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We develop an approach for a fast experimental inference of synchronization properties of an oscil-
lator. While the standard technique for determination of synchronization domains implies that the
oscillator under study is forced with many different frequencies and amplitudes, our approach
requires only several observations of a driven system. Reconstructing the phase dynamics from data,
we successfully determine synchronization domains of noisy and chaotic oscillators. Our technique
is especially important for experiments with living systems where an external action can be harmful
and shall be minimized. Published by AIP Publishing. https://doi.org/10.1063/1.5037012

It is widely accepted that synchronization plays an impor-
tant role in various branches of science and engineer-
ing and is frequently encountered in living systems. The
phenomenon is intensively studied both theoretically and
experimentally, and the experiments frequently involve
determination of synchronization regions, also known as
Arnold tongues. The straightforward determination of
the tongues requires slow variation of the frequency and
amplitude of the external action and finding the domains
where the investigated self-sustained oscillatory system is
locked to the acting force. Simple and reliable, this tech-
nique, however, requires many measurements and can
be quite time-consuming. This limitation may become
crucial in experiments with living systems that cannot
maintain stationarity for long time intervals, and where
extensive external forcing may be destructive. In this
paper, we develop a technique for a fast determination
of synchronization regions. In fact, a rough estimation
can be obtained already from a single observation of the
driven system provided it remains asynchronous. This
estimation can be essentially improved by a few further
measurements.

I. INTRODUCTION

A standard problem in the analysis of self-sustained oscil-
latory systems is the determination of their synchronization
properties, in particular inference of synchronization regions,
also denoted as Arnold tongues. In the case of an oscillator
driven by a force with an amplitude ε and a driving frequency
ν, these regions are domains in the ε, ν plane, where the
observed frequency� of the oscillator becomes equal to ν (or,
more generally, these frequencies obey the relation n� = mν,
where n and m are some integers). Practically, these domains
can be obtained by scanning ν and ε over a sufficiently fine
grid, and by computing � for each (ν, ε) pair.

This standard approach goes back to classical experi-
ments by van der Pol and van der Mark1 and by Appleton,2

and it has been exploited within the last three decades in
many experiments with periodic, noisy, and chaotic oscilla-
tors of different origins, ranging from electronic circuits and
lasers to circadian and cardiovascular systems (see Ref. 3
and references therein). Recent examples include experiments
with nanomechanical oscillators,4 organ pipes,5,6 coupled
Boolean phase oscillators,7 microfluidic drop emitter,8 syn-
thetic genetic oscillators,9 cardiovascular system under paced
respiration,10,11 hair cell bundles,12 brain alpha rhythm in
humans,13 brain gamma-band rhythm in monkeys,14 thermoa-
coustic oscillator,15 spike and wave discharges in rats,16 and
circadian clock.17

Thus, the traditional approach requires time-consuming
experiments, where a large number of measurements for dif-
ferent values of ν and ε shall be performed. In this paper,
we suggest a technique which essentially simplifies the task
of determining the synchronization region, as it requires less
measurements. This is especially important if the system to be
examined cannot be for a long time isolated from its environ-
ment and kept in steady conditions. First, we demonstrate that
the synchronization region can be efficiently recovered if only
several measurements for each value of the amplitude ε are
performed. Moreover, for a weak forcing, the Arnold tongue
can be computed from a single measurement, provided the
forced oscillator remains in a quasiperiodic, non-synchronous
state. Furthermore, if the oscillator is subject to internal fluc-
tuations—a common situation for all real-world studies—we
can recover the synchronization domain of a noise-free sys-
tem. Finally, we address the case when, in addition to random
perturbations, the oscillator is subject to an unobserved force.
We also illustrate the approach by an application to a chaotic
system.

II. THE TECHNIQUE

Our starting point is the phase dynamics theory (see,
e.g., Refs. 3 and 18), briefly outlined below. Consider an
autonomous noisy periodic or a weakly chaotic oscillator.
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As is well-known, the dynamics of such a system can be
parameterized by the phase ϕ(t), which evolves according to

ϕ̇ = ω + ζ(t), (1)

where ω is the natural frequency of the system and the ran-
dom term ζ(t) accounts for intrinsic fluctuations of the system
parameters and/or for the effect of chaos. Consider now the
simplest case of external driving when the system is subject
to a periodic force εI(νt) = εI(νt + 2π). Then, according to
the perturbation theory,18 for sufficiently small ε one can con-
sider variations of the oscillator’s amplitude as enslaved, and
reduce the description to the phase dynamics.

A general equation for the phase reads

ϕ̇ = ω + Q(ϕ, νt; ε, ν)+ ζ(t). (2)

Here, Q is the coupling function; it quantifies the response of
the oscillator to the force I(νt). This function is 2π -periodic in
the phase variables ϕ and ψ = νt, and generally also depends
on the parameters and the shape of the forcing. In the first
approximation in ε, this function, according to the perturba-
tion theory,18 is proportional to ε and does not depend on the
driving frequency ν:

Q(ϕ, νt; ε, ν) ≈ εQ0(ϕ, νt). (3)

In the higher-order approximations, the coupling shall be rep-
resented by a power series in ε. Derivation of the high-order
terms remains a theoretical challenge and we can expect that
these terms can also depend on the driving frequency ν.
Notice that generally the coupling function can possess a con-
stant term that cannot be separated from the natural frequency;
we can take this into account by writing ω = ω(ε) in Eq. (2).
We expect this equation to be valid as long as the phase
space of the forced system possesses an attractive smooth
2-dimensional torus spanned by ϕ and ψ = νt, see Ref. 19
for a mathematical treatment and Ref. 3 for a discussion.

Notice that quite often the phase dynamics equation can
be written in the Winfree form20,21 with Q(ϕ,ψ) = Z(ϕ)I(ψ).
This representation of the coupling function as the product of
the phase response curve Z and the external force I has cer-
tain advantages, e.g., the knowledge of Z allows studying a
response to different forcing waveforms. However, this repre-
sentation is not general and therefore in the rest of the paper,
we use the phase dynamics model in the form of Eq. (2). As
explained below, the knowledge of the phase dynamics model
(2) provides the Arnold tongues for the original system.

A. Determination of the synchronization domain from
the phase dynamics

An analytical derivation of Eq. (2) for sufficiently large
forcing represents an unsolved problem and anyway requires
knowledge of the original dynamical model. However, a
numerical reconstruction of this equation from observations
of an unknown system with known input is a relatively sim-
ple task. Since the parameters of the force are assumed to be
controlled in the experiment, the phase ψ of the force can be
considered as given. In its turn, the phase ϕ can be estimated
from an observed output of the oscillator, e.g., by means of the
Hilbert Transform. Then, Eq. (2) can be reconstructed from
known ϕ and ψ , as explained below in Subsection II B.

For presentation of our approach, we assume for the
moment that the coupling function Q is already known and
that it has been reconstructed for the forcing with parameters
ν∗, ε∗. Thus, the noise-free dynamics obeys

ϕ̇ = ω(ε∗)+ Q(ϕ, ν∗t; ε∗, ν∗). (4)

The key assumption behind this approach is that the form of
the coupling function weakly depends on ν∗ and therefore we
can use this function in order to describe the oscillator dynam-
ics for different driving frequencies ν. Hence, considering the
driving frequency ν in Eq. (4) as a free parameter, we write,
with account of ψ̇ = ν:

dφ

dψ
= ω(ε∗)+ Q(φ,ψ ; ε∗, ν∗)

ν
. (5)

We solve this equation numerically for values ν within some
range. In this way, we find the phase increment �φ, corre-
sponding to the increment �ψ = 2πN , N � 1, and obtain
the frequency of the driven oscillator �(ν, ε∗) = �φ/�t =
ν�φ/�ψ . Analyzing the function �(ν, ε∗), we obtain the
synchronous domain as an interval of ν, where the lock-
ing condition n� = mν holds for some integers n, m. Then,
the experiment can be repeated for different values of the
amplitude ε∗ to yield the Arnold tongue.

Summarizing, one needs just one measurement for each
amplitude of the forcing to reconstruct the whole synchro-
nization domain. Below, we will also discuss a possibility to
reconstruct the whole Arnold tongue from a single measure-
ment, i.e., just for one pair (ε∗, ν∗).

B. Reconstruction of coupling functions from data

Here, we briefly outline the steps of the reconstruction of
the coupling function from data. The detailed description of
the technique can be found in the Appendix.

1. The first stage is estimation of the oscillator’s instanta-
neous phase from the time series. We accomplish this
task in two steps. First, we obtain an initial estimate of
the phase (a protophase) by means of the Hilbert Trans-
form of an observable of the forced oscillator, recorded
as a time series x(t). Next, we perform a protophase-to-
phase transformation22,23 which yields an invariant, i.e.,
independent of the chosen observable, phase ϕ(t).

2. At the next stage, we compute numerically ϕ̇(t) using
a local polynomial approximation with the help of a
Savitzky-Golay filter.

3. Finally, we fit ϕ̇ by a function ω + Q(ϕ,ψ), where ψ =
νt. Naturally, the function Q is 2π -periodic with respect
to both arguments. This fit can be accomplished in several
ways; here we use a kernel estimation technique.24,25

C. Determination of Arnold tongues by the standard
technique

In order to test our results, we first compute the true
synchronization domain (the Arnold tongue) of each model
using the standard technique. For this purpose, we simulate
a driven oscillator for various values of the amplitude and
the frequency of the external force. Namely, we scan the fre-
quency ν for a number of fixed values of the amplitude ε, and
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compute the corresponding frequency of the driven system,
� = �(ε, ν). For these fixed values of ε, the synchroniza-
tion domain corresponds to the plateau in the plot of �− ν

vs. ν, i.e., to the frequency interval, where� = ν. Practically,
for periodic oscillators we determine this interval using the
condition |�− ν| < 10−5. In the case of a high-order locking
n� = mν, the condition |n�− mν| < 10−5 shall be used. For
noisy and chaotic oscillators, we present the full dependence
of �− ν on ν, because there the Arnold tongue is not defined
as strict as in the periodic case.

III. RESULTS

Here, we present the results of numerical experiments
with periodic, noisy, and chaotic oscillators.

A. Periodic oscillator

Our basic model is the Rayleigh oscillator, subject to an
external harmonic force:

ẍ − μ(1 − ẋ2)ẋ + x = ε cos(νt). (6)

In the following, the nonlinearity parameter is fixed as μ = 4;
for this value, the limit cycle is quite stable and we expect the
phase approximation to be valid for reasonably large values of
ε. Let us first concentrate on the case of 1 : 1 locking, when
ν ≈ ω.

First, we determine the true synchronization domain for a
number of fixed values of the amplitude ε of the external force
(these values are: ε = 0.01, 0.02, . . . , 0.05, 0.1, 0.2, . . . , 0.8).
The resulting Arnold tongue is shown by bold gray curves
in Fig. 1. As expected from the theory, for small amplitudes,
where the coupling function can be further reduced to a func-
tion of the phase difference, the borders of the domain are
straight lines.

Next, we reconstruct the synchronization domain for each
value of ε. To this end, we record the output of the system for a
fixed value of the driving frequency ν∗. From this single mea-
surement we reconstruct the coupling function Q, as described
in Sec. II B, using the x-variable, sampled with the time step
0.1, as an observable. Then, we use Q to solve numerically
Eq. (5), considering there ν as a free parameter.26 In this way,
we obtain the dependence �(ν), and reconstruct the synchro-
nization interval for the chosen value of ε∗. Repeating this
procedure for different ε∗, we reconstruct the Arnold tongue.

The results are shown in Fig. 1 for two tests. In the first
one, we choose the driving frequency close to the left border
of the tongue, while in the second test we take it close to the
right border. We see that the reconstruction is nearly perfect
for the border closest to the driving frequency used for the
reconstruction, even for large forcing amplitudes where the
first-order phase approximation (3) is definitely not valid. The
other, distant side of the tongue, is recovered quite well for the
amplitudes as large as ε � 0.3.

According to the phase reduction theory, for a weak forc-
ing, the coupling function is simply rescaled with the ampli-
tude of the force, see Eq. (3). Hence, driving the system with
only one value of the frequency and of the amplitude shall
be sufficient in order to determine the whole synchronization
domain in the first-order phase approximation. This means

FIG. 1. Synchronization domain of the harmonically driven Rayleigh oscilla-
tor (6). The true domain is shown by bold gray lines; it has been determined
for the discrete values of the forcing amplitudes ε, indicated by filled circles.
Blue squares (connected by the blue dashed line) show the borders of the
tongue reconstructed for each ε from a single measurement, where the fre-
quency of the forcing was taken to be to the left of the domain (blue stars).
We see that this technique perfectly recovers the left border of the domain. For
the right border, the agreement is very good for the amplitudes ε � 0.3, while
an essential deviation is observed for stronger forcing, where the assump-
tion of independence of the coupling function on the driving frequency is
slightly violated. Red triangles (connected by the red dotted line) show simi-
lar results obtained for the driving frequencies taken to the right of the tongue.
Correspondingly, here the right border is reproduced very well.

that after determining the coupling function Q(ϕ,ψ ; ε∗, ν∗)
for a particular forcing, we use an equation

dφ

dψ
= ω(ε∗)

ν
+ εQ(φ,ψ ; ε∗, ν∗)

νε∗
. (7)

to find the synchronization domain at other values (ε, ν).
We illustrate this idea in Fig. 2. Here, along with the true

tongue, we show the reconstructions for two different pairs of
the forcing parameters ε∗ and ν∗. As expected, the coincidence
is very good for small ε∗, where the first-order phase approx-
imation is valid and the theory predicts a triangular shape of
the tongue, while the deviation of the estimated borders from
the true ones is essential for large ε∗.

In the first tests, we have chosen the driving frequency
to be quite close to the border of the synchronization domain.
Now, we check how important it is. In Fig. 3, we show the
estimates of the left, νl, and right, νr, borders in dependence
on the driving frequency ν∗, for two different values of the
amplitude. According to the theory, if the phase reduction in
the first approximation is valid, there shall be no frequency
dependence, and, indeed, it is marginal for ε = 0.01, while it
becomes essential for stronger driving (see also Ref. 27).

Finally, we mention that the technique works in the same
way for high-order synchronization ratios. We have checked
this by subjecting the Rayleigh oscillator to a harmonic
force with the amplitude ε∗ = 0.05 and frequency ν∗ = 1.8.
Using this single measurement, we perfectly reproduced the
synchronization domain with 3 : 1 locking in the frequency
interval 1.816 � ν � 1.88.
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FIG. 2. Synchronization domain of the harmonically driven Rayleigh oscilla-
tor (6). The true domain is shown by bold gray lines; it has been determined
for the discrete values of the forcing amplitudes ε, indicated by filled circles.
The domains obtained according to Eq. (7) from a single measurement at
ε∗ = 0.01, ν∗ = 0.612, and a measurement at ε∗ = 0.1, ν∗ = 0.59 are shown
by blue squares (connected by the dashed line) and by open red diamonds
(solid line), respectively. The reconstructed coupling function for the latter
case is shown in Fig. 7(a). The inset shows a zoom of the tongue for small
values of ε.

B. Noisy oscillator

Now, we consider a harmonically forced noisy Rayleigh
oscillator:

ẍ − μ(1 − ẋ2)ẋ + x = ε cos(νt)+ ξ(t), (8)

where ξ(t) is Gaussian white noise with zero mean and inten-
sity D. The plot�− ν vs ν for the noise-free system, obtained
in a standard way is shown by wide gray curve in Fig. 4. The
plateau in this plot indicates the true domain of 1:1 locking.
We also show here the corresponding �− ν vs. ν plots for
the noisy oscillator for two different noise intensities. These
curves illustrate the well-known fact that the domain of syn-
chrony for the noisy system is not well-defined and can be
determined only approximately.3 Next, we perform the same

FIG. 3. Dependence of the estimate for the left, νl , and the right, νr, borders of
the synchronization domain on the frequency ν∗ of the forcing. The results are
shown for ε∗ = 0.01 (black circles for νl , red squares for νr) and for ε∗ = 0.1
(blue triangles up for νl , magenta triangles down for νr). The true values of νl

and νr are shown by dashed and solid lines, respectively.

analysis as described in the Sec. III A: from the phases of
the oscillator and of the force we recover the coupling func-
tion. Since in fact we fit the instantaneous frequency ϕ̇ by
a function of ϕ,ψ , the random perturbations are washed out
due to averaging. Therefore, we expect that the obtained cou-
pling function is close to that of the noise-free system. This
expectation is confirmed by Fig. 4.

For noise intensity D = 0.02, the recovered synchroniza-
tion domain is hardly distinguishable from the true one. For
D = 0.05, the results are not perfect, though our technique
provides a better result from a single measurement than the
standard technique from many measurements. Notice that the
latter example is a quite tough test, since the noise here is quite
strong if compared to the amplitude of the regular driving
force.

C. Chaotic system

For the next example, we take the chaotic Rössler
oscillator.28 The equations of the driven system read

ẋ = y − z + ε cos(νt),

ẏ = x + 0.15y,

ż = 0.4 + z(x − 8.5).

(9)

It is known that many chaotic systems, and the Rössler sys-
tem in particular, admit an approximate description in terms
of phases and the appropriately introduced average frequency
can be locked to an external force or to another oscillator.29,30

This effect, known as phase synchronization of chaos, has
certain similarity with synchronization of noisy oscillators.
Therefore, we perform the same test, as with the noisy
Rayleigh oscillator. The phase of the Rössler oscillator was
obtained from the observable x(t) by means of the Hilbert
Transform.

The results are presented in Fig. 5. Here, again we show
the true synchronization domain and its reconstructions from
single measurements for ν∗ = 1.01 and for ν∗ = 1.06; the
forcing amplitude was ε∗ = 0.2. Like for the periodic oscilla-
tors above, the prediction is definitely better for the synchro-
nization domain border closest to the frequency of the driving
used for the reconstruction.

D. Oscillator in a network

With the following example, we illustrate some limi-
tations of our approach. We again consider the Rayleigh
oscillator, but now it is affected by two harmonic forces and a
random perturbation:

ẍ − μ(1 − ẋ2)ẋ + x = ε cos(νt)+ ε1 cos(ν1t)+ ξ(t). (10)

The first term on the r.h.s. represents the known force which
parameters ε, ν we can control and which phase we can obtain,
while the second and third terms simulate the unknown reg-
ular and stochastic inputs, respectively. The latter is again
Gaussian noise with zero mean and intensity D. The task is to
determine the domain of entrainment by the controlled force
ε cos(νt), i.e., as if the second regular force and the stochastic
perturbation were switched off.
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FIG. 4. The observed frequency � vs
the driving one for the noisy Rayleigh
oscillator (6) for noise intensity D = 0.02
(left panel) and D = 0.05 (right panel).
The bold gray curve was obtained by
the standard technique, i.e., by scanning
the frequency of the force, ν, for the
noise-free system; this curve provides the
true synchronization domain. The cyan
solid curve illustrates synchronization of
the noisy oscillator. The blue dashed and
red dashed-dotted curves present the syn-
chronization domain reconstructed from
a single measurement by means of
Eq. (5), for ν∗ = 0.6 and ν∗ = 0.63,
respectively. The forcing amplitude was
ε∗ = 0.05.

Let us consider the phase dynamics model for Eq. (8). In
the first-order approximation in ε it takes the form

ϕ̇ = ω + εQ(ϕ, νt)+ ε1Q1(ϕ, ν1t)+ Qn(ϕ, ξ). (11)

In the higher-order approximation, there shall appear the cross
terms, e.g., depending on the three phases ϕ, νt, and ν1t. If the
coupling function Q and the frequency ω were known exactly,
then, it would be possible to solve numerically the equation

ϕ̇ = ω + εQ(ϕ, νt)

for different ν and to find in this way the desired locking
region, at least for weak forcing when the first approxima-
tion (11) is valid. Omitting the two last terms in Eq. (11) is
equivalent to “switching off” the corresponding perturbations.
However, we do not know ω and Q, but can only estimate
them from data in the presence of unknown perturbations. Fit-
ting the right hand side of Eq. (11) by a function of ϕ,ψ = νt,
we perform an effective averaging of the unobserved terms.
However, this averaging can yield a constant term of the order
of ε1 and D.

We illustrate these considerations with the results of
numerical experiments, shown in Fig. 6. Here, we compare

FIG. 5. The observed frequency � of the chaotic Rössler oscillator (9), for
ε = 0.2. The bold gray curve was obtained by the standard technique, i.e.,
by scanning the frequency of the force, ν; this curve provides the true syn-
chronization domain. The blue dashed and red dashed-dotted curves present
the synchronization domain reconstructed by means of phase dynamics mod-
eling for ν∗ = 1.01 and ν∗ = 1.06, respectively. The corresponding coupling
function for the latter case is shown in Fig. 7(b).

the true synchronization region obtained for ε1 = 0, D = 0,
with the corresponding curve computed for the case when
the uncontrolled force with ε1 = 0.05 and ν1 = 0.5 is present.
One can see that the reconstruction indeed provides the tongue
with a small error: the effect of the unobserved force cannot be
completely eliminated. Thus, for a weak unobserved force, we
obtain the tongue with a small bias, as can be seen in Fig. 6.
It is important that this bias depends not only on ε1 but also
on ν1: if the frequency of the unobserved force is far away
from the tongue, then its effect is marginal. For example, for
ν1 = 0.2, the reconstruction is very good. Notice that if the
second force can be measured as well, and its phase can be
determined, then one can reconstruct both regular terms in the
phase model (cf. Ref. 31) and thus improve the results.

IV. DISCUSSION

In summary, we have suggested an approach for an effi-
cient determination of the synchronization domains of an
oscillator in an active experiment where the system is forced
and the parameters of the force can be controlled. The tech-
nique is applicable to any self-sustained periodic oscillator,
quasilinear or relaxational, as long as the measured observ-
able allows for estimation of an instantaneous phase. A

FIG. 6. Rayleigh oscillator driven by two forces Eq. (8). The blue dashed
and the green solid curves present the reconstructed values of the observed
frequency� for ν∗ = 0.6 and for D = 0 and D = 0.02, respectively. The bold
gray curve was obtained by a standard technique.
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counter-example is, e.g., neuronal spiking, where the action
potential is not resolved and the signal between the spikes
is nearly constant and dominated by noise, so that in fact
only a point process is available. However, if the experi-
mental trace from a spiking neuron (or from a spontaneously
beating an atrial pacemaker cell) is a continuously varying,
though a rapidly changing signal (cf., e.g, solution of the
Morris-Lecar neuronal model), then the phase estimation can
be performed as described in the paper, and the Arnold tongue
can be computed. Next, we mention that networks of interact-
ing oscillators, in particular of spiking neurons, can exhibit
collective oscillations. Such a collective mode behaves like
a macroscopic oscillator that can be entrained by an external
force,32,33 and the presented approach applies here as well.
Finally, we notice that the forcing does not have to be a har-
monic one; the technique works similarly for a periodic force
of an arbitrary form.

The main advantage of the approach is that, in con-
tradistinction to the standard technique, it requires only a
few observations. This makes the method especially useful in
investigation of life systems, where it may be highly desirable
to reduce the intervention, or the time interval, where the sys-
tem can be considered as stationary is short. For an illustration
of the performance, let us discuss Fig. 5. Here, 600 frequency
points have been used to construct the tongue by the standard
technique. With our approach, we can use a few frequency
points to obtain first a rough estimate of the locking domain,
and then we need further several points, taken near each bor-
der of the tongue, to improve the reconstruction. Thus, about
50 times less measurement points are required for a reliable
determination of the tongue.

For a practical application of this technique, we suggest
the following strategy. First, one shall perform a measure-
ment for a weak forcing and, assuming that the first-order
phase approximation is valid, reconstruct the whole Arnold
tongue from this single measurement (cf. Fig. 2). Most likely
this tongue is only a rough approximation of the true one,
especially for large ε, but this first estimation can be now
improved by measurements with a larger forcing amplitude
and with the frequency ν of the force chosen close to the bor-
der of the tongue (but outside of it). For a strong forcing, this
closeness of the frequency is important because the coupling
function becomes dependent on ν, and that is where the first
rough approximation is helpful. However, ν shall be not too
close to the border. Indeed, if the system is very close to syn-
chrony, then the finite-length trajectory does not cover the
torus formed by phases ϕ and ψ , and the reconstruction of
the function of these two variables is hampered. We suggest
always to check this by plotting ψ vs. ϕ (both phases shall be
wrapped to 0, 2π interval) and verifying that the points cover
the 2π × 2π square.

We emphasize that our approach can be also useful in
the case of passive experiments, when only observations of
the system under free-running conditions are possible. Indeed,
suppose we observe the outputs of two interacting, though not
synchronized, oscillators. Considering, say, the second unit
as a driver, we can reconstruct the phase dynamics of the
first unit from this single observation, and roughly predict
synchronization properties of the driven system.

An essential feature of our approach is that it efficiently
works with noise-perturbed oscillators and allows one to
reveal the synchronization properties of the corresponding
noise-free system. We underline that the mechanism behind
this is not a usual filtering. Indeed, if the phase dynamics
equation (2) is obtained, then its deterministic part can be
solved in order to generate the output of the oscillator if there
were no noise at all. This “switching off” of a certain input
is a particular case of a procedure for separating different
forcing terms in the dynamics, called dynamical disentangle-
ment. It has been recently applied to the analysis of interac-
tion between cardiovascular and respiratory systems24,34 and
provided a separation of the respiratory-related and the non-
respiratory related heart rate variability with the help of the
phase dynamics reconstruction.
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APPENDIX: DETAILS OF PHASE MODEL INFERENCE
FROM DATA

All building blocks of the algorithm are implemented
as functions in “Data Analysis with Models of Coupled
Oscillators” Matlab toolbox (DAMOCO) and can be found
here.35

The initial step in our technique is the estimation of the
phases from data. Suppose, we have a measurement of an
observable of the forced oscillator, x(t). First, we compute
the Hilbert transform xH (t) of x(t) and take the argument
θ(t) of the complex signal [x(t)− x∗] + i[xH (t)− x∗

H ] as the
protophase. Here, the coordinates x∗, x∗

H of the origin in the
complex plane shall be chosen in such a way that all loops of
the trajectory revolve around this point. Typically, the aver-
age values can be chosen for x∗, x∗

H , but generally a visual
inspection of the trajectory in the complex plane is recom-
mended. Further discussion and examples can be found in
Ref. 3. Practically, x(t) and θ(t) are given as time series sam-
pled with a constant time interval, i.e., as x(tk) and θ(tk). This
step can be performed with the help of the DAMOCO function
co_hilbproto.

We notice that the phase estimation via the Hilbert trans-
form fails if the waveform is complex (several maxima over
the period), so that the representation in the Hilbert plane
yields a trajectory with self-intersections. A representative
example of such a signal is an electrocardiogram. As far as we
know, there is no universal recipe for treating such time series
and ad hoc techniques are used, see, e.g., Refs. 23 and 24.

Next, we transform the protophase θ to the phase ϕ using
the technique developed in Refs. 22 and 23. The idea behind
this transformation reflects the property of the true phase of an
autonomous system to grow uniformly in time, ϕ̇ = ω, while
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FIG. 7. The reconstructed coupling
functions for the noise-free Rayleigh
oscillator (a) and the chaotic Rössler
oscillator (b).

the evolution of an angular variable (protophase) is mono-
tonic but not generally uniform, i.e., θ̇ = f (θ). The one-to-one
invertible transformation22,23 removes all the variations in the
phase growth that depend on the phase of the oscillator, and
preserves all the variations that are due to the external force
and therefore depend on its phaseψ . The transformation reads

ϕ = θ + 2
∞∑

n=1

Im

[
Sn

n
(einθ − 1

]
, (A1)

where Sn are Fourier coefficients of the probability density
function of θ . They can be directly computed from the time
series of θk , k = 1, . . . , N as Sn = N−1 ∑

k einθk . The number n
of Fourier coefficients can be either chosen sufficiently large,
e.g., between 50 and 100, or can be taken according to an opti-
mization scheme, see Ref. 24; here we used the latter option.
The corresponding toolbox function is co_fbtrT.

Numerical differentiation of the phase is performed by
means of a Savitzky-Golay polynomial filter.36 We used the
DAMOCO function co_phidot2 with fourth order polynomial
and the window length 0.12. (The results are rather insensitive
to the choice of these parameters.)

Finally, we obtain the coupling function Q by fitting ϕ̇ by
a function of ϕ and ψ , using the kernel density estimation24

(toolbox function co_kcplfct1). For this purpose, we choose a
rectangular m × m grid on the square 0 ≤ ϕ < 2π , 0 ≤ ψ <

2π . Let ϕg,ψg be one of the points on this grid. Then, the
function at this point is estimated as

Q(ϕg,ψg) =
∑N

k=1 ϕ̇(tk)K[ϕg − ϕ(tk),ψg − ψ(tk)]∑N
k=1 K[ϕg − ϕ(tk),ψg − ψ(tk)]

,

where the smoothing kernel is

K(x, y) = exp
[ m

2π
(cos x + cos y)

]
.

In all computations, we used m = 100. Examples of the
reconstructed functions are given in Fig. 7.
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