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Synchronization of coupled active rotators by common noise
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We study the effect of common noise on coupled active rotators. While such a noise always facilitates
synchrony, coupling may be attractive (synchronizing) or repulsive (desynchronizing). We develop an analytical
approach based on a transformation to approximate angle-action variables and averaging over fast rotations. For
identical rotators, we describe a transition from full to partial synchrony at a critical value of repulsive coupling.
For nonidentical rotators, the most nontrivial effect occurs at moderate repulsive coupling, where a juxtaposition
of phase locking with frequency repulsion (anti-entrainment) is observed. We show that the frequency repulsion

obeys a nontrivial power law.
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I. INTRODUCTION

Synchronization in populations of oscillators is a spectac-
ular effect, important for many areas of physics (Josephson
junction and laser arrays [1], electrochemical and electronic
oscillators [2]) as well as for many examples from engineering
and life sciences (see reviews [3,4]). There are three generic
ways to synchronize a population: (i) by a common periodic
force, (ii) by a mutual attractive coupling, and (iii) by common
noise. To characterize synchrony, one uses the notions of phase
locking and frequency entrainment. In the first case, when all
oscillators are synchronized to a periodic force, their phases
are locked by this force and the frequencies are entrained by
it. In the case of a mutual coupling, exemplified by the famous
Kuramoto model of mean-field coupled oscillators [3,5], one
needs an attractive coupling to achieve synchrony, which
also manifests itself as mutual phase locking and mutual
frequency entrainment. For a repulsive coupling, the phases of
the oscillators disperse and a state with a vanishing mean field
sets on, there the oscillators are essentially noninteracting, their
phases are independent, and the frequencies are just the natural
ones. In the case of synchronization by common noise [6], the
phases are most of the time locked to some values randomly
varying in time in concordance with the noise wave form,
but the frequencies of the oscillators are not shifted—they are
identical to the natural ones.

A nontrivial interrelation between phase locking and
frequency entrainment appears under a common action of
coupling and common noise [7-9]. If the coupling is attractive,
both factors lead to phase locking, and the coupling addi-
tionally pulls the frequencies together, so that one observes
also frequency entrainment, albeit not perfect. In the case of
repulsive coupling, the two factors act in different directions:
noise pulls the phases together while the coupling pushes them
apart. As a result, one still observes that the phases most of
the time are close to each other, but the repulsive interaction
produces frequency antientrainment: the observed frequencies
are more dispersed than the natural ones [8,9].

The goal of this paper is to extend the consideration of the
effects due to coupling and common noise to an important class
of systems—coupled active rotators [10]. Each active rotator
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is described by an angle ¢, satisfying, in the autonomous
overdamped case, the equation

¢+ Bsing = Q. (1)

Here parameter €2 is the torque acting on the rotator. We will
consider below only the case |2| > |B], i.e., the free rotators
are rotating with frequency +/Q2 — B2 and are not static.
In the model of globally coupled active rotators, studied by
Shinomoto and Kuramoto [10], one assumes that the coupling
is via the mean field defined as Re'® = (¢/?):

¢ =Q; — Bsing; + uRsin(® — ¢;) +0&@), (2)

where the index j denotes units in the population, and
&(¢) is the Gaussian noise with (£(¢)&(¢")) = 28(t — t’). The
nonidentity of units in this model is due to the different
torques €2;, determining the individual natural frequencies of
elements. The last term on the right-hand side of (2) describes
common white noise [11]. In many studies one considered a
noisy coupled active rotator model, with independent noise
terms acting on all elements [12]. Such a noise contributes to
diversity and destroys synchrony. On the contrary, common
noise facilitates synchrony [13]. The parameter p in model
(2) is the coupling constant: positive values of p describe
attractive coupling, and negative values of p correspond
to repulsive coupling. Equation (1) describes also other
systems—Josephson junctions and 6 neurons. However, in
these models the coupling is organized differently [14]. Hence,
our results are not directly applicable to these systems.

The main tool in studying the models of type (2) is the
Ott-Antonsen ansatz [15], which yields a closed system of
macroscopic equations for the order parameters (R,®) (for
such an analysis of the Kuramoto-Sakaguchi model see [9]).
We present these equations in Sec. II. We need, however, to
reformulate these macroscopic equations in terms of order
parameters, more convenient for the analysis—because angles
@; are not the true phases. In Sec. III we focus on the statistical
properties of the order parameters. We use both the original
exact equations, and the ones averaged over fast rotations.
We show that the order parameter does not vanish (even for a
strong repulsive coupling), which indicates a partial synchrony

©2017 American Physical Society


https://doi.org/10.1103/PhysRevE.96.062204

DOLMATOVA, GOLDOBIN, AND PIKOVSKY

induced by common noise. For a weak repulsive coupling, the
order parameter is quite large, which means that the rotators
almost always form a cluster, i.e., their states nearly coincide.
This can be described as phase locking. Properties of the
oscillators’ frequencies are studied in Sec. IV. We show that
in the regime of repulsive coupling, the observed frequencies
are pushed apart; their differences are larger than those of
the natural frequencies. Moreover, this effect is singular, as
the frequency differences follow nontrivial power laws in
dependence on the mismatch of the natural frequencies.

II. BASIC EQUATIONS
A. Formulation in terms of collective variables

The active rotator model (2) can be written in the form ¢; =
Q;(t) + Im[H(t)e % ]. Thus, in the thermodynamic limit of
an infinitely large population, it allows for an Ott-Antonsen
reduction [15] to equations for the coarse-grained complex-
valued order parameters for a subpopulation having the torques
in a small range around  z(Q) = (e’?)|q (for brevity we omit
the argument in the equations below):

. . M *_2 B 2
ZZZ[Q-FG‘;(I)]Z-FE[Z—ZZ]+3(1—Z)- (3)

The global mean field Z = Re'® can be represented as the
average over the distribution of the torques Z = [ g(2)zd<2.
For a Lorentzian distribution with mean 2y and half width
v, 8(Q)=y/{n[(Q2 - Qo) + y21}, the integration under the
assumption of analiticity in the upper half plane yields Z =
(20 + iy). This allows obtaining a closed equation for the
global mean field Z:

7 i . w 2 B 2
=[iQo—y +ick®)]Z + 52(1 —1Z1") + 5(1 = Z).
4)

The case of identical rotators just corresponds to y = 0. In the
real variables the equations read

. B
R = %R(l —R)—yR+ 3(1 — R*)cos ®,

5
1 + R? ©)

b= Qo+ag(t)—§ sin .
For jt = y = 0 the system dynamics is conservative: here R =
—R(dH/3®) and ® = R (3 H/9R) with function H(R,®) =
[Qo+0c&@)]InR — (B/2)(R™" — R)sin®. The <“singular-
ity” at R = 0 in the equation for the phase in system (5) is due
to the uncertainty of the phase at R = 0, and does not result in
any singularities for the behavior of the order parameter. This
follows also from the absence of any singularity in Eq. (4) for
the complex order parameter.

It is convenient to introduce a new order parameter J =
R%*(1 — R®~!. In terms of the variables (J,®) we obtain

J=upJ =2yJ(A+J)+BJJ(A+J)cos®, (6
J+1)2
JaA+J)

The new order parameter J varies in the range 0 < J < oo,
and the situation of full synchrony corresponds to J — co.
We complement this equation with the dynamics of the angle

b=xQ)—B sin® + o &(1). (7)
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difference ¥,, = ¢ — ® between the rotator having the natural
torque 2 = 2 + w and the mean field:

sin ¢
J+1/2
JaA+J)

Again, for brevity we omit the index at . Equations (6)—(8)
are the basic system to be analyzed below.

d=w—pn

I1+J

—B |:sin(d> + ) — 8)

B. Natural variables for quantifying regimes close to synchrony

While the order parameters R = |Z| and J are natural
quantifiers for characterization of the order in the angles of
rotators, the argument of the complex mean field & is not
the proper oscillation phase, as it rotates nonuniformly. This
inhomogeneity is “inherited” from the angle ¢: this variable is
not the true “phase” which should rotate uniformly for a single
rotator. This nonuniformity of the rotations results in a nonzero
value for the order parameters R,J even in an uncoupled, not
forced population. Thus, it is convenient to introduce new
phase variables and to “correct” correspondingly the order
parameter J.

It is instructive to mention that in the case u =y =
0, Egs. (6) and (7) can be written as Hamilton equa-
tions with the Hamilton function H(J,®) = [Q¢ 4+ c&(¢)]J —
B/J(1 + J)sin®. The proper transformation would be a
transformation to the action-angle variables for this Hamil-
tonian. This, however, results in cumbersome, not tractable
expressions. Therefore we perform a transformation to
the action-angle variables of the Hamiltonian H = QyJ —
BJ sin @, which is a good approximation to H for large J
(i.e., for regimes close to synchrony). The new variables (1,¥)
are expressed as

J=I1(1 —acosV¥),

The exact equation for the new order parameter / reads

I =(u—2y) —2y(1 —acosW)I?
V1 —a?sin¥ 1
Jo————— I 14+ — =1
o 1 —acosW¥ [ +J
2 v 14— 1
— COS _—
- 4+

I sinWo&(t). (10)

a
V1 —a?

The equation for W takes the form

. L O
=y — 1_az(a—cos )( +4J(J+1)_>

+¢%(1 — acos W) E(r), (11

where vy = /Q% — B? is the “true frequency” of an active

rotator with torque €2. For the transformation of the angles
of the rotators to the phases, ¢ — 1, we use not their natural
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torques €2, but the mean one €2¢. Thus the transformation looks
exactly like (9)

a—cosy
1—acosy’

and the equation for the oscillator having the torque Q2 = ¢ +
w reads

sing =

. (1 —acosy)
VEwteT—n
" .
+ﬁ(l —acosy) 1_i_JSIIl(q)—@
+—T%;ﬂl—aamwﬁ0)

Denoting the normalized deviation to the mean torque as v =
w/~/1 — a2, we obtain the equation for the phase difference
6 = ¥ — W in the form

6 = v[l —acos(¥ + )]

Qoa(/1+ g7 — 1)

+ s (a — cos W)
wlalsin(¥ + 6) — sin W] — sin 6} 17712
* 1 —acosV¥ |:1 * 7]
ao
+ ﬁ[cos W — cos(¥ + 0)]&(¢). (12)

Equations (10)—(12) for I , lil, and 6 are exact. However, their
essential advantage to the original equations (6)—(8) is for
regimes close to synchrony, where 7,J >> 1. In this limit, many
terms in Egs. (10)—(12) vanish and we obtain the following
tractable system:

I=( —2)1—2(1—aamwn%—ﬂfggaan
=(n—2y 14 N ,
(13)
¢:vm+zﬁ%7?l—aamWMUL (14)
6 = v[1 —acos(¥ + )]
ufalsin(¥ 4 0) — sin V] — sin 6}
+
1 —acosV¥
ao[cos ¥ — cos(V¥ + )]
. 15

The system of equations (13)—(15) is a skew system, where the
variable 6 depends on the dynamics of W, but not vice versa.
To determine the statistical properties of the order parameter,
it is sufficient to study first two equations (13) and (14); to
find the statistics of the units in the population, one has to add
Eq. (15).

The system of stochastic differential equations (13)—(15)
yields a Fokker-Planck equation for the probability density
W(l,¥,6,t). Even if one confines to the properties of the
order parameter, one has to analyze the density depending
on two variables (/,¥), which is hardly possible. However,
in the case of fast oscillations, the phase W is a fast variable,
and one can average the Fokker-Planck equation over these
fast oscillations. As a result, only the variables (/,0) remain;
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moreover, the equations for these variables decouple. We
present the details of the derivation in Appendix A. The
resulting averaged stochastic differential equations read

I =(u—20)1—-2y1*+G* =5 I15,(t), (16)
0 =v—(u+352)sinh + 5 sinfz,(t) — 5(1 — cos )& (1),
(17)

where we introduce the normalized noise amplitude
aoc
V21— a?)

The averaged equations contain two effective independent
white noise terms & »(%).

o

III. STATISTICAL PROPERTIES OF THE ORDER
PARAMETER

A. Identical oscillators—synchronous state stability

We start the analysis of the dynamics of the population of
coupled active rotators under common noise with the case of
identical oscillators, y = 0. Here the equation for the order
parameter / (16) can be recast as

d ~ o~

—Inl =pu+362-500). (18)
dt

Averaging this equation, one can find the Lyapunov exponent
A = ((d/dt)In I') determining the exponential growth or decay
of I,

A=p+52 (19)

Thus, the population synchronizes, I — oo, for A > 0, i.e., if
the coupling is attractive or not too large repulsive

> pe=—0". (20)

The synchronization threshold can be also determined
without the averaging, for general parameters of the system.
Indeed, taking the limit J > 1 for y = 0 in Egs. (6) and (7),
we obtain

d
Eln]:,u—i—BcosCD, 21

& = Qy— Bsin® + o&(1). (22)

From Eq. (21), the Lyapunov exponent governing the growth
of J can be expressed as

A =pu+ B{cos D). (23)

On the other hand, because Eq. (22) is independent of J,
the statistics of & follows from the corresponding Fokker-
Planck equation, written for the probability density of ®. The
stationary solution of this equation reads

v d+27
o U(@)-U(Py)
dCD]e ,
27 (1 — e=27%0)p2 A

p(P) =

where U(®) = (Qy/0>)® + (B/o?)cos @, and the average
frequency v, is to be determined from the normalization

062204-3



DOLMATOVA, GOLDOBIN, AND PIKOVSKY

-‘::::“‘“‘“\‘\‘
ofl R
SR ‘:“:‘\‘\\\\\\\‘\\\\‘Q\\\\\
(cos @) \\\\\\\\ \\\\\\‘\‘\‘\ \
04 SN \\\\\\\\\“{‘P‘\-\ \
| R

0.2

0.0-

6 .
Q()/O'Z

FIG. 1. The average value (cos ®) determining the Lyapunov
exponent for the order parameter I (or J) [see Egs. (24) and (23)] is
plotted as a function of the system parameters (filled surface). The
asymptotic behavior (cos ®) ~ 0.5B0%/(25 — B?) corresponding to
Eq. (19) (wire frame) is compared against the exact formula (24).

condition f027r p(®)dd = 1. Thus,

A cos d [f T dd V@U@
2 d+2 —
ST AD 3T dd eV ®-U@

The results of calculations with this expression are compared
in Fig. 1 with the approximate formula for large oscillation
frequencies (18), which corresponds to (cos ®) = 5%/B =
0.5B0?/(2 — B?).

In the domain where A > 0, the synchronous state R =
1, I = J = oo is an adsorbing one: starting from any initial
conditions, the synchronous state sets on. While from Eq. (18)
one could conclude that for a strong repulsive coupling, where
n< —52 and A < 0, the order parameter [ tends to zero, we
have to remind that this equation is valid for large values of 1
only. For asynchronous states with small R, one has to study
full equations (5), which show that the order parameter R never
vanishes exactly. Unfortunately, an analytic exploration of the
two-dimensional stochastic system (5) [or, equivalently, of (6)
and (7)] is hardly possible, thus we studied it numerically
and present the results together with those for nonidentical
oscillators in the next section.

(cos ) =

(24)

B. Nonidentical oscillators

The perfect synchrony becomes impossible for an ensemble
of nonidentical oscillators (y > 0), and the order parameters
fluctuate in a finite range for all values of the parameters of the
system. An analytical description is possible for the averaged
stochastic equation (16), valid close to synchrony. We can
rewrite it as

d ~
Elnl =A—=2y =2yl —0 (). (25)
For a stochastically stationary regime, the average of the time
derivative should vanish, thus we immediately find the average
value of the order parameter /:
A

(Iy=— —1. (26)

2y
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FIG. 2. The time-average value of the order parameter (/) for an
ensemble of nonidentical oscillators vs coupling strength is plotted
for Qo = 10, Jy = 2.5, and values of the frequency band half width
y/o? = 0(circles), 107,107, 10*, 1073, 1072 (solid lines, from top
to bottom). Solid lines represents the results of numerical simulation
for Egs. (6) and (7) with I determined by Eq. (9). The analytical
estimates (26) plotted with dashed lines appear to be in a good
agreement with the results of numerical simulations.

In Fig. 2, one can see a good agreement between this formula
and the results of numerical simulation of full equations (5).
Here we also present the values of (/) for the case of identical
oscillators y = 0 (obtained via direct numerical simulations
of the original stochastic equations).

Furthermore, stochastic equation (16) yields the fol-
lowing Fokker-Planck equation for the probability density
p():

ap

9 ~y 0 ad _
Fis W{W —2yI(I+1)]p} — G 5(15(1;))) =0.

The stationary solution to this equation reads
=205 =@y /5]

BT (e )

o) =

where I'(-) is the I function. This expression allows finding
also the higher moments (/™). As mentioned above, this
formula is inaccurate for small 7; therefore, it cannot be
used for calculation of those statistical characteristics of 1
for which the contribution of small values is significant, even
if the average (/) is large.

IV. PHASE DYNAMICS FOR NONIDENTICAL
OSCILLATORS

A. Frequency entrainment and antientrainment

Let us consider the effect of the interplay of common noise
and coupling on the individual mean frequencies of rotators
(¢). These frequencies in the absence of coupling (i1 = 0)
are just the natural frequencies +/Q% — B2. In the presence
of a coupling, the phases of the rotators are either attracted
to each other (for ;& > 0) or are repelled (for u < 0). On
the contradistinction, common noise always brings the phases
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FIG. 3. (a) Frequencies in an ensemble of 41 active rotators with
a Gaussian distribution of torque parameters €2, in dependence on
the coupling strength . (b) The averaged order parameter (R).
Parameters of the model: Qo = 10, B = 2.5, % = 0.5, the standard
deviation of the distribution of torques 5 x 107*. One can see the
repulsion of the frequencies in the whole range of negative values of
1, with a maximal effect around p = —0.022.

together, resulting in a nonzero (or even large) value of the
order parameter. For an attractive coupling, the latter pulls the
frequencies together and the frequency differences are smaller
than in the uncoupled case—this is the usual situation of
frequency entrainment. For a repulsive coupling, the repelling
of the phases due to the coupling leads to the repulsion of the
frequencies, and their differences become larger than for the
uncoupled case—this can be called frequency antientrainment;
see Fig. 3. This effect is not present for the case of a repulsive
coupling without noise, because then the phases are just
distributed uniformly so that the mean field vanishes and no
effect of repulsion is observed.

In Fig. 3 we presented the simulations demonstrating
entrainment and antientrainment for a finite, in fact relatively
small, population of the rotators. The theory above is valid,
however, in the thermodynamic limit. To illustrate the effect
of the frequencies antientrainment in this limit, and to compare
with the theory below, we simulated a set of one equation for
the mean field (4) and of several equations (8), with different
values of the natural torque parameter w. The observed
frequencies for the elements of population (8) are plotted
in Fig. 4 vs the natural frequencies /(0 + w)> — B2. One
can see that in the absence of the coupling (u = 0), the
observed frequencies are just the natural ones, while the
effects of entrainment and of antientrainment are evident
for the attractive 1 > 0 and the repulsive © < 0 couplings,
respectively.

A quantitative description of the discussed effect requires a
statistical evaluation of the dynamics of the phase differences
6. This is possible close to synchrony I — oo, where the
dynamics of 6 obeys Eq. (17). For the probability density
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FIG. 4. The average frequency shift is plotted vs the natural
frequency mismatch for B = 2.5, Qy = 10, 02=05,y =5x107%,
n =0.02,0.015, 0.01, 0.005, 0, —0.005, —0.01, —0.015 (from bot-
tom to top on the right-hand side). The frequencies are obtained by
virtue of direct numerical simulation of Egs. (6)—(8).

w(6,t) we can write the Fokker-Planck equation

3‘(9 t)+i{[ — (u+33)]w(b,1)}
or VDT G Y T T oI

N I
= 0" — sinf — sin Ow(b,t)
a0 a0

d 0
+8_9(1 — COoSs 9)3_6(1 — Ccos 0)@(9,0}. 27
We look for a stationary solution of this equation with some
flux g. This flux is related to the mean frequency as (f) = 2mgq,
so the stationary solution of Eq. (27) fulfills the following
ODE:

(0) o ~ d _
— =g =W —pusinf)w@) —20°—[(1 — cosO) w(H)].
2 do
(28)

From Eq. (28), one can express w(f) and employ the
normalization condition fozn w(0)dO = 1 to obtain

(1 — cos )/
(1 — cos O)1+1/(25%)

X €ex v cotg cotw h
PI7252\ %3 2 '

A remarkable feature of the exact expression for the
frequency of oscillators is its singular behavior for small
natural frequency differences v. Referring to Appendix B for
detailed calculations, we present here the resulting power-law
dependence:

2 2
6) = 4na'2{ / do dyr
0 0

(29)

L4152 m
<é>%2ﬁF(|m+2|+2)a (2%72)‘2 G

T(lm + ) T(2m + 1))
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FIG. 5. The average frequency shift is plotted on a logarithmic
scale vs the natural frequency mismatch for B = 2.5, Qy = 10,
02 =0.5, u=0.015,0.01, 0.005, 0, —0.005, —0.01, —0.015 (from
bottom to top). Black solid lines: the results of direct numerical
simulation for stochastic system (6)—(8) with y =5 x 107*; green
circles: Egs. (6)—(8) with y = 0; green dashed lines: analytical theory
(29); blue crests: asymptotic law (30). The results are provided for
both negative (a) and positive (b) values of v as these cases are not
identical. Deviations of the simulated frequencies from the asymptotic
law are due to finiteness of the order parameter / in simulations, while
at the derivation of (29) and (30) we assumed I — oco. Red vertical
dash-dotted lines: the natural torque shifts w = y and w = 3.08y,
half of the rotators in the ensemble with the Lorentzian distribution of
torques have |w| > y, and 20%—]|w| > 3.08y. With these lines one
can see that the approximation / — oo, adopted at the derivation of
the analytical expressions (29) and (30), which neglects the finiteness
of I and misses the transition to a linear law for @ — 0 (can be seen
for the black solid lines), is relevant for a considerable fraction of the
rotators in the ensemble.

Equation (30) describes the asymptotic law for v/5% <« 1,
which is valid if the synchrony is high / — oc. We compare
these analytic results with numerical simulations in Fig. 5.
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FIG. 6. The average frequency shift (black solid lines) and order
parameter (/) (blue dashed line) are plotted vs common noise strength
o for an ensemble with fixed inherent parameters B = 2.5, Qy = 10,
w=—0.02, and y =5 x 107*: the results of numerical simulation
of stochastic system (6)—(8) for w/y = 0.25,0.5, 1, 2, 4.

Above we employed the derived analytical formulas and
the results of numerical simulation in Figs. 3-5, to present
a comprehensive picture of the phenomenon of frequency
repulsion for repulsive couplings: we fixed the strength of noise
and considered the coupling constant as the major parameter.
It is, however, instructive to show the dependence of the order
parameter and of the average frequencies on the intensity
of the external common noise, for fixed parameters of the
ensemble and of the coupling. In Fig. 6, one can see that
the effect of frequency repulsion is maximal for a moderate
noise and becomes again small for a strong noise. The reason
is that for a strong common noise, the phase rotation [see
Eq. (7)] becomes more homogeneous and the contribution of
the common noise to the Lyapunov exponent (23), which is
o (cos @), diminishes. This leads to a decrease of the mean
field (/), and for small mean fields the dispersing action of
repulsive coupling is weaker. Indeed, one can consider the
system (6) and (7) for the case of large €2y and o2, and for
moderate B (see Appendix C) and, similarly to Eq. (26), derive
an equation for the order parameter,

<1>—i +ﬂ<1+1<1—1>) —1. 3D
T T a@ e\ T2 '

In this equation, the term B? is small for both small
and large values of o. Thus, the synchronization and the
frequency repulsion effects in the system under consideration
are most pronounced for a moderate common noise strength.
It appears that the extrema of the dependencies in Fig. 6
should not be interpreted as a sort of resonant behavior, since
they are not related to any specific matching of several time
scales in the system (as, e.g., for stochastic or coherence
resonances [16,17]). These maxima are rather related to a non-
monotonous dependence of the order parameter on the noise
intensity.
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FIG. 7. The dynamics of the angle differences ¢y (t) — ¢;(¢)
between the most fast and most slow rotators in a population
illustrated in Fig. 3. Green: uncoupled rotators i = 0; red: attractive
coupling p = 0.005; blue: weak repulsive coupling u = —0.01;
magenta: strong repulsive coupling # = —0.1. Only in the latter case
there are no phase slips, in all other cases one can clearly see long
epochs where gy (1) — @1 (t) = 27 m.

B. Phase difference slips

The effect of frequency antientrainment, demonstrated
above numerically and described analytically, appears at first
glance counterintuitive. Indeed, it is observed in regimes with
strong phase locking, where the order parameter is large.
This means that most of the time the rotators stay together.
For a usual synchronization by an attractive coupling, the
phase locking and the frequency entrainment come together.
An independence of the phase locking from the frequency
entrainment is, however, a characteristic feature of the syn-
chronization by common noise. Indeed, even in the case of a
vanishing coupling, one observes phase locking by common
noise, but the frequencies remain the natural ones (see in
Fig. 4 the curve corresponding to the case p = 0). This
is explained by the particular intermittent dynamics of the
phase differences, which has a form of long epochs of phase
coincidence, interrupted with short phase slips, at which the
phase difference changes by 2m; see Fig. 7. In this picture,
a finite difference of frequencies may coexist with an almost
perfect phase synchrony, provided the slips are very short.

The qualitative picture of the slip-mediated phase difference
dynamics is valid also for nonzero values of coupling, provided
that the synchronizing effect of noise is stronger than the
repulsion due to the coupling. The only difference is that
now the frequency of slips is smaller or larger compared to
the coupling-free case, for attractive or repulsive coupling,
respectively. This is clearly seen in Fig. 7, where the cases
of repulsive, vanishing, and attractive couplings are depicted.
For a very strong value of repulsive coupling, the synchronous
state is no more attractive, and one observes the slip-free dy-
namics of the phase difference. Noticeably, slips are observed
(though rarely) for strong attractive coupling as well. Thus,
common noise prevents complete frequency entrainment for
nonidentical rotators.
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FIG. 8. Statistics of the time intervals between the slips, for
different values of coupling strength: © = 0.005, © =0, and pu =
—0.01. Parameters of the population of rotators are the same as in
Fig. 3.

In Fig. 8 we present the distribution functions of the time
intervals between the slips, for the cases shown in Fig. 7. The
distribution function P(7) is defined as the probability that the
time interval between the slips is less than 7. One can see that
with a good accuracy, this distribution is exponential: P(t) ~
exp[—1/(r)], i.e., the statistics of the slips is a Poissonian one.

V. CONCLUSION

In conclusion, we developed in this paper a theory of
synchronization of coupled active rotators by common noise.
Contrary to independent noisy forces acting on different
rotators that desynchronize them, common white noise al-
ways facilitates synchrony and even can overcome repulsive
coupling. We studied two situations, one of the identical
rotators, and a system of rotators with a disorder in the
torque. For the identical rotators, a fully synchronous state
appears when the coupling strength exceeds the threshold
value (20). Below this threshold, partial synchrony with a
nonvanishing fluctuating order parameter is observed. For the
nonidentical rotators, the effect of common noise is twofold.
For an attractive coupling, this noise, although it enhances
synchrony, makes it less perfect: there is no exact frequency
locking of rotators, rather the frequency differences become
small but remain finite (cf. Fig. 3). For a repulsive coupling, an
interference of two opposite actions of noise and of coupling
leads to a juxtaposition of phase locking with frequency
antientrainment: while the phases of the rotators most of
the time nearly coincide, their frequencies are pushed aside
and their difference is larger than that of the natural ones.
We explain this effect by an intermittent nature of the phase
dynamics: the phase differences are most of the time small
(modulo 277), but this locking is interrupted by the slips, which
for repulsive coupling are more frequent than in the uncoupled
case.

Comparison of the results for the active rotators model
with those for the Kuramoto-Sakaguchi system of coupled
oscillators [8,9] shows that the basic effects are similar in these
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setups. However, technically the analysis of the active rotators
is more involved. One needs to introduce proper transformed
variables to obtain the main effects analytically, in the leading
order of large frequency of rotations.

The analysis in this paper has been performed for the
overdamped case, where the rotators are described by a
one-dimensional model (1). This ensures that the noise of
any intensity synchronizes rotators, because the corresponding
Lyapunov exponent can be only negative. For rotators with
inertia, this geometrical restriction does not hold, and strong
noise may result in a positive largest Lyapunov exponent, thus
desynchronizing the rotators [6,18]. This setup is of a potential
relevance for power grid networks with slightly imbalanced
generators. A common external noise here could be due, e.g.,
to large-scale wind intensity fluctuations in a farm of wind
turbines.
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APPENDIX A: AVERAGING OVER FAST OSCILLATIONS

The Fokker-Planck equation, following from the stochastic
differential equations (13)—(15), for the probability distribu-
tion function W(I,W,0,t), reads

% + —{ (uw —2y)I —2y(1 — acos W)I*1|W}
9 w 9 1 v +6
+8_\II{V0 }+£ v(l —acos(¥ + 0))
ulalsin(¥ + 0) — sin W] — sin@}]W}
1 —acosW
—o20*W =0, (A1)
where the operator Q(-) is defined as
N d al sinW 0 (1 —acosW¥
o) = 8_< ()) <—('))
I\ vice )T\ vice

a a
00 <«/ 1—a2
On the basis of this Fokker-Planck equation, one can
perform a rigorous procedure of averaging over the fast
rotation of the phase W for the case of high natural frequen-
cies. We employ the condition that the basic frequency of
oscillations vy is large compared to parameters /i, y, and o>
(which all have the dimension of inverse time). Parameter
B is not assumed to be small, so that the parameter a is
finite. For vanishing w/vo, ¥ /vo, and o2 /vy, the probability
density distribution W(1,W,0,t) = (2)~'w(I,6,t) is uniform
in W. The probability density w(/,0,¢) is governed by the
Fokker-Planck equation (A2) averaged over W. There are two

+ [cos ¥ — cos(W¥ + 0)](-)). (A2)
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equivalent methods for averaging over “fast” variables, the
Krylov-Bogoliubov method [19] and the method of multiple
scales [20]. Applying the latter one to Eq. (A2) (for rigorous
explanations on the procedure see Refs. [8,9]), one obtains

dw(l,6,1)
a1
8 ) a’o?
+i{[ +<—a202 ) ’ 0} (19r)}
a0 |” " \2a—a) " ]
— 0203w — Q3w =0, (A3)

where the averaging
27 . R .
7 AV Q*w(I,6,t) = Q2w(l,6,t) + Q3w(l,6,1)

T

yields two operators,

A a 0 J .
01() = m[a—l[—l(')] + 8—9[5111 9(')]] (A4)
and
A 0
() = ﬁ 29 [(1 = cosB)(-)]. (A5)

Equation (A3) can be treated as the Fokker-Planck equation
for the stochastic system (16) and (17) with two independent
Gaussian white normalized noise signals ¢;(¢) and &»(2).

APPENDIX B: ASYMPTOTIC BEHAVIOR OF THE
FREQUENCY DIFFERENCE FOR SMALL MISMATCHES

For v/6? — 0, one can simplify Eq. (29). Indeed, the
function in the argument of the exponential is multiplied by
v/5% and can be neglected in domains where this function is
finite; where the function tends to 400, it is non-negligible,
but one can use an approximate expression for it, cot(6/2) &
2/60 +2/(0 — 2m). Hence,

2 2 1 — cos Ip)m
~4 de d
o { / / w(l — cos §)1+m

vl 1 1 !
xexp|—=|—= - — =
PI"52\6 " o—2r ¥ v-—2x ’

(BD)

where m = 1/(25%). Let us consider separately two cases:
m < —1/2 and m > —1/2, for which the integral either
diverges or converges near the zero-value points of cosine
function, if one drops the cutting exponential factor. In
domains where the integral converges without the exponential
cutting factor, this factor can be neglected; in domains
where the integral diverges without this factor, the principal
contribution to the integral is made by a small vicinity of the
divergence point and one can employ this fact to simplify
calculations.

062204-8



SYNCHRONIZATION OF COUPLED ACTIVE ROTATORS BY ...

PHYSICAL REVIEW E 96, 062204 (2017)

Form < —1/2 (where 1 +m < 1/2 as well), one can make the substitution (1 — cos ¥)" — 27" /i =2" £ 27" /(4 — 2) 2"

and calculate

2 2 _ m
/ d@/ gy L=V

(1 — cos@)!+m

v (1 1 1 1
7(5*@‘;‘@)}

-~ do hd W - 2”)2'" /B2 2]
T )y (I —cos@yntl J, v

m\/_l-*(
T(—m)

m—3)T(=2m—1)

27 T(—
B I'(—m)
where we used that
2

(1 —cos8)'do =

0

m—3) (%)ZW I'(—2m — 1)

2m

24 /xT(n + 1/2)

C'(n+1)

Form > —1/2 (where 1 +m > 1/2 as well), one can make substitution 1/(1 — cos §)"+! — 2m+1 /§2m+D and calculate

0

2w 2w
[ f v

(1—0051&)’" |: v <1
X

(1 —cosf)1+m 52

2 2m+1d9 /5% 2
~ I dy (1 —cosy)" ~
0 0

92m+1)

2@ (m+5)T@m+ 1)( v >7sz1
B Lm+1) 202 '
Combining Eqgs. (B2) and (B3), one can find from Eq. (B1)

_2yaT(jm+ 51 +3)5?

1 1 1
+9—2n_E_¢—2n)}

1
2" 2m + 1)

2mH /m T (m+ 1) (;)—2 -

T'(lm+ ) T(2m + 1))

APPENDIX C: DYNAMICS OF SYSTEM (6) AND (7) FOR
LARGE €, AND STRONG NOISE (6% ~ )

Let us consider the stochastic system (6) and (7) for the case
of Qo ~ 02> p~ y ~ B. In this case, the order parameter
J is nearly constant on the characteristic time scale of variation
of ® governed by Eq. (7). Hence, one can solve Eq. (7) for ®
assuming J to be frozen. Equation (7) yields the Fokker-Planck
equation for W(®,7):

AW d J+1/2 . , 0
— 4+ —| Q2 —B———=sind—0"— |W | =0.
a oD T+ ) 9D

For a steady state solution, this equation can be integrated once
with respect to ®:

J+1/2 a
(QO—B+—/ sin¢—02—>W=q,
J(+J) od

where ¢ is a constant. In the leading order in B, one finds
WO(D) = 2r)~" and ¢© = Qo/(2n). For the first order in
B correction W)(®) we obtain

9 J+1/2
(szo — 02—> wh =40 4 B+—/ sin® WO,
D JaA+J)

Cm+1)
(B3)
[2m+1]
() B4)

(

Thus, ¢ = 0 and W(®) =
Qoo A1,

A11 sin ® + A]2 COS q), A11 =

A _ B o J+1/2
A AN

Now, one can calculate (cos @) according to the distribution
W (®), and average Eq. (6), rewritten as

d 14J
Eln]:u—Zy(l+J)+B 7 cos O,

over fast rotations of ®, and over time:

0=p—2 (1+<J>>+ﬂ(1+1<r‘>)
—HT A2 +o )\ 2 '

According to (9), to the leading order, (J) =
Eq. (31):

TR P i <1+1(1—1>> —1
T\ @)\ T2 '

(I') and we obtain
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