ(1 + p)

1 + p2 − 2p cos ωτ
SH (ω). (16)

The most important part of the spectrum is the first factor, thus
we discuss the spectrum for the case of δ-pulses SH = 1. For
the limiting delay-free case, when p = 0, we have Sx (ω) =
λSH (ω), which corresponds to a purely Poisson process of
spontaneous spikes. In another limiting case of extensive
bursting p → 1, the power spectral density becomes a peri-
odic sequence of narrow Lorentzian-like peaks at frequencies
ω = 0, 2π

τ
, 4π

τ
, . . .. The width of a peak is ∼ (1 − p), while

the amplitude scales ∼ (1 − p)−2 (the total power of a peak
diverges in this limit because the density of spike diverges).

In Fig. 6 we compare the obtained expression for the
spectral density with direct numerical modeling of Eq. (1).

IV. PROBABILITY TO INDUCE A SPIKE

As have been shown in the Sec. III above, in our model,
from the viewpoint of a point process, there are only two
parameters: the spontaneous spiking rate λ (or J ) and p, the
probability to induce a spike by a delay force and noise. The
expression for λ is given by Eq. (7). The main challenge that
is discussed in this section, is an analytical calculation of p.

From the simulations of Eq. (1), where the delay force can
be switched off and on (corresponding to ε = 0 and ε 	= 0,
respectively), the probability to induce a spike follows from
the relation Eq. (8):

p = 〈n〉 − 〈n0〉
〈n〉 . (17)

Here 〈n0〉 is the average number of spikes within a large
time interval without the time-delayed force, while 〈n〉 is the
average number of spikes in presence of the delayed force
within the same time interval.
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FIG. 6. The power spectral density from the simulations (blue
curve) and from the point process (red curve) described by Eq. (16),
in which λ = 6.64 × 10−4, p = 0.53 are calculated from Eq. (7) and
Eq. (20), respectively. The shape function is as Eq. (4) describes.
Values of a, D and τ are the same as in Fig. 5, i.e., a = 0.95, D =
0.005, and τ = 500.

A. Induced probability from the solution of
the Fokker-Planck equation

Due to the nolinear force and non-Markovian property of
Eq. (1), it is hard to obtain the exact solution analytically,
e.g., formulating it in terms of delay Fokker-Planck equation.
However, since a is close to 1 and the noise intensity is
small, we can approximate the delay force with a deterministic
time-dependent force based on the spike solution Eqs. (3)
and (4). Thus, the problem reduces to consideration of a
deterministically driven stochastic model,

θ̇ = a + cos θ + εH (t ) +
√

Dξ (t ), (18)

where the force term is given by Eq. (4). The corresponding
Fokker-Planck equation reads

∂P (θ, t )

∂t
= − ∂

∂θ
{[a + cos θ + εH (t )]P (θ, t )}

+D
∂2P (θ, t )

∂θ2
. (19)

To properly formulate the setup for this equation, we need
to describe its dynamics qualitatively. As a starting state prior
to incoming pulse H (t ), we can take a stationary distribution
of the equation with ε = 0, i.e., the stationary solution (6):
P (θ,−T ) = Pst (θ ), for 0 � θ < 2π . Here −T is a starting
point of pulse action. Under action of the pulse, this state
evolves, and P (θ, t ) shifts in positive direction of θ , and a flux
of probability through the point θ = 0 increases—this exactly
describes increased local rates of a spike excitation during
the action of the pulse. To control “multiple” pulse excitation
(generation of two or more spikes during one acting pulse) it
is convenient to choose the period of domain as 8π instead of
2π . Then, after the action of the pulse H (t ), a state P (θ, T ) is
reached. The net probability within the domain [2π, 4π ] can
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be interpreted as the probability to induce just one spike by
the force εH (t ) as follows:

p =
∫ 4π

2π

[P (θ, T ) − P0(θ, T )]dθ. (20)

Here P (θ, T ) is the solution of Eq. (19), while P0(θ, T )
is the corresponding solution of the unforced Fokker-Planck
equation (i.e., of Eq. (19) with ε = 0)—it describes sponta-
neous spikes. The total probabilities in domains [4π, 6π ] and
[6π, 8π ] (they correspond to the probabilities to induce 2 or
3 spikes) are actually very close to zero and therefore can be
neglected.

Practically, we solve Eq. (19) with a spectral method. We
represent the probability density as a (truncated) Fourier series
as P (θ, t ) = ∑N

m=−N Cm(t )ei m
4 θ , and substitute it into the

Fokker-Planck equation. In this way we obtain an large system
of nonautonomous ODEs for the Fourier modes

dCm

dt
= m

8i
Cm−4 −

[
i

4
ma + i

4
mεH (t ) + m2

16
D

]
Cm

+ m

8i
Cm+4. (21)

We truncated this system at N = 400 and solved the above
ODEs by the fourth-order Runge-Kutta method with time step
0.001.

As Fig. 7 depicts, the numerical method described fits
well with the simulation results. We also investigated how
the noise intensity influences the probability to induce a
spike. To analyze the role of noise and delay, we compare
the results in presence of noise with the deterministic case,
where there is a critical value of ε to induce periodic spikes.
Generally speaking, for ε < εc, noise enhances the spiking by
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FIG. 7. Probability to induce a spike by time delayed feedback
for different delay force amplitudes. The blue triangles, red circles,
and black diamonds represent the simulation results of Eq. (17)
for D = 0.005, 0.007, 0.009 [we used the Euler-Maruyama method
with time step dt = 0.01, integration interval was 5 × 105, and
additionally averaging over 200 realizations was performed]. The
solid lines with the same color is the corresponding numerical results
of Eq. (20). The black dashed line is the deterministic solution with
εc = 0.15. Parameters are chosen as a = 0.95, τ = 500.

cooperation with the delay feedback, while for ε > εc noise
can prevent spikes otherwise induced by the delay feedback.

B. Analytic approaches to calculate induced probability

As we have shown above, the problem reduces to the
analysis of a pulse-driven Fokker-Planck equation. Such an
analysis can be performed analytically in the limiting cases
of an adiabatic (very long) pulse, and of a kicked (δ-function)
driving. The adiabatic approximation appears to be rather bad,
while for a narrow pulse, as we show below, the approxima-
tion of a δ-kick appears to be satisfactory.

It is convenient to introduce a parameter to control the
width of the forcing pulse. Therefore, Eq. (1) is modified into
the following one:

θ̇ = a + cos θ + εCq[a + cos θ (t − τ )]q +
√

Dξ (t ). (22)

Here parameter q determines the effective width of the pulse,
and Cq is the normalization coefficient defined as

Cq = 1∫ ∞
−∞(a + cos �sp(t ))qdt

,

being consistent with Eq. (1) when q = 1. For large values of
q, the force in Eq. (22) is nearly a δ-pulse.

The analysis can be performed in terms of the so-called
splitting probability. We start with an equilibrium solution
of the autonomous Fokker-Planck Eq. (6), which for small
noise is concentrated around the stable state (minimum of the
potential). During the δ-kick, the static potential and diffusion
term do not play a role, and hence the effective evolution of
the probability density from τ− to τ+ is just the shift:

P (θ, τ+) = e−ε ∂
∂θ P (θ, τ−) = Pst (θ − ε). (23)

Due to the noisy environment, the following evolution
is a relaxation, described by the autonomous Fokker-Planck
equation. During this evolution, a “particle” can overcome
the potential barrier, thus producing a spike, or return back to
the stable state, this corresponds to not inducing a spike. The
main contribution is from the points around θs + ε, for which
we can approximate the potential by the inverted parabolic
one. Evolution in such a potential is known as the splitting
problem [24]. If the “phase particle” is initially at the position
θ , the probability to eventually be right to the maximum θu is

ρ(θ ) = 1

2

(
1 − erf

[
(θu − θ )

√
|U ′′(θu)|

D

])
. (24)

Thus, the probability to induce a spike is

p(ε)=
∫ 2π+ε

ε

Pst (θ − ε)ρ(θ )dθ =
∫ 2π

0
Pst (θ )ρ(θ + ε)dθ.

(25)

In Fig. 8 we compare the analytical expression for the δ

pulse with simulations for different values of parameter q. For
q = 1 the analytic formula is not a good approximation, but
for q = 5 and larger values, it fits numerics rather well.
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FIG. 8. Probability to induce a spike by delayed pulses with
different sharpness vs. the amplitude of the delay force. The blue
triangles, diamonds, circles, and rectangles represent the simulation
results of Eq. (17) with q = 1, 5, 10, and 20, respectively. The red
curve is the analytical result from Eq. (25) for the δ-pulse. Parameters
are chosen as a = 0.995, D = 0.005, and τ = 500.

V. CONCLUSIONS

We have demonstrated that the combinational effect of
time delay and noise can lead to interesting spike patterns
in excitable neurons. We have shown that a weak positive
(excitatory) time-delay feedback on the excitable neuron in
a noisy environment leads to delay-induced stochastic burst-
ing. As an ideal mathematical model to describe the spiking
pattern we adopted a point process with the leader-follower
relationship. The main restriction in the applicability of this
model is a separation of timescales, which requires noise to
be weak and the delay to be long. The model contains just two
parameters, the rate λ of appearance of spontaneous spikes,
and the probability p to induce a follower spike. Roughly,
the bursting pattern can be described as a sequence with
randomly appearing busrsts (with average inter-burst interval
λ−1), having random durations [as an average, each burst has
p(1 − p)−1 spikes].

It is instructive to analyze the roles noise and time delay
play in the model. When the amplitude of the delay force is
below the critical value of onset of delay-induced oscillations
(i.e., ε < εc), noise and delay jointly induce spikes: delayed

feedback reduces temporary the potential barrier to overcome
due to noisy forcing. However, if the amplitude of the de-
lay force is above the critical value, i.e., ε > εc, and delay
feedback is large enough to induce spikes in the deterministic
case, noise makes the probability to induce spikes to be less
than one, so that the bursts remain finite. As a very rough
estimation, one can say that exactly at ε = εc the delayed
force brings the system to the unstable state (maximum of
the effective potential), from which noise can produce a spike
with probability 1/2. This estimate is confirmed by numerical
results presented in Fig. 7, where the dashed line crosses the
probability p curves at p ≈ 1/2.

As we have shown in the paper, two essential parameters
determine statistical properties of the stochastic bursting: the
spontaneous excitation rate λ and the probability to induce a
spike during the feedback p. While the former is the standard
quantity, easily calculated from the stationary solution of the
autonomous Fokker-Planck equation, the latter probability
could be found only numerically (from the solution of forced
Fokker-Planck equation) or with some additional approxi-
mations. We have found that adiabatic approximation is not
adequate for the theta-neuron considered, while the approxi-
mation of a narrow, δ-function-like pulse gives a qualitatively
good result. A quantitative correspondence could be achieved,
however, only when we modified the form of the delayed force
making it narrower than in the original formulation.

Our basic system in this paper was a one-dimensional
equation similar to that of a theta-neuron. This significantly
simplified the analysis based on the Fokker-Planck equation.
However, we expect that the point process model of the
dynamics will be valid in other, more realistic systems of
Hodkin-Huxley type, like the the noisy FitzHugh-Nagumo
system with delayed feedback, provided the above mentioned
separation of the characteristic timescales is valid.

Finally, we hope that the approach based on the point
process model can be extended to networks of delay-coupled
noisy theta-neurons, which is one of the future subjects.
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