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We consider chimera states in a one-dimensional medium of nonlinear nonlocally coupled phase

oscillators. In terms of a local coarse-grained complex order parameter, the problem of finding

stationary rotating nonhomogeneous solutions reduces to a third-order ordinary differential equa-

tion. This allows finding chimera-type and other inhomogeneous states as periodic orbits of this

equation. Stability calculations reveal that only some of these states are stable. We demonstrate

that an oscillatory instability leads to a breathing chimera, for which the synchronous domain splits

into subdomains with different mean frequencies. Further development of instability leads to turbu-

lent chimeras. Published by AIP Publishing. https://doi.org/10.1063/1.5011678

Oscillators can synchronize—even a weak attracting cou-

pling can adjust their phases and frequencies. Quite sur-

prisingly, in oscillatory media, this does not always

happen even if the system is perfectly symmetric and the

coupling is attractive. States with a broken symmetry,

where a part of oscillators synchronize (and are ordered)

and a part remains asynchronous (and are disordered),

are called chimera regimes. Here, we report on interest-

ing chimera states in a perfectly symmetric medium with

nonlinear coupling. A hybrid chimera contains one fully

synchronous part and another highly but not fully syn-

chronous domain, together with asynchronous regions. A

breathing chimera varies periodically in time, and its

synchronous part is divided in several regions having dif-

ferent frequencies. In a turbulent chimera, patches of

synchrony and asynchrony vary irregularly in space and

time.

I. INTRODUCTION

Kuramoto and Battogtokh1 described chimera states as a

coexistence of synchrony and asynchrony in a one-

dimensional oscillatory medium. The surprising feature of

this finding is in breaking of the translational symmetry:

although a homogeneous fully symmetric synchronous state

exists and is stable, another nontrivial state may appear

(from a set of initial conditions), combining synchrony and

asynchrony. The level of synchrony can be characterized by

a local complex order parameter. In a chimera state, this

parameter is spatially inhomogeneous; moreover, in a part of

the space, its absolute value is one, indicating for full local

synchrony, and in another part, it is less than one, indicating

for partial local synchrony.

Chimeras (see Ref. 2 for a recent review) can be found

not only in an oscillatory medium,3–7 where continuous

symmetry becomes broken, but also at the interaction of sev-

eral populations of oscillators,8–11 where discrete symmetry

is broken.

A significant progress in theoretical studies has been

achieved by virtue of a formulation of the dynamics in terms

of a local coarse-grained complex order parameter.5,6 For

this complex field, the setup becomes similar to pattern for-

mation problems for nonlinear partial differential equations.

In particular, in Ref. 12, we reduced the problem of finding

stationary chimeras in the Kuramoto-Battogtokh model to

that of finding periodic solutions of a system of nonlinear

ordinary differential equations (ODE). For these periodic

solutions, one can furthermore calculate the stability spec-

trum of linear perturbations, and in this way identify stable

stationary chimera states.

In this paper, we apply the approach of Ref. 12 to a gen-

eralized Kuramoto-Battogtokh model suggested in Ref. 6.

The difference is in a nonlinear coupling between the oscilla-

tors: the phase shift in coupling, which in the Kuramoto-

Battogtokh model is assumed to be a constant, now depends

on the amplitude of the acting force (see Refs. 13 and 14 for

an experimental realization of such a coupling in a globally

coupled population). We report below several nontrivial

chimera-type states in the model with nonlinear coupling:

breathing chimeras (see Ref. 15 for a short communication

of this result), inhomogeneous partially synchronous states,

and weakly and strongly turbulent chimeras.

II. A NONLINEARLY COUPLED OSCILLATORY
MEDIUM

A. Model formulation

In this paper, we study a continuous medium of nonlo-

cally coupled identical phase oscillators, which are distrib-

uted on a circle 0 � x < L, with periodic boundary

conditions. In a discrete representation (used in numerical
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simulations below), this corresponds to a set of oscillators

uniformly distributed on a ring. Each oscillator is driven by a

complex coupling field H(x, t) and obeys an equation

_uðx; tÞ ¼ xþ Im He�iu�iaðHÞ½ � ; (1)

where aðHÞ ¼ a0 þ a1jHj2. The problem addressed by

Kuramoto and Battogtokh1 corresponds to the case of the

constant phase shift in the coupling (i.e., a1¼ 0), the situa-

tion where the phase shift depends on the modulus of the

field H was introduced in Ref. 6. The coupling field H is

related to the phase oscillators via the differential equation

@2H

@x2
� j2H ¼ �j2eiu ; (2)

solution of which can be written as an integral

H x; tð Þ ¼
ðL
0

G x� ~xð Þexp iuð~x; tÞ½ �d~x ; (3)

with the kernel G

GðyÞ ¼ j
2sinhðjL=2Þ cosh j jyj � L=2ð Þ½ �; �L=2 � y � L=2:

(4)

Equations (1) and (2) [or, equivalently, Eqs. (1), (3), and

(4)] fully define the problem and are suitable for discretiza-

tion and numerical simulations; however, they are less con-

venient for an analytical approach, because the phase field

u(x, t) is generally non-continuous in x. Therefore, it is con-

venient to introduce a local coarse-grained (averaged over a

small neighborhood x� d < ~x < xþ d) complex order

parameter

Z x; tð Þ ¼
1

2d

ðxþd

x�d

exp iuð~x; tÞ½ �d~x ; (5)

which is a continuous function of the coordinate. One can

achieve a significant reduction of the basic equations for the

phases, if one additionally assumes, following Ott and

Antonsen,16 that the averages of the high harmonics of the

phases can be expressed through this order parameter as well

1

2d

ðxþd

x�d

exp inuð~x; tÞ½ �d~x ¼ Zðx; tÞ½ �n; n � 1 : (6)

This property is invariant in time, and thus, the Ott-Antonsen

manifold defined according to (6) is invariant. Therefore, the

Ott-Antonsen ansatz16 has been used in many situations and

also in studies of chimeras.2 Its validity is, however, not

quite clear, as it strongly relates to the attraction properties

of the Ott-Antonsen manifold (6), which are not well estab-

lished. One knows that this manifold is not attractive for a

population of identical oscillators in a common field.9 In our

case, we have identical oscillators in a generally

inhomogeneous field H(x, t). This allows assuming at least a

weak attractivity of the Ott-Antonsen manifold, due to effec-

tive averaging over different driving fields in Eq. (6). With

these remarks, one can consider the application of the Ott-

Antonsen ansatz as a helpful, although potentially not uni-

versal reduction, suitable for a description of the long-time

dynamics.9,17

The dynamics of the order parameter on the Ott-

Antonsen manifold (6) obeys the following equation:2,16

@Z

@t
¼ ixZ þ 1

2
ðe�iaðHÞH � eiaðHÞH�Z2Þ ; (7)

while for the coupling field H we obtain the following equa-

tion from (2):

@2H

@x2
� j2H ¼ �j2Z : (8)

Before discussing the solutions of the basic model (7)–(8),

we mention that there are two parameters having dimension

of length: the length of the circle L and the coupling range

j–1. By rescaling, we can set j–1 to one, so that the only rele-

vant parameter is L.

B. Spatially homogeneous case

The analysis of spatially homogeneous uniformly rotating

states in Eqs. (7) and (8) is straightforward (in fact, the same

as that of the globally coupled population with nonlinear

coupling18,19). Substituting Z ¼ H ¼ h0eiðxþXÞt, we obtain an

equation for jh0j and X:

h0fjh0j2 exp ½iða0 þ a1jh0j2Þ� þ 2iX

� exp ½�iða0 þ a1jh0j2Þ�g ¼ 0 : (9)

For all values of the parameters, there exist a fully asynchro-

nous h0¼ 0 state, and a fully synchronous jh0j ¼ 1 state; for

0 < ðp=2� ja0jÞja1j�1 < 1 there exists also a partially

synchronous state with jh0j2 ¼ ðp=2� ja0jÞja1j�1
and

X ¼ �0:5ð1þ jh0j2Þ.
Below we restrict our attention to the domain of parame-

ters 0 � a0; a1 < p=2. Here, the stability analysis of the

homogeneous states, presented in the Appendix, gives the

following results:

1. The fully asynchronous state is always unstable, because

the “linear” part of coupling is attractive 0 � a0 < p=2

[see Eq. (A4)].

2. The fully synchronous state is stable, if the partially syn-

chronous state does not exist, i.e., for a0 þ a1 < p/2, and

unstable otherwise [see Eq. (A5)].

3. Stability of the homogeneous partially synchronous state

depends on the wavelength of the periodic in space pertur-

bation. This state is always unstable for small wave-

lengths k < kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p�2a0

a0þa1�p=2

q
, i.e., it is unstable in a long

enough medium L > Lc ¼ 2p=kc [see Eq. (A6)].

We see that in the presence of nonlinear coupling, a situa-

tion, where all homogeneous states are unstable, can occur. As
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we will show below, among stable inhomogeneous states there

are also chimera states, which appear to be globally attractive.

III. STATIONARY CHIMERA STATES

A. Finding chimera profiles

Here, we discuss spatially inhomogeneous, uniformly in

time rotating solutions of systems (7) and (8). We substitute

Zðx; tÞ ¼ zðxÞ exp iðxþ XÞt½ �;
Hðx; tÞ ¼ hðxÞ exp iðxþ XÞt½ �; (10)

where X is a rotation frequency. Equation (7) reduces to an

algebraic equation, from which we can express z via h

zðxÞ ¼ �ie�ia0�ia1jhj2
Xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � jhj2

q
h�

: (11)

Substituting this into Eq. (8), we obtain an ordinary differen-

tial equation (ODE) for the profile h(x)

h00 � h ¼ ie�ia0�ia1jhj2
Xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � jhj2

q
h�

: (12)

This equation is invariant to phase shifts argðhÞ ! argðhÞ
þ const, allowing for reducing to a three-dimensional real

ODE. Introducing real variables (r, q) according to h ¼ reih;
q ¼ r2h0, we can write the resulting equations as

r00 ¼ r þ q2

r3
þX

r
sin ða0 þ a1r2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � X2
p

r
cos ða0 þ a1r2Þ ;

q0 ¼ X cos ða0 þ a1r2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 �X2

p
sin ða0 þ a1r2Þ ; (13)

and

r00 ¼ r þ q2

r3
þ Xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � r2
p

r
sin ða0 þ a1r2Þ ;

q0 ¼ Xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � r2

p� �
cos ða0 þ a1r2Þ :

(14)

Equations (13) are valid in the domains where jrj � jXj;
here, the state is fully synchronous jzj ¼ 1. Equations (14)

are valid in the domains where jrj < jXj; here, the state is

asynchronous or partially synchronous jzj < 1.

The problem is now reduced to finding periodic (with

period L) solutions of system (13),(14); such solutions exist

for particular values of X only. It is convenient not to fix the

length L, but to fix the parameter X, and to consider L as a

function of X. In particular, in Figs. 1–5 below, we first fix X
and find a stationary profile, as illustrated in panels (a) of

these figures. The resulting period of this profile L, rounded

to three-four significant digits, is used in the stability calcula-

tions and in the direct simulations on a periodic medium,

depicted in panels (b)–(d).

Generally, one can expect many periodic solutions of

system (13) and (14), because they are three-dimensional

and may demonstrate sufficient complexity, including chaos.

Many formal solutions are, however, excluded by the con-

straint jrj < 1. Below we focus only on the simplest periodic

orbits in (13) and (14), because only they are relevant

for small values of L. Systems (13) and (14) possess a sym-

metry x! �x; r ! r; q! �q, which allows for seeking

symmetric periodic solutions, starting from point rð0Þ ¼ r0;

FIG. 1. Standard chimera of the Kuramoto-Battogtokh type, for a0 ¼ 0:3p; a1 ¼ 0:65; X ¼ �0:8, L � 4:874. Panel (a) shows profiles jzj (solid line) and jhj
(dotted line), found with the method of Sec. III A. Here, also the level jXj is shown by the dashed line: the synchronous domain is that where jHj > jXj. Panel

(b) shows the spectrum of linear perturbations; here, one can clearly see complex discrete eigenvalues with negative real parts. Panels (c)–(e) show the results

of direct numerical simulations of the set of N¼ 4096 oscillators. Panel (c): phases of oscillators at the end of simulations. Panel (d): spatio-temporal plot of

jHðx; tÞj. Panel (e): average frequencies of the oscillators.
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r0ð0Þ ¼ qð0Þ ¼ 0. Varying just one parameter r0, we find

periodic trajectories of (13) and (14) satisfying rð0Þ ¼ rðLÞ;
r0ð0Þ ¼ qð0Þ ¼ r0ðLÞ ¼ qðLÞ ¼ 0.

B. Stability of chimeras

To study the stability of the spatially inhomogeneous

solutions found as described above, we transform the basic

Equations (7) and (3) into the frame, rotating with frequency

X, where solution (10) is a steady state. Linearization near

this state Zðx; tÞ ¼ ðzðxÞ þ ~Zðx; tÞÞeiðxþXÞt, Hðx; tÞ ¼ ðhðxÞ
þ ~Hðx; tÞÞeiðxþXÞt yields a linear integro-differential equation

@ ~Z

@t
¼ � iXþ eiazðxÞh�ðxÞ

� �
~Z þ 1

2
ðe�ia ~H � eiaz2ðxÞ ~H

�Þ

� ia1

2
ðhðxÞ ~H

� þ h�ðxÞ ~HÞ hðxÞe�ia þ h�ðxÞz2ðxÞeia
� �

;

(15)

where ~H ¼
Ð

Gðx� x0Þ ~Z dx0. Introducing real variables
~Z ¼ n1 þ in2, one can rewrite linear Eq. (15) as a system

(see the Appendix for details)

@n

@t
¼ ðM̂ þ K̂Þn ; (16)

with a multiplicative operator M̂ and an integral operator K̂

M̂ ¼
l1ðxÞ �l2ðxÞ

l2ðxÞ l1ðxÞ

 !
;

K̂ n ¼
K11ðxÞ K12ðxÞ

K21ðxÞ K22ðxÞ

 !ð
Gðx� x0Þ nðx0Þ dx0:

Expressions for l1; l2 are quite simple: for jhj � jXj l1

¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhj2�X2

q
and l2 ¼ 0; for jhj< jXj l2 ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2� jhj2

q
and l1 ¼ 0. Expressions for Kij are quite lengthy and we pre-

sent them in the Appendix.

General properties of the spectral problem (16) follow

from the properties of the operators M̂ and K̂.17,20 The

essential spectrum is that of the multiplicative operator M̂

and has generally (if both l1;2 6¼ 0) a T-shaped form: part of

it is on the imaginary axis, and part is on the real negative

axis. This essential spectrum does not contribute to instabil-

ity; the latter is determined by the discrete spectrum.

Numerically, it appears to be quite difficult to separate the

discrete and the continuous spectral components, because

due to discretization, a branch of the continuous spectrum

does not exactly lie on the imaginary axis, but has nonvan-

ishing real parts. Therefore, we apply the approach suggested

in Ref. 12: if one shifts the grid on the circle 0 � x < L used

in the discretization of the integral operator K̂, then the com-

ponents of the continuous spectrum vary, while the compo-

nents of the discrete spectrum remain stable.

IV. REGULAR CHIMERA REGIMES

In this section, we present examples of regular inhomo-

geneous states in the model of nonlinearly coupled oscilla-

tors. In all cases, the chimera profiles and their stability are

determined as described in Sec. III. These solutions are then

confirmed via direct numerical simulations.

A. Stationary chimeras

We show here three representative examples of station-

ary stable inhomogeneous states in Figs. 1–3.

FIG. 2. Stable inhomogeneous state. Panels (a)–(e) show the same quantities as those in Fig. 1, but for a0 ¼ 0:4p; a1 ¼ 1:5; X ¼ �0:6, and L � 8:662.
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Figure 1 shows a standard one-cluster chimera state, as

it has been first described by Kuramoto and Battogtokh.1

Here, there is one domain where the oscillators are synchro-

nized, and one domain with partial synchronization.

Very similar to this state is a nonhomogeneous regime

illustrated in Fig. 2, where, however, there is no synchronous

domain: just the level of partial synchrony varies along the

space. Such states have been recently observed in Ref. 21 for

a setup, where the phase shift parameter a does not depend

on the modulus of the driving field jHj as above, but explic-

itly depends on space. Noteworthy is the difference in the

continuous part of the spectrum in the stability calculations

FIG. 3. Stable “hybrid” chimera state. Panels (a)–(e) show the same quantities as those in Fig. 1, but for a0 ¼ 0:4p; a1 ¼ 1:5, X ¼ �0:48; L � 9:206.

FIG. 4. Breathing chimera state. Panels (a)–(e) show the same quantities as those in Fig. 1, but for a0 ¼ 0:3p; a1 ¼ 0:65; X ¼ �0:62; L � 6:528. Panel (f)

shows additionally the space-time plot of the phase field uðx; tÞ, to illustrate the phase slips.
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[panel (b)]: because the synchronous domain is absent, the

continuous spectrum is not T-shaped, but lies on the imagi-

nary axis.

A stable “hybrid” state, which can be considered as a

“mixture” of the two regimes of Figs. 1 and 2, is illustrated

in Fig. 3. Here, a periodic in space pattern of synchrony

(characterized by local values of jzj and jhj) has two maxima.

One of these maxima is completely synchronous with

jzj ¼ 1; another maximum is, however, only partially syn-

chronous with jzj < 1. It is noteworthy that the phases in the

two maxima are shifted by p.

B. Breathing chimeras

In this section, we report on breathing regimes, which

appear when the states depicted in Figs. 1 and 2 become

unstable. The breathing chimera is shown in Fig. 4. In panels

(a) and (b), we show the stationary chimera, obtained for this

value of L, and its stability: one can observe two discrete

complex eigenvalues with positive real parts, indicating for

oscillatory instability. Direct numerical simulations show

that a stable breathing chimera appears [panel (d)]. Here, the

fields Hðx; tÞ; Zðx; tÞ vary periodically in time, but at all

instants of time, there is a fully synchronous region where

jZj ¼ 1.

An interesting phenomenon happens in the fully syn-

chronous domain close to the partially synchronous one.

Here, the continuous in the space phase profile is not pre-

served at all times: there are instants of time, at which it

breaks, producing a phase slip. Deep in the synchronous

domain this happens once per period of modulation, closer to

the partially synchronous regime the slips happen twice dur-

ing the modulation period [these slips are best seen in the

space-time plot of the phases in panel (f) of Fig. 4]. Due to

these slips, in the frequency profile Fig. 4(e), one observes

not just one frequency plateau corresponding to the synchro-

nous domain, but two additional subplateaus, shifted by the

frequency of modulation and its second harmonics. We note

that the slips could be also considered as singular violations

of synchronization, e.g., the complex order parameter

coarse-grained around the position of the slip vanishes at

each slip event. This effect has been recently observed by

Xie et al.22 for two-dimensional chimera spiral regimes.

There, in a domain between a disordered core and an ordered

periphery, one observes detraining-entraining oscillators like

in Fig. 4(c), and the corresponding steps in the mean fre-

quency plot.

A breathing inhomogeneous state without synchronous

domains appears at oscillatory instability of the stationary

state of Fig. 2; it is shown in Fig. 5. This regime is very

much similar to that of Fig. 4. However, because there is no

synchronous domain here, there are no phase slips and the

frequency profile remains smooth.

V. TURBULENT CHIMERAS

Here, we illustrate irregular states that appear in the

model for relatively large values of the length L. For inter-

mediate values of L, they may coexist with simpler states

described above. In Fig. 6, we show a slightly irregular

breathing chimera, which is similar to the state presented in

Fig. 5. Oscillations are now aperiodic, but otherwise the spa-

tial profile of the field H(x, t) is rather regular.

A strongly turbulent state is illustrated in Fig. 7. Here,

the field H(x, t) is highly disordered. Nevertheless, inspection

of the instantaneous phase profiles [panel (b)] reveals regions

where it is locally rather smooth, indicating small domains

which can be attributed to synchrony. On a long time scale,

FIG. 5. Breathing inhomogeneous state. Panels (a)–(e) show the same quantities as those in Fig. 1, but for a0 ¼ 0:4p; a1 ¼ 1:5, X ¼ �0:583; L � 9:26.
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the dynamics of all oscillators is irregular, and the symmetry

in the system is restored, although in a statistical sense. It is

worth comparing these turbulent states to previously reported

ones. In Ref. 6, irregular spatio-temporal solutions were

reported for the same setup as in this paper, and for a chain

of identical Stuart-Landau oscillators (showing that this

regime is not restricted to chains of phase oscillators). Here,

we support these findings by presenting Fig. 7 simulations of

the phase oscillator lattice. Furthermore, we report on a

weakly chaotic state in Fig. 6. In Ref. 23, a medium of non-

identical oscillators was studied, i.e., at each site there was a

set of oscillators with a Lorentzian distribution of frequen-

cies. In such a system chimera states, with regions of full

synchrony, are not possible. In numerical simulations of the

Ott-Antonsen equations for the medium with a square kernel

Gðx� yÞ, Ref. 23 reports on regimes of amplitude and phase

turbulence. The amplitude of the order parameter is strictly

below one due to the disorder in the oscillator frequencies.

In Ref. 23, no simulations of the phase oscillators are pre-

sented. In Fig. 7 one can see that in the above reported phase

dynamics there are regions with rather synchronous phase

profiles [seen as pieces of lines in panel (b)], what means

that in the reported case the order parameter in the turbulent

state can reach one.

VI. CONCLUSION

Summarizing, we have studied different chimera states

in a one-dimensional medium of nonlinearly coupled phase

oscillators. Our setup is almost identical to that of

Kuramoto and Battogtokh, except for nonlinearity in

coupling. This nonlinearity leads to novel effects (some of

these effects, e.g., a turbulent state, have been reported in a

short publication6—here, we extend this analysis by

exploiting an ODE reduction for finding periodic profiles;

also hybrid, breathing, and weakly chaotic chimera states

were not reported in Ref. 6). First, it allows for a homoge-

neous partially synchronous state, which, however,

becomes unstable in a long medium. In the class of station-

ary (uniformly rotating) spatially inhomogeneous regimes,

together with the classical Kuramoto-Battogtokh chimera,

we have observed an inhomogeneous partially synchronous

state, and a “hybrid” chimera consisting of two domains of

enhanced synchrony - one fully and another partially syn-

chronous. Furthermore, we observed how the oscillatory

instability of stationary chimeras leads to the breathing,

periodically time modulated chimeras. In this regime, the

synchronous domain breaks into subdomains having differ-

ent oscillator frequencies. The frequency profile consists of

steps, the step height is the modulation frequency. In large

spatial domains, regular regimes are typically unstable and

one observes either a weakly chaotic state (nonperiodically

breathing chimera) or strong turbulence.
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FIG. 6. Weakly irregular inhomogeneous state for a0 ¼ 0:4p, a1 ¼ 1:5; L � 9:52 (the length of the system L is slightly larger than that in Fig. 5). Panel (a):

spatio-temporal dynamics of the field jHðx; tÞj. Panel (b): a snapshot of the phases at the end of simulations.

FIG. 7. Strongly irregular inhomogeneous state for a0 ¼ 0:4p; a1 ¼ 1:5; L � 11:04 (the length of the system L is larger than that in Fig. 6). Panel (a): spatio-

temporal dynamics of the field jHðx; tÞj. Panel (b): a snapshot of the phases at the end of simulations.
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APPENDIX: STABILITY CALCULATION

Here, we present basic calculations of the stability of

stationary patterns, including stability of homogeneous

states. The starting point is Eq. (15)

@ ~Z

@t
¼ � iXþ eiaðjhjÞzðxÞh�ðxÞ

h i
~Z þ e�iaðjhjÞ

2
~H

� eiaðjhjÞ

2
z2ðxÞ ~H

� � ia1

2
ðhðxÞ ~H

�

þ h�ðxÞ ~HÞ hðxÞe�iaðjhjÞ þ h�ðxÞz2ðxÞeiaðjhjÞ
h i

; (A1)

with ~Hðx; tÞ ¼
Ð

Gðx� ~xÞ ~Zð~x; tÞ d~x. We rewrite this equation

as a system for two real functions ~Zðx; tÞ ¼ n1ðx; tÞ
þ in2ðx; tÞ

@n1

@t
¼ l1ðxÞn1 � l2ðxÞn2 þ K11ðxÞ

ðL

0

Gðx� ~xÞn1ð~x; tÞ d~x

þK12ðxÞ
ðL

0

Gðx� ~xÞn2ð~x; tÞ d~x;

@n2

@t
¼ l2ðxÞn1 þ l1ðxÞn2 þ K21ðxÞ

ðL

0

Gðx� ~xÞn1ð~x; tÞ d~x

þK22ðxÞ
ðL

0

Gðx� ~xÞn2ð~x; tÞ d~x ; (A2)

with the following notations:

K11ðxÞ ¼
1

2
cos a� g1ðxÞ½ �

þ a1ðcos afv1ðxÞ þ 2ImzðxÞ RehðxÞ½ �2RezðxÞg
þ sin afv2ðxÞ � RehðxÞ½ �2gÞ;

K12ðxÞ ¼
1

2
sin a� g2ðxÞ½ �

þ a1

�
cos afv3ðxÞ þ ImhðxÞ½ �2g

þ sin a �v1ðxÞþ2ImzðxÞ ImhðxÞ½ �2RezðxÞ
n o�

;

K21ðxÞ ¼ �
1

2
sin aþ g2ðxÞ½ �

þ a1ðcos af�v2ðxÞ � RehðxÞ½ �2g
þ sin afv1ðxÞ þ 2ImzðxÞ RehðxÞ½ �2RezðxÞ
� 2ImhðxÞRehðxÞgÞ;

K22ðxÞ ¼
1

2
cos aþ g1ðxÞ½ �

þ a1ðcos afv1ðxÞ � 2ImzðxÞ ImhðxÞ½ �2RezðxÞ
�2ImhðxÞRehðxÞg þ sin afv3ðxÞ � ImhðxÞ½ �2gÞ;

l1ðxÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhðxÞj2 � X2

q
; jhðxÞj � X;

0; jhðxÞj < X;

8<
:

l2ðxÞ ¼
0; jhðxÞj � X;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � jhðxÞj2

q
; jhðxÞj < X;

8<
:

g1ðxÞ ¼ RezðxÞ½ �2 cos a� ImzðxÞ½ �2 cos a

� 2RezðxÞImzðxÞ sin a;

g2ðxÞ ¼ RezðxÞ½ �2 sin a� ImzðxÞ½ �2 sin a

þ 2RezðxÞImzðxÞ cos a;

v1ðxÞ ¼ ImhðxÞRehðxÞ þ ImhðxÞ ImzðxÞ½ �2RehðxÞ
� ImhðxÞRehðxÞ RezðxÞ½ �2;

v2ðxÞ ¼ � ImzðxÞ½ �2 RehðxÞ½ �2 þ 2ImhðxÞImzðxÞRehðxÞRezðxÞ
þ RezðxÞ½ �2 RehðxÞ½ �2;

v3ðxÞ ¼ ImhðxÞ½ �2 ImzðxÞ½ �2 þ 2ImhðxÞImzðxÞRehðxÞRezðxÞ
� ImhðxÞ½ �2 RezðxÞ½ �2:

Equation (A2) is Eq. (16) in the main text.

Next we discuss, using Eq. (A2), the stability of spa-

tially homogeneous states. In this case, the solutions are

plane waves nðx; tÞ ¼ Ae�ikxþkt; A ¼ ðA1;A2ÞT , and the

eigenvalue equation for k is

kA ¼ M̂0 þ IðkÞK̂0

� �
A ; (A3)

with IðkÞ ¼
Ð L=2

�L=2
GðxÞeikx dx ¼ 1

1þk2. Operators M̂0; K̂0 are

defined according to Eq. (16) and expressions above, subin-

dex 0 means that the corresponding steady solutions of

Eq. (9), z0, and h0 are inserted.

For the fully asynchronous state, we have Zas ¼ z0

¼ h0 ¼ 0; a ¼ a0. Here, the eigenvalues are

k1;2 ¼
1

2
ð1þ k2Þ�1

cos ða0Þ6i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� 12 sin ða0Þ þ X

����
s

: (A4)

For the fully synchronous state Zs ¼ eiðxþXsÞt with

Xs ¼ �sin ða0 þ a1Þ; z0 ¼ 1; h0 ¼ 1; a ¼ a0 þ a1. The

eigenvalue problem can be solved as

k1 ¼ �cos ða0 þ a1Þ;
k2 ¼ �cos ða0 þ a1Þ½1� ð1þ k2Þ�1� : (A5)

For a partially synchronous state, we have Zps

¼ rpse
iðxþXpsÞt, where rps ¼

ffiffiffiffiffiffiffiffiffiffiffi
p=2�a0

a1

q
, z0 ¼ rps; h0 ¼ rps; a

¼ a0 þ a1r2
ps; Xps ¼ �ð1þ r2

psÞ=2. Here, the solution of the

eigenvalue problem reads

k1;2 ¼
ðp=2� a0Þðp=2� a0 � a1Þ

2a1ð1þ k2Þ

6
1

2

�
ðp=2� a0Þ2ðp=2� a0 � a1Þ2

a2
1ð1þ k2Þ2

� a2
1 � a2

0 � ðp=2Þ2 þ pa0

a2
1

k4

ð1þ k2Þ2

þðp=2� a0Þða1 þ a0 � p=2Þ
a2

1

2k2

ð1þ k2Þ

	1=2

: (A6)

The condition k1 ¼ 0 yields the critical wave number

k2
c ¼ p�2a0

a1�p=2þa0
.
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