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Abstract – We present a general method for the reconstruction of a network of nonlinearly
coupled neural fields from observations. A prominent example of such a system is a dynamical
random neural network model studied by Sompolinsky et al. (Phys. Rev. Lett., 61 (1988) 259).
We develop a technique for inferring the properties of the system from the observations of the
chaotic voltages. Only the structure of the model is assumed to be known, while the nonlinear
gain functions of the interactions, the matrix of the coupling constants, and the time constants of
the local dynamics are reconstructed from the time series.
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Introduction. – Reconstruction of networks based on
the observation of their dynamics is a challenging prob-
lem relevant for many interdisciplinary applications in
physics, climate system analysis, biochemical and biolog-
ical dynamics, genetic regulation, epidemiology [1–7] and
even in social sciences [8]. Particularly broad are applica-
tions in neurosciences, aimed at an understanding of brain
connectivity and functionality [9–13]. Here one tries to
reconstruct the interactions between the nodes exploring
multivariate neurophysiological measurements [14–16].

Generally, methods of reconstruction can be divided
in two classes. In the first approach, one explores
statistical interdependencies of observed stochastic pro-
cesses, and calculates cross-correlations and mutual
(Granger) information measures [17–20]. In another
class of methods, one assumes a complex dynamical
system behind the observations, and tries to recon-
struct the network on the basis of the deterministic
dynamics [21–26].

Here we propose a dynamics-based method for recon-
struction of a neuronal network from the observed voltages
of the nodes. We assume that the dynamics is governed
by a generic system of coupled neural fields, where all
the elements —the gain functions, the time constants,
and the coupling constants of the interaction— are un-
known. In the course of the reconstructions, based on the

multivariate time series of voltages, these parameters and
functions are inferred.

Neural network model and its dynamics. – In this
paper we focus on the reconstruction of the network struc-
ture that governs neural fields in the voltage formulation,
one of the basic models in computational neuroscience (see
refs. [27–29]). Each of the n nodes is characterized by its
time-depending voltage xj(t), the evolution of which is
governed by the inputs from other nodes according to a
system of ordinary differential equations

dxj

dt
+ γjxj =

n
∑

k=1

CjkFk(xk), j = 1, . . . , n. (1)

Here γj is the time constant of relaxation of the field at
node j, and Fk are the gain functions at the nodes (typi-
cally F (x) ∼ tanh(x) or have some similar form). The net-
work is determined by the n× n coupling matrix Cjk. As
has been shown in ref. [30], at strong enough coupling such
a network demonstrates chaos, and this is a state which
allows the reconstruction of the network matrix Cjk, the
time constants γj , and the functions Fk from the set of
observations xj(t), as described below (see “Conclusions”
for a possible extension to non-chaotic states).

For our approach the most important property of the
model (1) is its scalar character: the dynamics at each
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Fig. 1: (Color online) Example of chaotic neural fields xi(t) in
model (1).

node is one dimensional, so it is fully characterized by
a scalar variable xk, and the nonlinear function F is a
function of one variable. This should be contrasted to
more general networks where the dynamics at each node
is high dimensional.

First, we illustrate a chaotic state in system (1). To be
as close as possible to the theoretical approach of ref. [30],
we take F (x) = tanh(x) and choose Cij to be independent
random variables with a Gaussian distribution with zero
mean and standard deviation 2 (the standard deviation is
an essential parameter in theory [30], chaos in a network is
typically observed for large enough values of this param-
eter). The time constants γj are chosen from a uniform
distribution in the range 0.8 < γ < 1.2. An example of a
chaotic regime for an ensemble of N = 16 elements is pre-
sented in fig. 1. The calculated largest Lyapunov exponent
is 0.22. This chaotic state is used below in all calculations
for the illustration of the reconstruction method.

Reconstruction of the network parameters. –

Method of the reconstruction: known time constants.
Here we present the method of the reconstruction, assum-
ing that the time constants γj are known. We will extend
to the case of unknown constants γj in the next subsection.

Suppose one observes the time series of all variables
xj(t) governed by eq. (1). The problem is to reconstruct
the coupling matrix C and the functions Fk from these
observations. First, we calculate the time derivatives of
the observed signals to obtain the time series (ẋj , xj). Let
us invert eqs. (1):

Fj(xj) =
∑

i

Wji(ẋi + γixi). (2)

Here W = C−1 is the matrix inverse to the coupling ma-
trix C. This matrix generally exists, as the random matrix
C is typically non-singular.

The main idea of the reconstruction follows from the
functional relation of the scalar variable xj and the r.h.s.
of eq. (2). For the sake of simplicity of presentation we
denote yi(t) = ẋi + γixi. Suppose that in the chaotic

time series xj(t), we find two time instants, t1 and t2,
such that xj(t1) ≈ xj(t2). Then, from eq. (2) it follows
that

∑

i Wjiyi(t1) ≈
∑

i Wjiyi(t2). Here, in fact, only the
continuity of the function Fj is used; no other assumptions
are needed. This relation can be rewritten as

∑

i

Wjizi ≈ 0, zi = yi(t1) − yi(t2). (3)

We expect that for a chaotic time series this relation is
nontrivial, i.e. the vector zi does not vanish. (For a pe-
riodic time series one can obviously find such points that
yi(t2) ≈ yi(t1), if t2 − t1 is a multiple of the period. As
discussed in “Conclusions” below, only periodic regimes
with a complex waveform may provide enough nontrivial
recurrent points to ensure reconstruction.)

For a sufficiently long scalar time series xj(t), we in fact
can find many such time instants where xj(t1) ≈ xj(t2),
and correspondingly we have a large set of M vectors
zi

(m), m = 1, . . . , M . The size of the set M is the es-
sential parameter of the method, as dicussed below it is
close to the length of the observed time series. Using a

vector notation {z
(m)
i } = �z (m), we thus obtain a set of

equations
�wj · �z

(m) = 0, (4)

where we denoted the j’s row of the matrix W as a vector:
[�wj ]i = Wji.

The problem of finding the vector �wj from the set of
linear equations (4) is the standard problem of finding a
null space of the N × M matrix composed of M vectors
�z (m). This problem can be straightforwardly solved via
Singular Value Decomposition (SVD) [31]. Once the zero
singular value is found, the corresponding entry in the
obtained unitary matrix gives the vector �wj . Performing
this for different rows j allows us to obtain the matrix W .
We note that the matrix is obtained unambiguously up to
a normalization, because the functions Fj in (2) are un-
known. If one assumes these functions to be normalized,
then the inverse coupling matrix W is defined in a unique
way. Together with the time series yi(t), this matrix de-
fines according to eq. (2) the gain functions Fj . Finally,
the coupling matrix C is obtained by the inversion of W
(we remind that the time constants γj are assumed to be
known in this variant of the method). Practically, one ob-
tains not exact null spaces, but spaces corresponding to

the minimal singular values S
(min)
j , which are small but

do not vanish exactly.
In the procedure above we have to find close returns of

the time series xj(t). Because this time series is a scalar
one, the following simple technique could be used. One
just performs a sorting of the available array of values
xj . Then the neighboring values of xj in the sorted array
(although they are of course typically not neighbors in the
original time series if the sampling rate is not too large;
for a large sampling rate one needs to exclude neighbors
within, say, a typical correlation time in the original time
series) provide the closest returns. If the range of values of
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Fig. 2: (Color online) Reconstruction of the coupling constants.
Time derivatives are calculated via the Savitzky-Golay filter
with parameters [6,6], for the time step dt = 0.01. Points for
the analysis were taken with step Δt = 2. Panel (a): recon-
structed vs. true coupling constants for M = 100. The dotted
line is the diagonal. Panel (b): dependence of the median er-
ror on the length of the time series M (square markers). The
dashed line has slope of −2.

x is ∆, then for M points in the chaotic time series one can
estimate |xj − x̂j | ∼ ∆/M , where x̂j is a close neighbor
of xj after sorting. One can see that the error vanishes
for a very long time series M → ∞. Furthermore, taking
only nearest neighbors in the sorted time series, one avoids
redundancy in the matrix of vectors �z (m), as each value
of xj participates only twice in the formation of the set of
�z (m).

We illustrate the method in fig. 2. Here we used a mul-
tivariate time series xj(t) depicted in fig. 1, from which
the time derivatives have been calculated by virtue of the
Savitzky-Golay filter. Panel (a) shows the reconstructed
coupling constans of the matrix C vs. the original ones,
for a rather small length of the time series M = 100.
Panel (b) shows the dependence of the median error on
the length of the time series M (we use median because
of a broad distribution of errors, cf. fig. 3(b) below). This
dependence fits quite well the scaling Err ∼ M−2.

To check the robustness of the method to different lev-
els of noise in the data, we performed the same analysis
as shown in fig. 2 for the time series with added observa-
tional Gaussian noise with standard deviation σ. Partially
this noise is filtered out due to application of the Savitzky-
Golay filters needed also to calculate the time derivatives.
Figure 3 illustrates the quality of the reconstruction for
four different values of σ. One can see that the errors
are proportional to the noise level. The reconstruction is,
nevertheless, quite robust as even for a large noise level
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Fig. 3: (Color online) Reconstruction of coupling constants in
the presence of noise. Time derivatives are calculated via the
Savtzky-Golay filter with parameters [6,6], for the time step
dt = 0.01. Points for the analysis were taken with step Δt = 2,
the total number of points was M = 1000. Four levels of noise
have been explored. Panel (a) shows the reconstructed vs.

true coupling constants for σ = 10−4 (pluses, nearly perfect
reconstruction for the minimal noise level) and σ = 5 · 10−3

(squares, rather large level of errors). The dotted line is the
diagonal. Panel (b) shows all the errors in the reconstructed
coupling constants vs. the true ones, for four indicated levels
of noise. Dashed lines show the medians of these errors. The
inset in panel (b) depicts the linear dependence of the median
of the errors vs. noise level (the dashed straight line has slope
160).

in fig. 3(a), the reconstructed coupling constants though
inaccurate in absolute values, are nevertheless roughly
linearly proportional to the true values (cf. squares in
fig. 3(a)) and this allows distinguishing strong and weak
links in the network.

Unknown time constants. Above we have assumed
that the time constants γj at the nodes are known. This
allowed us to calculate the values yi(t) explicitely. In the
case of unknown γj this is not possible, and to apply the
method above we have to scan over different test values
of γj . An indicator for the correct choice of the time con-
stants is the quality of the found null space of the system
of eq. (4). Practically, we used the maximum over the
index j singular value

S(�γ) = max
j

S
(min)
j (5)

as the cost function, trying to minimize it.
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Fig. 4: (Color online) Reconstructed time constants (a) and
the error Er = |Crec,jk − Cjk| in the reconstructed coupling
constants vs. the true constants themselves (b). Four symbols
show four independent runs of the simulated annealing routine.
Number of points used M = 1000. In panel (b) the two lines
show the levels Er = C (solid line) and Er = 0.1C (dashed
line). As most of the values lie below the dashed line, the max-
imal error of the method can be estimated as 10%, except for
coupling constants that are very small —for them the relative
error is of order 1.

Unfortunately, in the definition of vectors yi and �z (m)

all the time constants enter, so one has to scan in the full
N -dimensional space to find an absolute minimum of S(�γ).
Thus, because a brute force approach is hardly possible,
a more sophisticated search is needed. We have found
that a simulated annealing approach (see [32], Chapt. 10),
provides a proper estimate of the time constants. In our
realization we attributed log S(�γ) to the “energy” and de-
creased the “temperature” of the simulated annealing from
0.1 to 5 · 10−3, multiplying it at each step by 0.999999.
The variations of the vector �γ have been performed by
adding at each step a random Gaussian vector with am-
plitude 0.05. To estimate the reliability of the procedure,
we performed four runs, checking if the same values of the
time constants �γ and the same values of the coupling ma-
trix C are reached in these independent implementations
of the annealing. The results for a time series of length
M = 1000 are shown in fig. 4. One can see that the recon-
struction is not perfect, however, the likelihood that the
relative error for the coupling constants that are larger
than 0.1 is less than 10%.

Conclusions. – In summary, we have developed a
method to reconstruct the connections of the network

behind a collection of interacting neural fields, pro-
vided the observations of the potentials at the nodes are
available. The method delivers the connectivity matrix,
together with the parameters (time constants) character-
izing the dynamics of the nodes, and the nonlinear gain
functions defining the interactions. No prior knowledge
on any of these parameters is required, only the general
structure of the system is supposed to be known. We
have assumed that data for all the nodes are available;
the exploration of the situation with unobserved nodes is
a subject of ongoing research.

Our method heavily relies on the diversity of the dynam-
ics, and works most powerfully in the case the dynamics is
chaotic. Additional tests have shown that even for a pe-
riodic dynamics, if this is complex enough (i.e., the wave
form is nontrivial with several minima and maxima over
the period) to ensure sufficient diversity, the reconstruc-
tion works well. However, if the dynamics is periodic with
a simple sine-type waveform, the reconstruction fails as
the vectors used in the SVD analysis are not independent.

It is worth comparing our approach with other meth-
ods of dynamical network reconstruction. The most sim-
ilar approach is that of ref. [33], where a neural network
model in the firing rate formulation was considered. The
difference to the present work is that in the firing rate
formulation, instead of eqs. (1), one has a system

dyj

dt
+ γjyj = Gj

(

n
∑

k=1

Cjkyk

)

, j = 1, . . . , n . (6)

Because of the different order of applying a nonlinear func-
tion G and a linear coupling, to treat system (6) one has
to invert the gain function G, instead of inverting the cou-
pling matrix C. Therefore, the approach of ref. [33] applies
to invertible gain functions only, while in the present case
no restriction on the nonlinear functions in (1) is imposed
—instead here the coupling matrix has to be non-singular,
what appears to be a typical case for random matrices. In
ref. [21] a general setup of high-dimensional dynamical sys-
tems coupled via a network of nonlinear interactions was
considered. It was assumed that all nonlinear functions
defining the local dynamics and the coupling are known,
so the only unknown parameters, the coupling constants,
could be reconstructed provided the full high-dimensional
time series from all sites are available. Similar assump-
tions have been made in refs. [25,34,35]. In the present
work, no knowledge on the nonlinear coupling functions
is required. The local dynamics is assumed to be linear,
thus only one unknown parameter (time constant) has to
be determined at each node. In ref. [36] applications of
compressive sensing methods to network reconstruction
are reviewed. In these methods one assumes the network
to be sparse, while no such assumption is needed for our
approach.
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