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We present an alternative approach to finite-size effects around the synchronization transition in the standard
Kuramoto model. Our main focus lies on the conditions under which a collective oscillatory mode is well defined.
For this purpose, the minimal value of the amplitude of the complex Kuramoto order parameter appears as a proper
indicator. The dependence of this minimum on coupling strength varies due to sampling variations and correlates
with the sample kurtosis of the natural frequency distribution. The skewness of the frequency sample determines
the frequency of the resulting collective mode. The effects of kurtosis and skewness hold in the thermodynamic
limit of infinite ensembles. We prove this by integrating a self-consistency equation for the complex Kuramoto
order parameter for two families of distributions with controlled kurtosis and skewness, respectively.
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I. INTRODUCTION

Synchronization in ensembles of self-sustained oscillators
is a universal phenomenon, relevant not only for many physical
and technical applications (e.g., laser arrays [1], electrochem-
ical oscillators [2], and power grids [3]) but also for the
self-perpetuation of living beings. In such biological systems,
the manifestations of synchrony are often spectacular—like
the united rhythmic flashing of mating fireflies that attracts
tourists over vast distances or synchronized brain waves that
apparently speed up learning [4]. From single-cell organisms
to animals through to humans, many species benefit from
synchronizing their motions, metabolism, cell division, gene
expression, circadian cycles, and many other inner rhythms.

Arthur Taylor Winfree’s model of large ensembles of self-
sustained oscillatory systems [5] and its modification to an
analytically solvable mean-field system by Yoshiki Kuramoto
[6,7] established the understanding of synchronization as a
nonequilibrium phase transition. Since then, various exten-
sions to this Kuramoto model contributed to a broader, more
realistic, picture of synchronization dynamics in large ensem-
bles: the generalization to higher modes of the coupling func-
tion [8,9], the introduction of a phase shift [10] to the coupling
function, the addition (or multiplication) of noise [11], and
the investigation of different coupling network structures [12].
Two significant analytical achievements allow for a deeper
understanding of the phase space geometry: the Watanabe-
Strogatz reduction for finite ensembles of identical oscillators
[13] and the Ott-Antonsen ansatz for infinite ensembles of
distributed oscillators [14].

Most of the present theoretical approaches to synchro-
nization concentrate on infinite populations, while the theory
on finite-size ensembles evolves only gradually. However,
only a few experiments study really large numbers (thou-
sands) of oscillatory units [1,15], while experimental setups
of populations up to a hundred oscillators dominate the area
[2,16,17]. Many numerical and theoretical studies focus on
the properties of either rather small systems—e.g., Ref. [18]

explores the chaotic dynamics in a Kuramoto model with only
4 to 20 oscillators—or much larger ensembles of 104 or more
oscillators, where most efforts are dedicated to the scaling
properties of fluctuations of the order parameter [19–23].

In this paper we explore ensembles of moderate size
(typically 50 to 200 oscillators)—corresponding to realistic
experimental conditions. In this respect, this study contributes
to closing the gap between the two extremes of relatively small
and very large ensembles by investigating effects that naturally
emerge in small ensembles and extend to the infinite limit
depending on the natural frequency distribution.

Our approach to the finite-size problem differs from the
scaling-of-fluctuations approach adopted in Refs. [19–23].
We dedicate the primary focus to the question: Under which
conditions is a collective mode well defined in a finite ensemble
of coupled phase oscillators? In the thermodynamic limit, the
exact dynamical equations for the complex order parameter
can be derived in some cases. The most prominent example is
the Ott-Antonsen theory for the Kuramoto-Sakaguchi system
[14]. In other cases, at least an asymptotic solution for in-
finitely large ensembles can be interpreted as oscillations of a
collective mode. In general, the main feature that distinguishes
self-sustained oscillations from the noise-driven ones is the
existence of a macroscopic phase: It is well defined for self-
sustained oscillations, but ill defined for noisy states where the
amplitude can vanish.

In finite ensembles of Kuramoto type—in contrast to the
thermodynamic limit—the complex order parameter fluctuates
strongly. It is suggestive to consider a collective mode as
a well-defined macroscopic oscillation, if the corresponding
macroscopic phase is well defined for all times. This means that
the amplitude should not vanish (cf. Ref. [17], where this idea
applies to experimental studies of a finite set of oscillators).
Below, we study in detail the statistical properties of the
minimum of the amplitude of the complex order parameter
that serves as an indicator for the emergence of a global
oscillatory mode. These properties strongly depend on the
particular sample of frequencies. The observed effects can be
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traced in the thermodynamic limit by exploring distributions
with controlled kurtosis and skewness.

The paper is organized as follows: In Sec. II, we introduce
the model and discuss the phenomenology of the complex order
parameter dynamics for both infinite and finite ensembles.
Section III introduces the minimum of the amplitude of the
order parameter as an indicator for the presence of a collective
mode. Section IV discusses the effect of sample kurtosis
and sample skewness of the natural frequency distribution on
the synchronization transition characterized by the introduced
indicator and on the global phase dynamics, respectively. These
properties persist in the thermodynamic limit, as we prove in
Sec. V for distribution families with parameters for kurtosis
and skewness, respectively. Section VI contains conclusion and
outlook.

II. SYNCHRONIZATION TRANSITION:
THERMODYNAMIC LIMIT VS. FINITE SYSTEM

In this section, we introduce the Kuramoto model of coupled
phase oscillators and compare the dynamics of the complex
order parameter in infinite and finite ensembles. We discuss
the role of coupling strength and natural frequencies in both
cases.

The standard Kuramoto model describes N nearly identical
phase oscillators with weak sinusoidal coupling. Their natural
frequencies ωi spread according to some distribution g(ω).
Phases θi are globally coupled with strength ε,

θ̇i = ωi + ε

N

N∑
j=1

sin(θj − θi) = ωi + εR sin(ϕ − θi), (1)

via a complex mean field Z, defined as

Z = R eıϕ = 1

N

N∑
j=1

eıθj . (2)

The absolute value of Z, called Kuramoto order parameter R,
quantifies the degree of phase coherence in the population and
thereby serves as an indicator for synchrony.

Shifting all frequencies by a constant ωi → ωi + �ω is
equivalent to transforming to a rotating reference frame with
frequency �ω to the entire system. This rotational invariance
proves beneficial in the thermodynamic limit, where the
complex mean field rotates uniformly. This rotation becomes
stationary in an appropriate reference frame, which allows us to
describe a synchronous state as a steady one. Similarly, scaling
all frequencies by a constant factor ωi → σωi just scales time
and the coupling strength by the same factor. Thus, without
loss of generality, we set the standard deviation of g(ω) to 1
and shift the mean frequency to zero in all examples and all
numerical experiments (in the latter case: after sampling).

A. Solution of the Kuramoto model in the thermodynamic limit

In the thermodynamic limit of infinite ensembles, N → ∞,
the dynamics of the complex mean field Z as a function of
coupling strength ε demonstrates a transition to synchrony—
comparable to a nonequilibrium phase transition [6,7]. In this
section we recall a basic qualitative picture of this transition
for symmetric unimodal distributions (thus assuming their

maximum at the mean frequency ω̄) and describe a quantitative
method for finding the order parameter as a function of ε.

States {θi} with vanishing order parameter are always
solutions, irrespective of the coupling strength. With R = 0,
the oscillators perfectly decouple and rotate with their re-
spective natural frequencies. Therefore, the individual phases
are fully incoherent, i.e., uniformly distributed in [0,2π ), so
that R vanishes exactly, reflecting the self-consistent nature of
the problem. Another, nontrivial, solution with R > 0 exists
above the critical coupling ε∞

c = 2 · [πg(ω̄)]−1. The order
parameter R as a function of coupling strength ε is typically
continuous but not differentiable in ε∞

c . Only distributions
with a symmetric plateau around ω̄ produce a jump at the
critical coupling strength [24], with the uniform distribution as
a special case [25]. (Multimodal distributions typically exhibit
hysteresis [26].)

Coupling strengths above ε∞
c may lock only a fraction of

the oscillators to a common frequency—except, e.g., in the
case of a uniform frequency distribution, where the oscillators
jump from zero to full frequency locking at ε∞

c . The fraction of
frequency locked oscillators increases with coupling strength,
reflected in a growing order parameter. For distributions with
compact support, the maximal frequency difference determines
a coupling strength above which all oscillators rotate with the
same observed frequency. As long as ε is finite, they maintain
finite phase differences, and the order parameter asymptot-
ically approaches R = 1. For distributions with unbounded
support, the fraction of asynchronous oscillators is always
finite.

Quantitatively, the Kuramoto problem in the thermody-
namic limit can be solved as follows [27–29]. One seeks
for a solution that is stationary (in the sense of a stationary
distribution function of phases, see Ref. [14]) in a frame
rotating with some frequency 	, i.e., ϕ = 	t + ϕ0, where ϕ0

is a constant. The relative phase ψ = θ − 	t − ϕ0 obeys

ψ̇ = ω − 	 − εR sin(ψ), R = 〈eiψ 〉. (3)

It is convenient to consider 	 and a = εR as parameters
in Eq. (3). The distribution of phases ψ at given ω can
then be expressed as δ(ψ − arcsin[ω − 	/a]) for synchronous
and

√
(ω − 	)2 − a2|ω − 	 − a sin ψ |−1 for asynchronous

oscillators, respectively. The definition of the mean field R

can be expressed as a complex function of 	 and a, consisting
of one real and two complex integrals (the other real integral,
stemming from the asynchronous oscillators combined with
the cosine, vanishes due to 2π periodicity):

R = F (	,a)

= a

∫ π/2

−π/2
eiθg(	 + a sin θ ) cos θ dθ

+ i

2π

∫ π

−π

sin θ

∫
|ω−	|>a

g(ω)

√
(ω − 	)2−a2

|ω − 	−a sin θ | dω dθ.

(4)

In practice, both analytical and numerical integration of this
equation provide a solution in parametric form with parameter
a. First, as R is a real quantity, the imaginary part of the right-
hand side must vanish. This condition assigns a unique value
	a to frequency 	 for given a. For symmetric distributions,
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FIG. 1. Polar representation of the time evolution (t = 103) of the complex order parameter Z at different values of coupling strengths ε for
50 oscillators with frequencies: (a) randomly sampled from a normal distribution, (b) regularly sampled via quantiles from a normal distribution,
and (c) randomly sampled from the Lorentz distribution. Note that in panels (a) and (b) we plot only ε = 0.8, 2.0, and 3.0, while in (c) we
show ε = 0.1, 0.8, 2.0, and 7.0 for better clarity. The table shows the first sample moments of the three natural frequency samples: mean μ,
variance σ 2, skewness γ1, and kurtosis β2. All trajectories start from the same initial phases, randomly picked from a uniform distribution in
[0,2π ), such that R(t0) ≈ 0. All numerical time evolutions in this paper use the fourth-order Runge-Kutta scheme with step size 0.01.

the imaginary integral vanishes and 	 = 0. The remaining real
integral F (	a,a) provides the dependence of order parameter
R on coupling strength ε, namely R = F (	a,a) and ε =
a/F (	a,a).

For some special frequency distributions g(ω), the integrals
in Eq. (4) can be calculated analytically. The simplest case
of identical oscillators [such that g(ω) degenerates to a delta
distribution] has only one nontrivial solution, R = 1. For a
Gaussian distribution g(ω) = e−ω2/2/(

√
2π ), the parametric

solution can be expressed via the modified Bessel functions
of the first kind Iμ [30]:

R =
√

πA/2 e−A [I0(A) + I1(A)], (5)

where A = a2/4. Similarly, the solution for the Laplace dis-
tribution g(ω) = e−√

2|x|/(
√

2) includes the modified Bessel
functions of the first kind Iμ and the modified Struve functions
Lμ:

R = π · [I1(B) − L1(B)]/2, (6)

where B = a
√

2.
For uniform distributions with mean zero, height h, and

width 2ωmax (with normalization 2ωmaxh = 1), solutions with
ωmax/a � 1 correspond to ε∞

c = 2/(πh) with R in (0,π/4].
Solutions with ωmax/a < 1 obey the parametric equation

R = 2a ωmax arcsin
(ωmax

a

)
+ 1

2

√
1 −

(ωmax

a

)2
. (7)

Due to Eq. (1), oscillators with |ωi | < εR have a stable fixed
point (i.e., lock to the frequency of the global phase), which
is true for any coupling stronger than ε∞

c = 2/(πh), where
R > π/4, such that εR > 1/(2h) = ωmax � |ωi |. This means
that at the critical coupling strength all oscillators jump to full
synchrony in the sense of full frequency locking.

A number of other distributions can be integrated by the
same method as well, for instance, the distributions listed in
Ref. [25].

B. Transition and phenomenology in finite populations

In a finite population, the solutions described above are not
exact, most obviously evident in the fluctuations of the order
parameters Z and R. These fluctuations start from a finite value
∼1/

√
N for vanishing coupling, because states with R = 0

are not invariant in the finite model. Fluctuations increase
around the critical coupling and then decay for stronger
coupling. Thus, the transition to synchrony becomes blurry
when measured by means of the averaged order parameter.
The details of the dynamics of the order parameters strongly
depend on the way the finite frequency sample is generated
from the underlying distribution g(ω). Here, either regular
or random sampling may be implemented, depending on the
specific question. Regular sampling by virtue of the quantiles
of the distribution (i.e., inverse transform sampling from
equidistant points) allows for a straightforward comparison
between different ensemble sizes, as in this case the frequencies
in each sample are uniquely determined by the system size N .
Random sampling (i.e., sampling with some random number
generator) results in a finite sample-to-sample variability
which decreases as N grows. This variability of samples
complicates comparisons, as a statistical analysis becomes
necessary. Yet, it is the method of choice to fully represent the
finite-size effects of the underlying distribution in an unbiased
fashion.

Figure 1 shows a typical time evolution of the complex order
parameter in an ensemble of 50 oscillators for three samples
of g(ω). In the two left panels, a normal distribution N (0,1) is
sampled (a) randomly and (b) regularly. Figure 1(c) shows Z(t)
for a random sample of a Lorentz distribution which is widely
used in studies on the Kuramoto model because of analytic
tractability in the infinite limit. In all three cases, the order pa-
rameter Z fluctuates around zero for small coupling strengths,
corresponding to predominantly asynchronous motion below
the synchronization transition. For stronger coupling ε, the
complex order parameter Z = Reiϕ is clearly separated from
zero. For moderate coupling strengths and regular sampling,
only the amplitudeR performs sustained fluctuations, while the
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argument ϕ converges to a constant (see Secs. IV B and V B for
an explanation). In contrast, random samples exhibit sustained
fluctuations in both R and ϕ, for the same moderate coupling
strengths. In all cases, Z quickly converges to a complex
constant for sufficiently strong coupling. The coupling strength
necessary to achieve this state is considerably higher (ε ∼ 7)
for the Lorentz distribution sample than for the two Gaussian
samples (ε ∼ 3).

Most of the previous works on finite-size effects in the
Kuramoto transition [19,20,23,31,32] focus on the statistics
of fluctuations of the real order parameter R. Let us here
focus on the phase of the complex mean field ϕ. This is
important if we want to interpret the dynamics of the complex
mean field Z as that of a complex amplitude of an effective
collective oscillatory mode. As mentioned briefly in the In-
troduction, such interpretation is mathematically justified for
the Kuramoto model in the thermodynamic limit with Lorentz-
distributed frequencies. In this case, the Ott-Antonsen ansatz
[14] reduces the dynamics to a Stuart-Landau-type equation
for the order parameter Z. In other cases, such a reduction
is justified at least close to the transition point [33,34]. From
this macroscopic viewpoint, the transition to synchrony in a
population corresponds to a Hopf bifurcation from a fixed
point to stable self-sustained oscillations of the mean field. The
dynamics of the macroscopic phase ϕ displays the temporal
coherence of these oscillations.

In all three cases depicted in Fig. 1, the order parameter
strays around zero for small coupling strengths but avoids an
inner circle for stronger coupling. This implies a problem in
the definition of a macroscopic phase ϕ for weak coupling:
If amplitude R vanishes, then the phase of oscillations is ill
defined. This suggests to distinguish the two domains of the
dynamics of the complex mean field, according to the minimal
possible value of the amplitude Rmin (see Ref. [17], where this
parameter has been applied to the analysis of experiments with
a finite set of coupled oscillators):

(1) IfRmin = 0, then the macroscopic phaseϕ is not defined
globally, and thus macroscopic oscillations are ill defined. The
complex order parameter diffuses around zero.

(2) If Rmin > 0, then the macroscopic phase ϕ is well
defined. It validates the term “macroscopic oscillations” and
defines their coherence. The complex order parameter is well
separated from zero.

In the following section, we focus on the properties of Rmin.

III. MINIMAL VALUE OF THE ORDER PARAMETER
AS AN INDICATOR FOR THE TRANSITION

TO A COLLECTIVE MODE

In the preceding section, we argued that Rmin is an ap-
propriate quantity to characterize the emergence of collective
oscillations in a finite population. In this section, we discuss in
detail the statistical properties of this parameter. In Fig. 2, we
show the dependence of Rmin, calculated over a time interval
0 � t � 105, on the coupling parameter ε for one random
sample of a Gaussian distribution of frequencies. In contrast to
time-averaged value 〈R〉t which smoothly depends on ε, Rmin

undergoes a sharp transition at εmin
c ≈ 1.82.

From a statistical point of view, the calculation of Rmin is
less stable than that of the averaged value, as it is dominated

(a)

(b)

FIG. 2. Statistical characterization of the minimum of R(t),
for N = 50 oscillators and a fixed random sample of a Gaussian
frequency distribution with sample moments μ = 0, σ 2 = 1, γ1 =
−0.45, γ2 = −0.55. Time evolution starts from uniformly distributed
phases in [0,2π ). (a) Rmin, 〈R〉, and 	i vs. coupling strength ε.
Here Rmin is shown vs. ε at t = 105 (after transients of length 102)
for an ε grid with �ε ≈ 0.02. The green bold solid line shows the
mean value 〈R〉T averaged over a time interval of T = 104. The
observed individual frequencies 	i shown in gray (right-hand scale)
reveal which oscillators synchronize already at small frequencies and
which join the synchronous cluster only at stronger coupling. The
sampled natural frequencies ωi equal the observed frequencies 	i at
zero coupling. (b) Dependence of Rmin on the observation time. The
bold black line gives an estimate t−1/2 for the scaling behavior. In
both panels, red indicates Rmin > 0.01 at t = 105, while we color the
remaining subcritical trajectories in blue.

by the tail of the distribution of R. This is illustrated in
Fig. 2(b), where we show Rmin as a function of observation
time. For strong coupling, Rmin saturates already at about
t ≈ 103. By contrast, at weak or even vanishing coupling,
where the oscillators effectively decouple, Rmin has no lower
bound. Due to their different frequencies, a vicinity of any
configuration of phases is visited and that vicinity shrinks
with growing length of the time series. Thereby, arbitrary
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small values of Rmin become increasingly probable with longer
observation time. The finite-time observation roughly follows
the law Rmin ∼ t−1/2 (black bold line), which compares to a
random sampling of a two-dimensional distribution of R with
finite density at zero.

The numeric evaluation of Rmin is most unreliable near the
critical point, where the decrease of Rmin(t) with observation
time t is extremely slow (one can see several such realizations
in Fig. 2). This appears unavoidable, because the time scale
typically diverges at the criticality, see, e.g., Ref. [35]. Never-
theless, the sharp transition in the dependence of Rmin on ε is
well pronounced and reliable for calculations, see Fig. 2(a).

Beyond transition, Rmin(ε) follows a curve that is generally
growing but not everywhere monotonous. At even stronger
coupling, several seemingly quite regular jumps dominate the
picture. To understand this, a juxtaposition of Rmin(ε) and
the individual observed frequencies 	i of the oscillators (in
gray) is quite instructive: The jumps correspond to events
where oscillators join the major synchronous cluster, built by
oscillators with similar natural frequencies. At these jumps, the
number of incommensurate contributions to Z decreases and
the dynamics of Z(t) becomes more ordered and eventually pe-
riodic when all oscillators have joined the synchronized cluster.

Remarkably, the oscillators’ observed frequencies reveal
frequency-locked clusters far below the critical coupling.
The vast majority of oscillators, however, joins the central
synchronized cluster at about the critical coupling strength.

In Fig. 2, we present the dependence of Rmin on coupling
strength and observation time for just one random sample of a
Gaussian distribution [see Fig. 2(a) at ε = 0]. The next section
discusses the sampling variation of the observed effects and
the scaling with ensemble size N .

IV. EFFECTS OF KURTOSIS AND SKEWNESS
IN FINITE ENSEMBLES

The moments of a finite random sample are random
variables, distribution of which depends on N and on the
underlying distribution. For instance, the mean of a Gaussian
sample of size N of a Gaussian with variance σ 2 is itself
Gaussian distributed with variance σ 2/N . In Eq. (1), changing
mean and variance of g(ω) merely corresponds to shifting to
a different rotating reference frame and a different coupling
parameter range, respectively. The deviations of the next
higher moments, skewness and kurtosis, in contrast, cannot be
rescaled and potentially determine properties of the transition
and the dynamics in finite ensembles. In this section, we
investigate the effect of sample skewness and sample kurtosis
of a Gaussian natural frequency distribution.

A. Sample kurtosis of g(ω) determines the shape
of the transition curve Rmin(ε)

In this section, we identify the sample kurtosis as the main
reason for the spread of the Rmin(ε) curves, in particular for the
spread of the critical values of coupling at which Rmin becomes
nonzero. Furthermore, we quantify the scaling of this spread
with ensemble size.

Figure 3 presents the results of a numerical experiment,
in which we generate 100 frequency samples of a Gaussian

distribution N (0,1) for each of the ensemble sizes N =
25, 50, 100, 200. For 150 coupling strengths ε ranging from
0.7 to 3.3 and for each frequency sample, we initiate a time
series from one fixed set of uniformly distributed random
phases. We plot the minimum of R after observation time
t = 105 (with initial transients of length t = 104) versus
coupling strength ε. Each line in the plot is gray shaded
(colored in the online version) according to the sample kurtosis
of the respective frequency sample.

Kurtosis—the fourth standardized central moment β2 =
〈ω4

i 〉〈ω2
i 〉−2—quantifies the probability weight in the tails

of a probability distribution. The kurtosis of a Gaussian
equals 3 (mesokurtic distribution); therefore comparisons
among different distributions often refer to excess kurtosis
γ2 = β2 − 3. Positive excess kurtosis (leptokurtic distribution)
often indicates fatter tails—which in our case means many
moderately extreme frequencies that require stronger coupling
to join the synchronization cluster. Negative excess kurtosis
(platykurtic distribution) corresponds to distributions with
more probability weight concentrated closely around the mean
[36]—here we have a broader range of small frequencies
with an almost constant probability and few but extreme
outliers [37]. This can be understood as follows: Under the
restriction of unit standard deviation, the few outliers in
platikurtic samples must be significantly larger in their absolute
value than the many outliers in the fat tails of leptokurtic
samples, because they must compensate for the tightly packed
frequencies gathered around the mean to give the same standard
deviation.

Figure 3 shows that indeed the course and position of
the curve Rmin vs. ε is highly correlated with the sample
kurtosis. One can differentiate three groups according to the
darkness (color) of the curves: light-gray (pink) for the most
negative observed excess kurtosis, gray (green) for samples
with nearly vanishing γ2, and black for the largest observed
excess kurtosis. These three groups are well distinguishable
for all ensemble sizes and are characterized by the following
properties:

(1) Platykurtic samples of g(ω) (light gray, negative ex-
cess kurtosis) lift off from Rmin = 0 only at strong critical
couplings. The curve climbs rapidly or even jumps to sig-
nificant values of Rmin ≈ 0.4 . . . 0.6. These samples achieve
full frequency synchronization at the lowest coupling strengths
compared to other samples.

(2) For leptokurtic samples (black, positive excess kurto-
sis), in contrast, comparably weak values of coupling suffice
to synchronize a considerable central cluster. Thereby, Rmin

grows sedately from a rather small εmin
c . Due to the constraint

of unit variance, the outlier frequencies must be quite extreme
and thus are eventually synchronized only by much stronger
coupling. Consequently, these samples require stronger cou-
pling to achieve full frequency locking.

(3) Mesokurtic samples (small kurtosis, gray) naturally
lie between these two extremes: They demonstrate roughly
a “standard” transition in the curve Rmin(ε), similar to that
demonstrated by the regular sample generated by virtue of
quantiles (black dashed curves).

In Fig. 4, we quantify some of the qualitative observations
above. Here we show the dependence of the value of the
coupling parameter ε at which Rmin first crosses the threshold
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25 oscillators 50 oscillators

100 oscillators 200 oscillators

FIG. 3. Dependence of Rmin on ε: Each panel shows results for 100 random samples of a Gaussian frequency distribution for N =
25,50,100,200. The curves are gray shaded (colored in the online version) according to their respective excess kurtosis γ2. Note that the
range of γ2 differs considerably between the panels. The black dashed line stems from regular sampling. The dotted black line marks the cut at
Rmin = 0.2, at which the spread presented in Fig. 4 is measured.

Rmin = 0.2 on the excess kurtosis for different system sizes
N . The data confirm the inverse proportionality mentioned
above. As a theoretical substantiation, we compare the results
from these numerical experiments in finite ensembles with the
kurtosis dependence of ε(Rmin = 0.2) in the thermodynamic
limit; see Sec. V for details. The inset in Fig. 4 depicts the
scaling of the standard deviation of ε at R = 0.2 with system
size N . As expected, the variability decreases in the limit
N → ∞ – approximately with �ε ∼ N−0.38.

B. Sample skewness of g(ω) determines the drift
of the global phase

Random sampling of g(ω) results not only in variations
of the shape of the distribution, characterized above by
kurtosis but also in deviations from symmetry with respect
to the mean value (the underlying Gaussian distribution is
symmetric). These can be characterized by sample skewness
γ1 = 〈ω3

i 〉〈ω2
i 〉−3/2. The main effect of skewness is a finite

macroscopic frequency, 	 = 〈ϕ̇〉t . Above, when discussing
the theory in the thermodynamic limit, we argued that the

macroscopic frequency vanishes for symmetric distributions.
Figure 1(b) confirms that regular sampling via quantiles gener-
ates perfectly symmetric sets (for all i there exists exactly one
j such that ωi = −ωj ) and the global phase truly converges in
the supercritical regime.

In Fig. 5, we present a numerical study on the dependence of
the mean global frequency 	 on the skewness of g(ω) samples
and on the coupling strength. First, we generate many Gaussian
frequency samples and pick those with skewness close (±10−5)
to 1 of 20 target values of skewness, until having 20 samples
for each. Each dot in the figure corresponds to the mean over
the global phase velocities of the 20 samples with the same
skewness. As explained above, 	 is only meaningfully defined
for finite Rmin, thus cases with Rmin < 0.1 were rejected and
the curves start from finite values of ε. The individual global
phases velocities are the slopes of linear fits of the global phase
after cutting a transient of 102 time steps.

To clarify the dependence of the observed macroscopic
frequency on the ensemble size, we perform calculations
similar to those presented in Fig. 5 for different values of N .
Figure 6 displays how the correlation of the global angular
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FIG. 4. Coupling strength at the level Rmin = 0.2 vs. sample
kurtosis of the respective g(ω) sample; the same data as in Fig. 3
are used. Solid and dashed lines give predictions from numerical
integration of Eq. (4) for two families of distributions with kurtosis
as a parameter (cf. Sec. V A). Inset: Scaling of the standard deviation
of ε corresponding to Rmin = 0.2 with the number of oscillators N ;
linearly fitted by power law σ [ε(Rmin = 0.2)] ≈ N−0.38.

velocity with sample skewness scales with ensemble size at
a fixed coupling strength ε = 2. We generate 1000 samples
per N ∈ [25,50,100,200,400,800,1600]. In contrast to the
former experiment, samples with all values of skewness enter
the simulations. For small sample sizes, the spread in 	 for
a fixed skewness is maximal. With increasing N , samples
with high skewness get less likely. For N = 800,1600, the
form of dependence of 	 vs. γ1 coincides very well with
the theoretical curve obtained in the thermodynamic limit for
skew-normal distributions with different γ1, which we derive
in Sec. V.

V. EFFECTS OF KURTOSIS AND SKEWNESS IN
THE THERMODYNAMIC LIMIT

In Sec. IV, we demonstrated that a significant part of the
variability of the parameter Rmin and of the frequency of
the collective mode 	 results from the sample variability of
kurtosis and skewness, respectively. We further support these
two findings by complementing them with calculations in the
thermodynamic limit. In infinite ensembles, a full analysis of
stationary solutions can be performed on the basis of Eq. (4),
as explained in Sec. II A above. Instead of using a symmetric
standard distribution of frequencies, e.g., a Gaussian, we
explore distributions with kurtosis and skewness as explicit
parameters. We thereby also embed findings of Refs. [25,38]
for rather artificial distributions into the context of finite-size
effects.

FIG. 5. Mean frequency of the macroscopic phase 	 = 〈ϕ̇〉 for
N = 50 oscillators versus coupling strength ε. Different gray scales
(colors in online version) indicate different sample skewnesses from
top, γ1 = −0.95, to bottom, γ1 = 0.95. Each chain of dots represents
the mean over up to 20 phase velocities of distribution samples with
the same (±10−5) skewness (the relative number of samples with
Rmin > 0.1, i.e., for which a collective mode is actually defined at
a given ε, increases with coupling strength). The frequencies are
calculated by averaging over the time interval 103. The inset shows
cuts through the main picture at three different values of ε: phase
velocity vs. skewness.

A. Effect of kurtosis

We start with kurtosis. One popular family of distributions,
where kurtosis is a parameter, is the Pearson type VII family
[39], but here excess kurtosis γ2 ranges only from zero to in-
finity. More convenient for our purposes is the Subbotin family
[40] (sometimes also called exponential power distribution),
with excess kurtosis ranging from −1.2 to ∞. This family
covers such important cases as uniform, Laplace, and Gaussian
distributions.

The Subbotin family’s probability density function depends
on a main parameter p (and on an auxiliary quantity σp that
serves for setting variance σ to 1):

g(ω; p) = [2 σp p1/p �(1 + 1/p)]−1 exp

(
− |ω|p

p σ
p
p

)
, (8)
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FIG. 6. Average frequencies of the mean field vs. skewness of the
frequency sample for different ensemble sizes. The continuous curve
stems from the numerical integration of self-consistency [Eq. (4)] for
skew-normal distributions with different skewness parametersα. Each
marker shape corresponds to one ensemble size, for each of which
1000 samples of a Gaussian with mean zero and variance one are
generated randomly. For each sample, the time evolution of ϕ at ε = 2,
performed over t = 103 plus 103 transient, gives 〈ϕ̇〉 represented by
one point in the plot.

where �(x) denotes the Gamma function. Notice the symmetry
of the distribution for any p. The shape parameter p acts
inversely to the excess kurtosis γ2; the exact relation is γ2 =
�(1/p)�(5/p)/[�(3/p)]2. The limit p → 0, where γ2 → ∞,
corresponds to a delta distribution. The Laplacian distribution
has p = 1 and γ2 = 3; it has a peak at zero and fat tails,
comparable to a Lorentz distribution. With p = 2, we have a
Gaussian distribution with vanishing excess kurtosis. Finally,
the case p → ∞ yields a uniform distribution with excess
kurtosis γ2 = −1.2.

The dependencies R(ε) for different values of the parameter
p can be obtained from Eq. (4). Because the imaginary
part of the integral vanishes due to symmetry, we only
have to calculate the first real integral in Eq. (4), which
reduces to

R =
∫ a

−a

g(ω; p)
√

1 − (ω/a)2 dω, ε = a/R, (9)

by transforming to ω = a sin θ . This expression clearly shows
the role of the distribution of the probability mass to either the
center or the tails of the distribution g(ω; p): The tails beyond
|ω| = a do not contribute to the integral.

We discussed the analytical integration of some of repre-
sentatives g(ω; p) in the end of Sec. II A. For all other values
of p, we solve the integral in Eq. (9) numerically. Figure 7
shows numerical solutions for different p and thus for different
excess kurtosis values γ2, as well as the analytical solution for
p → ∞, corresponding to a uniform distribution. The R(ε)
curves stemming from the Subbotin family qualitatively fit
numerical results of Fig. 3. For a quantitative correspondence,
it is sufficient to remind that the critical value of the coupling
constant εc is inversely proportional to g(0; p), which in turn
grows with kurtosis. Thus one obtains inverse proportionality

FIG. 7. Kurtosis dependence of R(ε): We numerically integrate
the self-consistent Eq. (9) for the Subbotin family of frequency
distributions, see Eq. (8). The integral for the uniform distribution
stems from the analytical solution, see Eq. (7) with ωmax = √

3. The
curves (from left to right) correspond to values of the parameter
p = 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 5, 10 and to the uniform
distribution with p → ∞ (or likewise to the excess kurtosis values
as given in the legend). The inset shows the respective probability
densities.

of the critical coupling on kurtosis, as illustrated in Fig. 4 via
the dashed curve for the Pearson VII family and via the solid
curve for the Subbotin family.

B. Effect of skewness

Next, we discuss the connection between skewness and the
mean frequency of the macroscopic oscillations by exploring
a family of skewed normal distributions

g(ω; α) = 1√
2πσα

e−ω2/2σα

[
1 + erf

(
αω√
2σα

)]
, (10)

where erf is the error function and the parameter α sets the
skewness γ1 = 4−π

2 α3[π
2 (1 + α2) − α2]−3/2.

Numerical solution of Eq. (4) for the asymmetric case
requires an additional step, namely finding the value of 	a

for each a, such that the imaginary part of the integral in
Eq. (4) vanishes. We first simplify the asynchronous integral
for a general skewed distribution (α fixed) to

Iasy = i

a

[∫ ∞

a

dω g(ω + 	) (2ω −
√

ω2 − a2)

+
∫ −a

−∞
dω g(ω + 	) (2ω +

√
ω2 − a2)

]
!= 0. (11)

Note that this integral explicitly balances out the tails of g(ω)
starting from a, i.e., asymmetries inside of [−a,a] have no
effect on the global phase velocity. We iteratively approach 	a

for each a using the Newton-Raphson method. As mentioned
before, 	a is unique for each a, but still in order not to miss any
roots, we explored a range −4 < 	 < 4 – far beyond typical
frequencies in g(ω; α). Figure 8 shows the results; we use the
same skewnesses as in Fig. 5 for a straightforward comparison.
The correspondence to the numerical experiment with finite N

is apparent for large values of the coupling parameter, while
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FIG. 8. Frequency of the macroscopic oscillations 	 for skewed
normal distributions as in Eq. (10), obtained via solving the self-
consistency relation Eq. (11) for skewness from top γ1 = −0.95 to
bottom γ1 = 0.95. The distributions are depicted in the inset.

close to the transition, where averaging in Fig. 5 covers less
than 20 distributions, deviations are large. At a fixed value
of coupling ε = 2, the dependence of frequency 	 on the
skewness in the family Eq. (10) is shown with a solid line
in Fig. 6. This dependence fits the numerical data very well for
finite large ensembles.

VI. CONCLUSIONS

Motivated by the approach of Ref. [17], we characterize
the transition to synchrony in finite populations of phase
oscillators as the emergence of a well-defined collective mode.
A collective phase is well defined only if a collective amplitude
never vanishes. Therefore, the minimum of the Kuramoto
order parameter over a sufficiently long observation time,
Rmin, serves as a proper criterion for the presence of a
collective mode by ensuring a meaningful definition of the
Kuramoto global phase at all times. In contrast to the time-
averaged value of the order parameter, Rmin undergoes a sharp
transition. This allows us to determine of a critical coupling
strength εc for the synchronization transition in each sample.
This transition point can be determined with high precision
by extending the time series along which the minimum is
retrieved.

Furthermore, we attribute the variations of the coupling
dependence of the explored parameter Rmin to the variations
of the effective shape of the underlying frequency distribution,
measured by kurtosis. Under the constraint of unit variance,
kurtosis of a finite frequency sample allows us to distinguish
whether either most frequencies are crowded close to the mean
and few extreme outliers balance the variance or all frequencies
are rather broadly distributed but without extremes. All sam-
ples lie between these two limiting cases of platykurtic and
leptokurtic samples, respectively. In leptokurtic samples, the
central frequencies synchronize at comparably low coupling
strength and their critical coupling is accordingly small. The

few extreme outliers require much stronger coupling to adjust
their frequency to the central cluster. In contrast, platykurtic
samples have comparably large values of critical coupling εc

but then rapidly climb or even jump to high values of the order
parameter, eventually reaching full frequency locking at lower
coupling strengths compared to platykurtic samples. These
properties are well reproduced in the thermodynamic limit,
shown by numerically calculating the stationary solution for
the order parameter for a family of distributions with selectable
kurtosis.

The second observation in finite ensembles where we were
able to treat the thermodynamic limit in a similar way is the
dependence of the mean frequency of the global phase on the
sample skewness of some natural frequency distribution. The
mean frequency and skewness are roughly anticorrelated. En-
sembles with perfectly symmetric frequency samples converge
to a constant, nonrotating phase at any coupling strength above
transition.

Note that the considerations regarding the effects of kurtosis
and skewness on the dynamics in the thermodynamic limit can-
not straightforwardly be extended to distributions that do not
possess the corresponding moments. A prominent example due
to its analytical tractability is the Lorentz distribution. Actually,
the only representative of the important family of alpha-stable
distributions with defined moments other than the mean is
the Gaussian distribution. Though moments are undefined,
this distribution family has parameters for asymmetry and
shape.

The approach of Sec. II A for the thermodynamic limit
can be applied to distributions of any asymmetry and shape,
provided the integrals in Eq. (4) converge. A remaining
challenge lies in finding a meaningful procedure to relate
sample asymmetry and sample shape for finite samples of the
Lorentz distribution to families of continuous distributions, as
we presented for the Gaussian ensemble in Sec. V.

Conceptually, a fat-tailed distribution of frequencies po-
tentially contradicts the model assumption of nearly identical
oscillators. In finite samples, the effect of extreme outliers
on the collective dynamics is, however, comparably small
due to a strong separation of time scales. The usage of the
value Rmin as an indicator for the transition is therefore
applicable to the Lorentz ensemble and to other fat-tailed
distributions.

In this paper we applied the criterion of the existence of a
global oscillatory mode, based on the existence of the global
phase, to the Kuramoto model. It would be interesting to
explore finite-size effects on collective modes also for other
types of synchronization transitions, where, e.g., all oscillators
remain unlocked and the collective mode is related to partial
synchrony, see Refs. [41,42].

ACKNOWLEDGMENTS

This paper was developed within the scope of the IRTG
1740/TRP 2015/50122-0, funded by the DFG/ FAPESP. In
studies presented in Sec. V, A.P. was supported by the Russian
Science Foundation (Grant No. 17-12-01534). We thank Ralf
Toenjes for valuable discussions.

032310-9



FRANZISKA PETER AND ARKADY PIKOVSKY PHYSICAL REVIEW E 97, 032310 (2018)

[1] M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, Phys.
Rev. Lett. 110, 184102 (2013).

[2] I. Z. Kiss, Y. Zhai, and J. L. Hudson, Science (NY) 296, 1676
(2002).

[3] A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, Nat.
Phys. 9, 191 (2013).

[4] E. G. Antzoulatos and E. K. Miller, Neuron 83, 216 (2014).
[5] A. T. Winfree, The Geometry of Biological Time, 1st ed.

(Springer, Berlin, 1980).
[6] Y. Kuramoto, International Symposium on Mathematical Prob-

lems in Theoretical Physics, edited by H. Araki, Lecture Notes
in Physics, Vol. 39 (Springer, Berlin, Heidelberg, 1975), p. 420.

[7] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence,
Springer Series in Synergetics (Springer, Berlin, 1984), Vol. 19.

[8] H. Daido, Phys. Rev. Lett. 77, 1406 (1996).
[9] M. Komarov and A. Pikovsky, Physica D 289, 18 (2014).

[10] H. Sakaguchi and Y. Kuramoto, Prog. Theor. Phys. 76, 576
(1986).

[11] J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R.
Spigler, Rev. Mod. Phys. 77, 137 (2005).

[12] A. Arenas, J. Kurths, Y. Moreno, A. Díaz-Guilera, and C. Zhou,
Phys. Rep. 469, 93 (2008).

[13] S. Watanabe and S. H. Strogatz, Physica D 74, 197 (1994).
[14] E. Ott and T. M. Antonsen, Chaos 18, 037113 (2008).
[15] A. Prindle, P. Samayoa, I. Razinkov, T. Danino, L. S. Tsimring,

and J. Hasty, Nature 481, 39 (2012).
[16] A. Weber, Y. Prokazov, W. Zuschratter, and M. J. B. Hauser,

PLoS ONE 7(9), e43276 (2012).
[17] A. A. Temirbayev, Z. Z. Zhanabaev, S. B. Tarasov, V. I.

Ponomarenko, and M. Rosenblum, Phys. Rev. E 85, 015204
(2012).

[18] O. V. Popovych, Y. L. Maistrenko, and P. A. Tass, Phys. Rev. E
71, 065201 (2005).

[19] H. Daido, J. Phys. A 20, L629 (1987).
[20] H. Daido, J. Stat. Phys. 60, 753 (1990).
[21] S. W. Son and H. Hong, Phys. Rev. E 81, 061125 (2010).
[22] H. Hong, H. Chaté, H. Park, and L. H. Tang, Phys. Rev. Lett. 99,

184101 (2007).

[23] H. Hong, H. Chaté, L. H. Tang, and H. Park, Phys. Rev. E 92,
022122 (2015).

[24] L. Basnarkov and V. Urumov, Phys. Rev. E 76, 057201 (2007).
[25] D. Pazó, Phys. Rev. E 72, 046211 (2005).
[26] D. Pazó and E. Montbrió, Phys. Rev. E 80, 046215 (2009).
[27] O. E. Omel’chenko and M. Wolfrum, Phys. Rev. Lett. 109,

164101 (2012).
[28] O. E. Omel’chenko and M. Wolfrum, Physica D 263, 74

(2013).
[29] X. Zhang, A. Pikovsky, and Z. Liu, Sci. Rep. 7, 2104 (2017).
[30] M. Abramowitz and I. Stegun, Handbook of Mathematical

Functions (Dover, London, 1965).
[31] H. Hong, H. Park, and L. H. Tang, Phys. Rev. E 76, 066104

(2007).
[32] J. C. Bronski, L. DeVille, and M. J. Park, Chaos 22, 033133

(2012).
[33] H. Chiba and I. Nishikawa, Chaos 21, 043103 (2011).
[34] H. Dietert, J. Math. Pur. Appl. 105, 451 (2016).
[35] C. Choi, M. Ha, and B. Kahng, Phys. Rev E 88, 032126 (2013).
[36] The authors of Ref. [43] refine this simplified description to

“kurtosis vaguely [is the] location- and scale-free movement of
probability mass from the shoulders of a distribution into its
center and tail.”

[37] Generating a sample from a Gaussian with two or more clearly
distinct modes (maxima) is rather improbable, we do not discuss
them here. We just notice that already bimodal frequency
distributions exhibit a rich bifurcation map [26,44].

[38] S. Petkoski, D. Iatsenko, L. Basnarkov, and A. Stefanovska,
Phys. Rev. E 87, 032908 (2013).

[39] K. Pearson, Philos. Trans. R. Soc., A 216, 429 (1916).
[40] M. T. Subbotin, Mat. Sb. 31, 296 (1923).
[41] C. van Vreeswijk, Phys. Rev. E 54, 5522 (1996).
[42] P. Clusella, A. Politi, and M. Rosenblum, New J. Phys. 18,

093037 (2016).
[43] H. L. MacGillivray and K. P. Balanda, Australian Journal of

Statistics 30, 319 (1988).
[44] E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott, P. So, and

T. M. Antonsen, Phys. Rev. E 79, 026204 (2009).

032310-10

https://doi.org/10.1103/PhysRevLett.110.184102
https://doi.org/10.1103/PhysRevLett.110.184102
https://doi.org/10.1103/PhysRevLett.110.184102
https://doi.org/10.1103/PhysRevLett.110.184102
https://doi.org/10.1126/science.1070757
https://doi.org/10.1126/science.1070757
https://doi.org/10.1126/science.1070757
https://doi.org/10.1126/science.1070757
https://doi.org/10.1038/nphys2535
https://doi.org/10.1038/nphys2535
https://doi.org/10.1038/nphys2535
https://doi.org/10.1038/nphys2535
https://doi.org/10.1016/j.neuron.2014.05.005
https://doi.org/10.1016/j.neuron.2014.05.005
https://doi.org/10.1016/j.neuron.2014.05.005
https://doi.org/10.1016/j.neuron.2014.05.005
https://doi.org/10.1103/PhysRevLett.77.1406
https://doi.org/10.1103/PhysRevLett.77.1406
https://doi.org/10.1103/PhysRevLett.77.1406
https://doi.org/10.1103/PhysRevLett.77.1406
https://doi.org/10.1016/j.physd.2014.09.002
https://doi.org/10.1016/j.physd.2014.09.002
https://doi.org/10.1016/j.physd.2014.09.002
https://doi.org/10.1016/j.physd.2014.09.002
https://doi.org/10.1143/PTP.76.576
https://doi.org/10.1143/PTP.76.576
https://doi.org/10.1143/PTP.76.576
https://doi.org/10.1143/PTP.76.576
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1103/RevModPhys.77.137
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/0167-2789(94)90196-1
https://doi.org/10.1016/0167-2789(94)90196-1
https://doi.org/10.1016/0167-2789(94)90196-1
https://doi.org/10.1016/0167-2789(94)90196-1
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.2930766
https://doi.org/10.1038/nature10722
https://doi.org/10.1038/nature10722
https://doi.org/10.1038/nature10722
https://doi.org/10.1038/nature10722
https://doi.org/10.1371/journal.pone.0043276
https://doi.org/10.1371/journal.pone.0043276
https://doi.org/10.1371/journal.pone.0043276
https://doi.org/10.1371/journal.pone.0043276
https://doi.org/10.1371/journal.pone.0043276
https://doi.org/10.1103/PhysRevE.85.015204
https://doi.org/10.1103/PhysRevE.85.015204
https://doi.org/10.1103/PhysRevE.85.015204
https://doi.org/10.1103/PhysRevE.85.015204
https://doi.org/10.1103/PhysRevE.71.065201
https://doi.org/10.1103/PhysRevE.71.065201
https://doi.org/10.1103/PhysRevE.71.065201
https://doi.org/10.1103/PhysRevE.71.065201
https://doi.org/10.1088/0305-4470/20/10/002
https://doi.org/10.1088/0305-4470/20/10/002
https://doi.org/10.1088/0305-4470/20/10/002
https://doi.org/10.1088/0305-4470/20/10/002
https://doi.org/10.1007/BF01025993
https://doi.org/10.1007/BF01025993
https://doi.org/10.1007/BF01025993
https://doi.org/10.1007/BF01025993
https://doi.org/10.1103/PhysRevE.81.061125
https://doi.org/10.1103/PhysRevE.81.061125
https://doi.org/10.1103/PhysRevE.81.061125
https://doi.org/10.1103/PhysRevE.81.061125
https://doi.org/10.1103/PhysRevLett.99.184101
https://doi.org/10.1103/PhysRevLett.99.184101
https://doi.org/10.1103/PhysRevLett.99.184101
https://doi.org/10.1103/PhysRevLett.99.184101
https://doi.org/10.1103/PhysRevE.92.022122
https://doi.org/10.1103/PhysRevE.92.022122
https://doi.org/10.1103/PhysRevE.92.022122
https://doi.org/10.1103/PhysRevE.92.022122
https://doi.org/10.1103/PhysRevE.76.057201
https://doi.org/10.1103/PhysRevE.76.057201
https://doi.org/10.1103/PhysRevE.76.057201
https://doi.org/10.1103/PhysRevE.76.057201
https://doi.org/10.1103/PhysRevE.72.046211
https://doi.org/10.1103/PhysRevE.72.046211
https://doi.org/10.1103/PhysRevE.72.046211
https://doi.org/10.1103/PhysRevE.72.046211
https://doi.org/10.1103/PhysRevE.80.046215
https://doi.org/10.1103/PhysRevE.80.046215
https://doi.org/10.1103/PhysRevE.80.046215
https://doi.org/10.1103/PhysRevE.80.046215
https://doi.org/10.1103/PhysRevLett.109.164101
https://doi.org/10.1103/PhysRevLett.109.164101
https://doi.org/10.1103/PhysRevLett.109.164101
https://doi.org/10.1103/PhysRevLett.109.164101
https://doi.org/10.1016/j.physd.2013.08.004
https://doi.org/10.1016/j.physd.2013.08.004
https://doi.org/10.1016/j.physd.2013.08.004
https://doi.org/10.1016/j.physd.2013.08.004
https://doi.org/10.1038/s41598-017-02283-1
https://doi.org/10.1038/s41598-017-02283-1
https://doi.org/10.1038/s41598-017-02283-1
https://doi.org/10.1038/s41598-017-02283-1
https://doi.org/10.1103/PhysRevE.76.066104
https://doi.org/10.1103/PhysRevE.76.066104
https://doi.org/10.1103/PhysRevE.76.066104
https://doi.org/10.1103/PhysRevE.76.066104
https://doi.org/10.1063/1.4745197
https://doi.org/10.1063/1.4745197
https://doi.org/10.1063/1.4745197
https://doi.org/10.1063/1.4745197
https://doi.org/10.1063/1.3647317
https://doi.org/10.1063/1.3647317
https://doi.org/10.1063/1.3647317
https://doi.org/10.1063/1.3647317
https://doi.org/10.1016/j.matpur.2015.11.001
https://doi.org/10.1016/j.matpur.2015.11.001
https://doi.org/10.1016/j.matpur.2015.11.001
https://doi.org/10.1016/j.matpur.2015.11.001
https://doi.org/10.1103/PhysRevE.88.032126
https://doi.org/10.1103/PhysRevE.88.032126
https://doi.org/10.1103/PhysRevE.88.032126
https://doi.org/10.1103/PhysRevE.88.032126
https://doi.org/10.1103/PhysRevE.87.032908
https://doi.org/10.1103/PhysRevE.87.032908
https://doi.org/10.1103/PhysRevE.87.032908
https://doi.org/10.1103/PhysRevE.87.032908
https://doi.org/10.1098/rsta.1916.0009
https://doi.org/10.1098/rsta.1916.0009
https://doi.org/10.1098/rsta.1916.0009
https://doi.org/10.1098/rsta.1916.0009
https://doi.org/10.1103/PhysRevE.54.5522
https://doi.org/10.1103/PhysRevE.54.5522
https://doi.org/10.1103/PhysRevE.54.5522
https://doi.org/10.1103/PhysRevE.54.5522
https://doi.org/10.1088/1367-2630/18/9/093037
https://doi.org/10.1088/1367-2630/18/9/093037
https://doi.org/10.1088/1367-2630/18/9/093037
https://doi.org/10.1088/1367-2630/18/9/093037
https://doi.org/10.1111/j.1467-842X.1988.tb00626.x
https://doi.org/10.1111/j.1467-842X.1988.tb00626.x
https://doi.org/10.1111/j.1467-842X.1988.tb00626.x
https://doi.org/10.1111/j.1467-842X.1988.tb00626.x
https://doi.org/10.1103/PhysRevE.79.026204
https://doi.org/10.1103/PhysRevE.79.026204
https://doi.org/10.1103/PhysRevE.79.026204
https://doi.org/10.1103/PhysRevE.79.026204



