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Phase response curve is an important tool in the studies of stable self-sustained oscillations; it
describes a phase shift under action of an external perturbation. We consider multistable oscilla-
tors with several stable limit cycles. Under a perturbation, transitions from one oscillating mode to
another one may occur. We define phase transfer curves to describe the phase shifts at such transi-
tions. This allows for a construction of one-dimensional maps that characterize periodically kicked
multistable oscillators. We show that these maps are good approximations of the full dynamics for
large periods of forcing. Published by AIP Publishing. https://doi.org/10.1063/1.5037290

For many practical applications, it is important to know
how oscillators respond to perturbations. If the oscillator
is stable, after a perturbation it returns to its oscillating
mode, only the phase is shifted. This is quantified by a
phase response curve, which is an important tool to study
dynamics of forced and coupled oscillators. Quite often
there exist several stable oscillating modes; one speaks
in this case on multistability. For multistable oscillators,
external action may result in a switching from one mode
to another one. We extend the concept of phase response
curve on this case by introducing a phase transfer curve,
describing dependence of the phase of the target mode on
the phase of the source one.

I. INTRODUCTION

The concept of phase response curves (PRCs) is widely
used in the theory of oscillations to describe the sensitivity
of limit cycle oscillations to external actions.1–3 Moreover,
because PRCs can be rather easily measured in experiments,
they find broad applications in the studies of oscillating pro-
cesses in life systems, where equations for the oscillators
are hardly available, see e.g., Refs. 4–11. The form of the
PRC is important for controlling the oscillator by external
forcing.12–14 One of practical applications is optimal re-
adjustment of the phase of circadian rhythms of humans.15

Here, the concept of PRC (sometimes one speaks on phase
transition curves16–18) is widely used to describe the effect
of different stimuli (such as light pulses, temperature pulses,
or pulses of drugs or chemicals) on the circadian rhythm.
Another application is suppression of Parkinson’s tremor
by phase resetting.19 The concept of PRC has also been
generalized on chaotic and stochastic oscillators.20,21

The goal of this paper is to generalize the concept of
phase response curves on multistable limit-cycle oscillators.
There, of course, also a standard PRC can be defined, if the
perturbation does not result in a transition from one limit cycle
to another one. In the case when such a transition occurs, we

define a phase transfer curve (PTC) which provides depen-
dence of the new phase (on the target limit cycle) on the old
phase (on the source limit cycle). (This concept should not be
mixed with the concept of phase transition curves in circadian
rhythms, where the source and the target cycles coincide.)
Below, as a basic example, we will consider the simplest
case of bistable oscillations. Furthermore, we will demon-
strate how well the dynamics of a periodically forced bistable
system can be described solely in terms of PRCs and PTCs,
in comparison with the full description that also involves the
amplitudes.

II. PHASES FOR MULTISTABLE PERIODIC MOTIONS

The concept of the phase for a system with periodic self-
sustained oscillations is based on the notion of isochrons.22

Consider an autonomous continuous-time dynamical system
with variables x. On a limit cycle xlc with period T and
frequency ω = 2π/T , the phase is defined as a 2π -periodic
variable rotating uniformly in time ϕ̇(xlc) = ω. For an asymp-
totically stable limit cycle with a basin of attraction U , one
can extend the definition of the phase to the whole basin. Con-
sider a stroboscopic map x → x defined for the time interval
T , i.e., exactly for the period of oscillations. For this map, all
the points on the limit cycle (parametrised by their phases ϕ)
are fixed points, and all the points in the basin U converge to
one of the points on the limit cycle. Isochrons I(ϕ) are defined
as the stable manifolds of the fixed points on the limit cycle.
Clearly, these manifolds foliate the whole basin U , thus pro-
viding the phase ϕ = �(x) for all points in U . An isochron
I(ϕ) is a set of all points, which converge, under the time evo-
lution from some initial moment t0, to a point x(t) on the limit
cycle that has the phase ϕ at time t = t0.

Quite often one uses a definition of asymptotic phase
which is equivalent to one above. Evolution of each point
x(0) in the basin of attraction of the limit cycle brings it
to the limit cycle, i.e., there exists a point xlc(0) such that
|x(t) − xlc(t)| → 0 as t → ∞. Then one defines �[x(0)] =
ϕ[xlc(0)], i.e., one attributes the phase of the point on the limit
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cycle, to which asymptotically the given point in the basin of
attraction converges—thus the term “asymptotic.”

The definition of the phase can be straightforwardly gen-
eralised to the case of many stable limit cycles xlc(1), xlc(2), . . ..
Each of the phases ϕ(k) is defined in the corresponding basin
of attraction U (k). All the cycles have generically different fre-
quencies ω(k), however, the values of the frequencies are not
relevant for the definition of the phases. The phases are not
defined on the basin boundaries and on the sets which do not
belong to the basins.

III. PHASE RESPONSE CURVE AND PHASE
TRANSFER CURVE

Phase response curve (PRC) describes the effect of a
pulse force (kick) on the phase of the oscillations. One sup-
poses that an action of a pulse can be described as a map
x → x̄ = Q(x), and that both points lie in the same basin. If
the initial point lies on the limit cycle, it is characterized by
the phase ϕ, and we get a mapping to the new phase

ϕ → ϕ̄ = PRC(ϕ) = �{Q[xlc(ϕ)]}.
For a single kick action, the PRC provides a full information
about the phase shift as a result of the kick. If several kicks
are applied (or a regular or an irregular sequence of kicks),
the PRC is useful, if the interval between the kicks is large
enough. Indeed, the PRC is defined for the points on the limit
cycle, and to apply it to subsequent kicks, one needs to ensure
that prior to a kick the point is on the limit cycle, or at least
very close to it. This means that the time interval between the
kicks should be larger than the relaxation time from the point
Q(xlc) to the limit cycle. If the time interval between the kicks
is short (or the relaxation time is large), one should take into
account corrections as described in Refs. 23–25.

For a given sequence of kicks Qn (for generality, one
can assume that all the kicks are different), occurring at time
instants tn, one can write a phase evolution map, provided that
the time intervals tn+1 − tn between the kicks are large enough

ϕn+1 = ω(tn+1 − tn) + PRCn(ϕn). (1)

The dynamics of this one-dimensional map, which should not
necessarily be one-to-one, describes different effects of syn-
chronization and chaotization of periodic oscillations by an
external pulse force.

For several coexisting limit cycle oscillations, the phase
response curves can be defined for each of them

ϕ(k) → ϕ̄(k) = PRC(k)[ϕ(k)].

However, now there is a possibility that the state after the kick
x̄ belongs to the basin of another cycle, i.e., the kick switches
from a source periodic regime to a target one. Still, we can
define the relation between the new and the old phases via the
Phase Transfer Curve PTC

ϕ(k) → ϕ̄(j) = PTC(k→j)[ϕ(k)].

Schematically, we illustrate kicks leading to PRC and PTC in
Fig. 1.

Neither PRC nor PTC is defined for the states that are
mapped by the kick to the basin boundaries. However, if these

FIG. 1. Phase space of the bistable Stuart-Landau oscillator for a = 1, b =
2, c = 2.8, γ = 1, β = 0.01. Dashed lines: stable cycles; green dots: unstable
cycle. Red lines: isochrons of cycle 1; blue lines: isochrons of cycle 2. Black
arrows show two kicks: one moves a point on the cycle 1 to the basin of the
same cycle (this kick leads to a PRC); another one moves a point on the cycle
1 to the basin of the cycle 2 (this kick leads to a PTC).

boundaries are simple (fixed points, unstable limit cycles),
PRC and PTC are not defined at a finite set of the phases.
Close to this set, the relaxation time from the kicked state
x̄ = Q(x) to the corresponding stable limit cycle is large (it
diverges as the image point x̄ approaches the basin boundary).
Therefore, there are small regions where the phase approxi-
mation leading to the dynamics of type (1) is not valid. The
size of these regions decreases with the increase of the time
intervals between the kicks tn+1 − tn.

In Sec. IV, we will apply the approach based on PRC and
PTC to a particular system with two stable limit cycles.

IV. BISTABLE STUART-LANDAU-TYPE OSCILLATOR

A. Phase dynamics

Here, we illustrate the approach with a generalization of
the Stuart-Landau oscillator

ẋ = −y · �(x, y) − x · R(x, y),

ẏ = x · �(x, y) − y · R(x, y),
(2)

where

R(x, y) = β(x2 + y2 − a2) · (x2 + y2 − b2) · (x2 + y2 − c2),

�(x, y) = ω + γ (x2 + y2).

These equations have a simple form if written in polar coor-
dinates x = r cos θ , y = r sin θ

ṙ = −βr(r2 − a2)(r2 − b2)(r2 − c2),

θ̇ = ω + γ r2.
(3)

Below, we assume β > 0 and a < b < c. Then, one can eas-
ily see that the system possesses two stable limit cycles:
cycle 1 with r = a and θ̇ = 	1 = ω + γ a2, and cycle 2 with
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r = c and θ̇ = 	2 = ω + γ c2. The basin boundary separating
basins of these two cycles is the unstable cycle r = b.

We now introduce the two phases in the corresponding
basins. In the basin of cycle 1, i.e., for 0 < r < b, the phase
ϕ(1) should fulfil ϕ̇(1) = 	1. We look for a representation

ϕ(1) = θ + f1(r). (4)

Taking the time derivative of ϕ(1), we obtain for the function
f1, the following equation

	1 = ω + γ a2 = ω + γ r2

+ df1
dr

[−βr(r2 − a2)(r2 − b2)(r2 − c2)].

Integration (with a condition that on cycle 1 ϕ(1) coincides
with θ ) yields

f1(r) =
γ ln |c2−r2|

|c2−a2|
2βc2(c2 − b2)

−
γ ln |b2−r2|

|b2−a2|
2βb2(c2 − b2)

+ γ ln r
a

βb2c2
. (5)

Similarly, in the basin of cycle 2 r > b, we define the phase
ϕ(2) satisfying ϕ̇(2) = 	2, which can be represented as

ϕ(2) = θ + f2(r) (6)

with

f2(r) =
γ ln |a2−r2|

|a2−c2|
2βa2(a2 − b2)

−
γ ln |b2−r2|

|b2−c2|
2βb2(a2 − b2)

+ γ ln r
c

βb2a2
. (7)

The isochrons are the lines of constant phases. In polar
coordinates, they are represented by families of curves
θ = ϕ − f1,2(r). We illustrate the isochrons for the bistable
Stuart-Landau oscillator in Fig 1.

B. PRC and PTC for the bistable Stuart-Landau
oscillator

Now, we derive the PRC and the PTC for the oscillator
(2). We assume that the external action is a kick with strength
A in x-direction: x → x + A. Consider a point on cycle 1 with
the phase ϕ(1). In the polar coordinates, the point just after the
kick is

r̃ =
√

(a cos ϕ(1) + A)2 + a2 sin2 ϕ(1),

θ̃ = ATAN2(a sin ϕ(1), a cos ϕ(1) + A).

This point lies in the basin of cycle 1 if r̃ < b, otherwise, it
belongs to the basin of cycle 2. Thus, according to expressions
(4) and (6), the new phases are

ϕ(1)
new = θ̃ + f1(r̃) if r̃ < b, (8)

ϕ(2)
new = θ̃ + f2(r̃) if r̃ > b. (9)

Similar expressions describe the target phase if the source
point is on cycle 2:

ϕ(1)
new = θ̄ + f1(r̄) if r̄ < b, (10)

ϕ(2)
new = θ̄ + f2(r̄) if r̄ > b, (11)

FIG. 2. PRC and PTC for the same parameters as in Fig. 1 and A = 0.67.
Two diagonal panels show the PRCs ϕ(1) → ϕ(1)

new and ϕ(2) → ϕ(2)
new. Two non-

diagonal panels that should show PTCs (ϕ(1) → ϕ(2)
new and ϕ(2) → ϕ(1)

new) are in
fact empty for this small forcing (no transition from one cycle to another one);
however, the same plots for larger forcing in Figs. 3 and 4 do show nontrivial
PTCs.

where

r̄ =
√

(c cos ϕ(2) + A)2 + c2 sin2 ϕ(2),

θ̄ = ATAN2(c sin ϕ(2), c cos ϕ(2) + A).

These expressions give the analytic forms of PRC(1→1) (8), of
PTC(1→2) (9), of PRC(2→2) (11), and of PTC(2→1) (10).

We illustrate these curves in Figs. 2–4. Figure 2 shows
a case of small kick amplitudes, where there is no transition
between the cycles. As a result, only PRCs exist, and there

FIG. 3. The same as in Fig. 2, but for A = 0.9. For this moderate amplitude
of the kicks also the PTC ϕ(2) → ϕ(1)

new exists.
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FIG. 4. The same as in Fig. 2, but for A = 1.5. For this large amplitude of the
kicks all PRCs and PTCs exist.

are no PTCs. For an intermediate kick amplitude, there is a
possibility for a transition from cycle 2 to cycle 1, but not in
the opposite direction (Fig. 3). Finally, for a large kick ampli-
tude, all transitions are possible and all PRCs and PTCs exist
(Fig. 4).

An important feature of PTCs and PRCs in the case where
PTCs exist is the singularity of these curves at the bound-
aries of domains of their definition. The analytic nature of
these singularities is determined by terms ∼ log |r2 − b2| in
expressions (5) and (7). The points which are mapped to a
vicinity of the basin boundary r = b spend a logarithmically
long time before they are attracted to stable cycles 1 or 2,
and during this time interval, an extreme sensitivity of the
final phase with respect to the initial one is reached. Formally,
there is a phase at which both the PRC and the PTC are not
defined, this is the point which is mapped exactly on the basin
boundary.

V. PERIODICALLY KICKED BISTABLE OSCILLATOR

A. Validity of one-dimensional approximation

In Sec. IV, we derived the PRCs and PTCs that determine
the shift of the phases under a single kick. Here, we will apply
them to a periodically kicked oscillator

ẋ = −y · �(x, y) − x · R(x, y) + A
∑

n

δ(t − nT),

ẏ = x · �(x, y) − y · R(x, y).

(12)

In the case of very large period T , one can assume that just
prior to the next kick, the state of the system is very close to
one of the stable cycles. Thus, the dynamics can be described

FIG. 5. Comparison of the statistical properties of the dynamics (as described
in the text) in the full two-dimensional system (red circles) with the one-
dimensional map (blue pluses), for T = 4. In these simulations, the starting
point was close to cycle 1, therefore, bistability of attractors at small values
of A is not revealed.

with the one-dimensional mappings

ϕ
(1)
n+1 = PRC(1→1)(ϕ(1)

n ) if rn = a, r̃n < b,

ϕ
(2)
n+1 = PTC(1→2)(ϕ(1)

n ) if rn = a, r̃n > b,

ϕ
(2)
n+1 = PRC(2→2)(ϕ(2)

n ) if rn = c, r̄n > b,

ϕ
(1)
n+1 = PTC(2→1)(ϕ(2)

n ) if rn = c, r̄n < b.

This description will not be so perfect for small periods T ,
because in this case, deviations from the limit cycles prior to
the next kick will be significant.

To illustrate this, we first derive the exact two-
dimensional mapping, with which the one-dimensional map-
ping based on PRCs and PTCs will be compared. Let us
denote rn, ϕn the state just prior to the n-th kick. Then, θn =
ϕn − f1,2(rn) and xn = rn cos θn, yn = rn sin θn. Just after the

FIG. 6. The same as Fig. 5, but for T = 27.
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FIG. 7. The strange attractor close to cycle 1 for T = 4 and A = 0.8.

kick, we have

x̂ = xn + A, ŷ = yn, r̂ =
√

(xn + A)2 + y2
n,

θ̂ = ATAN2(yn, xn + A).

The evolution of this point during time T can be calculated
using the equation for r

ṙ = −βr(r2 − a2)(r2 − b2)(r2 − c2).

Integration of this equation with starting point r̂ yields

ln

∣∣∣∣
r2
n+1−c2

r̂2−c2

∣∣∣∣
c6 + a2b2c2 − c4(a2 + b2)

+
ln

∣∣∣∣
r2
n+1−b2

r̂2−b2

∣∣∣∣
b6 + a2b2c2 − b4(a2 + c2)

+
ln

∣∣∣∣
r2
n+1−a2

r̂2−a2

∣∣∣∣
a6 + a2b2c2 − a4(b2 + c2)

−
ln

∣∣∣∣
r2
n+1
r̂2

∣∣∣∣
a2b2c2

= −2βT .

Unfortunately, from this equation, it is hardly possible to find
the function rn+1(T , r̂) explicitly. This function can, however,
be found numerically as a root of a function of one variable.

Depending on in which basin the point r̂ lies, we then find
ϕn+1 from the following expressions

ϕn+1 =
{

θ̂ + T	2 + f2(r̂) r̂ > b,

θ̂ + T	1 + f1(r̂) r̂ < b.

We now compare the results of simulations of the exact two-
dimensional mapping derived with the simulations based on
the one-dimensional approximation via PRCs and PTCs. In
Fig. 5, we show the case of small period T = 4, in Fig. 6, the

period is large T = 27. In both cases, we show, as functions of
the kick parameter A, three averaged quantities. Quantity |Z|
characterizes the distribution of the phases, here the complex
“order parameter” of the distribution of the phases is defined
as Z = 〈exp[iϕn]〉. If the state of the system is a stable fixed
point, then |Z| = 1, otherwise |Z| < 1 (this quantity, however,
does not allow distinguishing between regular and chaotic
states). Quantity P describes the distribution of the points
between the two basins of attraction, it is calculated as 〈indn〉,
where ind=1 in the basin of cycle 1 and ind=2 in the basin of
cycle 2. This quantity allows distinguishing regimes belong-
ing to one basin only, and those with switchings between
the cycles 1 and 2. Finally, for the two-dimensional map,
we characterize deviations from the stable cycles via quantity
�r = 〈(rn − qn)

2〉1/2, where qn = a if indn = 1 and qn = c if
indn = 2.

Let us discuss first the quantity �r, as it mostly directly
characterizes quality of the one-dimensional approximation.
One can see that for T = 27 (Fig. 6), the typical values are
10−5, what means that here the one-dimensional map is rather
close to the exact one. One can also see that the approxima-
tion is bad for special values of kick amplitude A ≈ a = 1
and A ≈ c = 2.8. The reason is that at these special values of
A, points from the stable cycles are mapped exactly on the
origin, from the vicinity of which a trajectory only slowly
evolves toward the attracting cycle 1. For T = 4 (Fig. 5),
the characteristic values of �r are much larger, around 10−1,
here one cannot expect the one-dimensional approximation to
work well. This is indeed evident from the inspection of the
average characteristics |Z| and P. For T = 4, their values in
the exact solution and in the one-dimensional approximation
differ significantly, while for T = 27, they practically coin-
cide. In Figs. 5 and 6, we illustrated dependence on the kick
amplitude A for the two selected values of time interval T .
A more thorough study of T-dependence shows that the val-
ues of �r drastically depend on whether the regime is chaotic
(like for cases T = 4 and T = 27 presented in Figs. 5 and 6)
or periodic. In the latter case, the values of �r can be as small
as the accuracy of numerics ∼ 10−12. If one excludes such
periodic cases, the decrease in the value of �r (averaged over
the values of kick amplitudes in the same range as in Figs. 5
and 6) follows an exponential law 〈�r〉A ∼ 10−0.18T−0.2.

B. Structure of chaos

At many parameters of forcing, the bistable oscillator
(12) demonstrates chaos. If the kick amplitude is small, there

FIG. 8. The strange attractor in the
basin of cycle 1 (left panel) and in the
basin of cycle 2 (right panel) for T = 4
and A = 1.4. Stripes on the right panel
cross because the absolute value is used
for the observable shown.
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are no transitions from one basin to another, and the properties
of chaos are similar to that of the kicked standard monostable
Stuart-Landau oscillator.26 We illustrate this regime in Fig. 7,
showing the attractor near cycle 1 for T = 4 and A = 0.8.
One can clearly see fractal set of stripes, typical for chaotic
two-dimensional sets.

The structure of chaos in the case where there are transi-
tions between the basins (parameters T = 4, A = 1.4), Fig. 8,
is more complex. Here, we show a neighborhood of cycle 1
in usual coordinates, while to reveal a fine structure close to
cycle 2, we plot log10 |r − c| vs ϕ. One can see that the frac-
tal structure is somehow smeared: together with well-defined
stripes there are also “scattered” points. The reason for this
is extreme variations of local expansion/contraction rates at
the transitions between the basins. In the one-dimensional
approximation, these variations are manifested by singulari-
ties of the PRCs and PTCs at the boundaries of their definition.
Points of the attractor that are mapped due to a kick to a vicin-
ity of the unstable cycle at r = b are extremely scattered; to
reveal a fine fractal structure of these scattered sets, one needs
very long trajectories.

There is also another peculiarity of system (12): the two
stable cycles for the parameters chosen have very different
stability properties: the multiplier of cycle 1 is 0.42, while for
cycle 2 it is 0.072. Therefore, close to cycle 2, the conver-
gence is very strong, and already for moderate time intervals
between the kicks T , distance of points to cycle 2 reaches
machine zero (≈ 10−14) for double precision calculations.
One can see in Fig. 8 that already for T = 4, a typical dis-
tance of the attractor from the cycle 2 is ∼ 10−8. For T ≈ 8,
the machine accuracy is reached, and no reliable calculations
with double precision of the structure of an attractor close to
cycle 2 are possible.

VI. CONCLUSION

Summarizing, in this paper, we have generalized the con-
cept of phase response curves on the case of multistable peri-
odic oscillators. The transitions from one basin to another one
can be described by the phase transfer curves. We presented
a solvable example, where both phase response curves and
phase transfer curves can be found analytically. Furthermore,
we checked how good is the phase approximation, based
solely on the PRCs and PTCs, in comparison with exact solu-
tions where the variations of the amplitudes are not neglected.
While for the illustration, only the solvable model of a bistable
Start-Landau-type oscillator has been used, we do not see
any restriction in application of the concept to other systems
with different types of the phase dynamics and of the phase
sensitivity (e.g., to relaxation oscillations). Furthermore, the
methods of experimental determination of a PRC11 can be
straightforwardly extended to PTC determination as well.
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