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Chimera states consisting of synchronous and asynchronous domains in a medium of nonlinearly coupled
phase oscillators have been considered. Stationary inhomogeneous solutions of the Ott–Antonsen equation
for a complex order parameter that correspond to fundamental chimeras have been constructed. The direct
numerical simulation has shown that these structures under certain conditions are transformed to oscillatory
(breathing) chimera regimes because of the development of instability.
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1. INTRODUCTION
A number of key fundamental phenomena inherent

in nonlinear oscillatory media of various natures can
be considered in the phase approximation [1, 2]. In
particular, synchronization and its various manifesta-
tions belong to these phenomena [2, 3]. The transition
from particular models to a universal description by
means of dynamic equations for phase variables makes
it possible to reveal common characteristics of the
behavior of physical, chemical, biological, and social
systems [2].

The formation of chimera states, which are charac-
terized by the coexistence of synchronous and asyn-
chronous groups of oscillators, in ensembles of identi-
cal elements is one of the most attractive and intrigu-
ing effects. The possibility of formation of such long-
lived nontrivial states was revealed for the first time in
2002 by Y. Kuramoto and D. Battogtokh [4]. In the
past 15 years, chimera regimes were found numerically
in a wide set of spatially distributed models [5]. Fur-
thermore, the existence of these regimes was con-
firmed experimentally [5–8]. Chimeras are currently
under active theoretical and laboratory studies. How-
ever, many problems remain unsolved. In particular,
necessary and sufficient conditions for the appearance
of chimera structures are unknown, these structures
are classified incompletely, and it is not reliably deter-
mined when these structures are stable and transient
[5].

In this work, we study a ring system of nonlinearly
coupled identical phase oscillators. To analyze chime-
ras in this system, we use the Ott–Antonsen approach
[9, 10], which allows obtaining closed equations for a
complex order parameter. Using this approach, we

first construct “stationary” chimeras and analyze their
linear stability. Then, performing numerical simula-
tions within the initial model, we show that such
structures at certain parameters can be transformed to
oscillatory (breathing) long-lived chimera states or to
more complex regimes with an irregular behavior of
the local order parameter.

2. MODEL
We consider a system of nonlocally coupled identi-

cal phase oscillators, which have the natural frequency
 and are continuously distributed in the interval

 with periodic boundary conditions at its bound-
aries. This configuration is equivalent to the situation
where elements of a one-dimensional oscillatory
medium are located on a ring with the length . We
describe this system by a dynamic variable ,
which is specified at each point  and satisfies
the integrodifferential equation [5, 11]

(1)

where the field acting on oscillators is defined in terms
of the convolution operator:

. (2)

Here, the kernel  characterizes the interaction in
the considered medium and is normalized to unity.

We take the kernel  in the form
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which approximates well the case of a weakly nonlin-
ear coupling [11]. We emphasize that Eq. (3) at

 is transformed to the kernel 

 used in [4]. The quantity  in Eq. (1)

determines the phase shift of the force acting on oscil-
lators and is most often taken as constant  [5]. How-
ever, according to [12–14], nonlinear effects of the
phase shift significantly affect the dynamics of the sys-
tem. To take into account these effects, we set

 as in [14].
In contrast to most of the previous studies, we pri-

marily focus on possible states of the considered one-
dimensional oscillatory medium depending on its
length . It is also noteworthy that Eqs. (1)–(3) are
invariant under the scaling transformation in x; for this
reason,  can be taken without loss of generality.

According to numerical calculations, the system
specified by Eqs. (1)–(3) exhibits complex regimes of
behaviors where groups of elements rotate synchro-
nously, but the motion of a significant part of phase
oscillators is asynchronous. Such spatial structures are
called chimeras [4–8, 11, 14, 15]. They are character-
ized by the presence of sections in the interval 
where the dynamic variable  is not a smooth
function of . However, using the procedure of
averaging over a small neighborhood of the point ,
one can introduce a local order parameter

, which is a continuous complex-val-
ued function of the coordinate  and time  and satis-
fies the inequality . In regions where

, the behavior of neighboring elements of
the medium is synchronous. When , phase
oscillators rotate asynchronously. The authors of [9,
10] proposed a reduction that makes it possible to
establish a relation between  and the probability
density  of the distribution . In addi-
tion, it was shown in [9, 10] that the evolution of

 is described by the Ott–Antonsen equation
(see also [11, 14, 15])

(4)

Here,

(5)

is an integral operator similar to Eq. (2) applied to
 and .

Further, using Eq. (3), it is easy to pass from Eq. (5)
to the equivalent differential equation
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with periodic boundary conditions 
and .

3. STATIONARY SOLUTIONS 
OF THE OTT–ANTONSEN EQUATION

To analyze possible stationary (in absolute value)
solutions of the problem specified by Eqs. (4) and (5)
with Eq. (3) depending on the parameters , , and

, we represent the complex-valued functions 
and  in the form

(7)

where  is a parameter.
Below, for definiteness, we consider the case where

 and , which corresponds to the
choice in [4, 11, 14].

We first consider states homogeneous in  whose
existence is independent of the length  of the system.
Assuming  and , substituting
Eq. (7) into Eqs. (4) and (5), and using the normaliza-
tion of the kernel , we can easily conclude that
two solutions (i)  with an arbitrary  value
and (ii)  at  exist
at any  and  values in the range from  to  The
former solution corresponds to the completely asyn-
chronous behavior of elements of the medium under
consideration. In the latter case, all phase oscillators
rotate synchronously with the frequency . At

, there is an additional stationary homo-
geneous solution for which 
and . This state is
called partially synchronous [14] because 
for it.

To seek stationary inhomogeneous states, we use
Eqs. (4) and (6). The substitution of Eq. (7) into
Eq. (4) gives an algebraic relation, which can be
treated as a quadratic equation for . For the rela-
tion between  and  to be unambiguous, one
of two roots of this equation should be chosen. This
can be easily done on the basis of the condition

. As a result,  is related to  as fol-
lows:

(8)
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where the prime stands for the derivative with respect
to the coordinate .

We recall that the conditions of periodicity
 and  should be satisfied at

the bounds of the interval . In view of the rela-
tion (8) between  and , it is also easy to con-
clude that phase oscillators rotate synchronously in
regions where  because  in these
regions, whereas the behavior of the elements of the
medium is asynchronous in regions where 
because  in this case.

An efficient procedure for the numerical calcula-
tion of stationary (in absolute value) inhomogeneous
structures (in particular, chimeras) appearing in the
space–time problem specified by Eqs. (4) and (5) with
the kernel (3) was proposed in [11] on the basis of
Eq. (9). The idea of this approach is in the search for
periodic trajectories in the phase space of the system
of third-order ordinary differential equations at a fixed

 value to which Eq. (9) is reduced if the complex field
 is represented in the form ,

where  and  are real-valued functions of 
(details see in [11]). It is noteworthy that the dimen-
sion can be reduced because the function  is
defined up to a constant shift. For the same reason,

 can be set without loss of generality. As a
result, the solution  that is exactly repeated with
the period , which is determined by the parameter ,
is obtained from Eq. (9) at a given  value. The local
order parameter  is calculated by Eq. (8) and the
distribution of the initial dynamic variable  is
then obtained from  taking into account Eq. (7)
according to [9, 10, 15]. Thus, diverse (chimera and
nonchimera) families of stationary inhomogeneous
structures can be constructed for the model under
consideration. Each such family is characterized by an
individual dependence  calculated in an implicit
form using the procedure described above.

In this work, we analyze only solutions for which
 has only two extrema (maximum and mini-

mum) because these solutions in the case  cor-
respond to fundamental single-cluster chimeras,
which have one synchronous and one asynchronous
domain and are stable with respect to linear perturba-
tions [11]. Figure 1 shows the functions  for two
combinations of the coefficients  and  ( ).
This figure also shows the spatial distributions

 reconstructed from local order parameters
, which were found with three different  values

and correspond to different branches of  shown
in Figs. 1a and 1b. In particular, the dependence 
at chosen  and  values when 
approaches closely the horizontal straight line 

x
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determined by a synchronous state. In contradistinc-
tion, the chimera branch of  at 
begins near the value  associated with a par-
tially synchronous homogeneous state. We emphasize
that an additional class of nonmonotonic periodic
solutions  and  for which  and

 at all values  can be found in the
case of . For such structures, the behav-
ior of phase oscillators in a certain region becomes
more synchronous as compared to other regions of the
medium, but the complete synchronization of motion
does not occur (see Fig. 1e). This class of solutions
appears near considered stationary chimeras and then
merges with the homogeneous partially synchronous
state (see the inset of Fig. 1b).

4. BREATHING CHIMERAS
We analyze the time stability of structures consid-

ered in the preceding section. First, we linearize the
integrodifferential equation (4) with the integral oper-
ator (5) and the kernel (3) near one of the stationary
solutions (7), which are characterized by the parame-
ter  and length . To this end, we represent 
in the form

(10)

where  describes x-periodic small deviations
from the  profile. As a result, we obtain the
expression

(11)

where the relation between  and  is similar
to Eq. (5).

Using Eq. (11), it is easy to determine the type of
stability of stationary homogeneous solutions by con-
sidering perturbations , where

 , and taking into account that the
action of the convolution operator is reduced to multi-

plication by . As a result, at ,
the fully asynchronous state is unstable, whereas the
synchronous state is stable; in the opposite case, both
of these homogeneous solutions are unstable. For the
partially synchronous state, which exists only at

, Re  holds only if  is larger than
a certain critical value . Consequently,
when , stable spatially homogeneous
regimes are absent above a certain critical length

 [14].
The analysis of the stability of the stationary

inhomogeneous solution of the Ott–Antonsen equa-
tion (4) with the integral operator (5) and the kernel
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(3) is much more complicated primarily because of the
specific features of the  profile for fundamental
chimeras [11, 16, 17]. Omitting details of the analysis,
we brief ly present some of its points important for the
understanding of the results below. We rewrite Eq. (11)
in the form

(12)

where  is the two-component vector consisting
of the real  and imaginary  parts of
the complex function ,  is the multiplica-
tive operator, and  is the integral operator, which
is compact for any piecewise-smooth kernel .
Lengthy expressions for  and  are not presented.

According to Eq. (12), to determine the character
of the behavior of small perturbations , it is suf-
ficient to find the eigenvalues  of the time-indepen-
dent composite operator . Since  is compact,
the significant spectrum  of the sum  coin-
cides with the corresponding spectrum of the first
term . Using this property and relation (8) between

 and , one can show that  can be either an
imaginary or negative real number. In particular, the
ordered set  for chimera states has a T shape [11, 16,
17]. Therefore, the stability of the studied regimes of
motion of the system of phase oscillators is determined
only by the point spectrum  of the operator .
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However, the eigenvalues  cannot be reliably calcu-
lated by the direct method of discretization and
replacement of integral operators by a large-dimen-
sion matrix. Such procedures hardly affect the eigen-
values , but they violate the compactness of the
operator  and noticeably distort the form of the sig-
nificant spectrum λe, which complicates the separa-
tion of true  values [11]. For this reason, in addition
to the standard approach, it is necessary to use a
number of modifications whose details are described
in [11].

The results of our numerical analysis are shown in
Fig. 1 by different points. Closed and open points cor-
respond to stable and unstable stationary inhomoge-
neous solutions, respectively. In particular, it is seen in
Fig. 1a that two branches  of single-cluster chi-
meras appear when the size  of the oscillatory
medium becomes equal to . One of them is
close to the straight line  up to .
All solutions belonging to this branch are unstable.
The second of the fundamental chimera structures
marked in Fig. 1a (see Fig. 1c) is stable in the range
from  to . A bifurcation similar to a sad-
dle–node bifurcation occurs in fact at . A similar
picture is observed in the situation shown in Fig. 1b.
However, an unstable nonchimera state (see Fig. 1e)
and a stable chimera (see Fig. 1d) appear in this case
near . As was mentioned above, the first
class of solutions merges with the homogeneous par-

λ p
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Fig. 1. (Color online) (a, b) Dependences  for stationary inhomogeneous solutions of the Ott–Antonsen equation at
(a) ,  and (b) , . Circles and triangles correspond to single-cluster chimeras and partially
synchronous states of the system, respectively. Closed and open points correspond to stable and unstable structures, respectively.
(c–e) Spatial distributions of phase oscillators reconstructed from local order parameters  calculated with the parameters
(c) , , and ; (d) , , and ; and (e) , , and

. Panels (c) and (d) show stable single-cluster chimeras with the lengths  6.147 and 5.668, respectively. Panel (e)
demonstrates a characteristic form of an inhomogeneous partially synchronous state (the length of the medium in this case is

).
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tially synchronous state when the length  coincides
with . Stationary chimeras lose their sta-
bility at .

Our direct numerical simulation (with  points
per unit length along the x axis) within a discrete ana-
log of the model specified by Eqs. (1)–(3) confirms
that, as the length  of the oscillatory medium exceeds
the critical value  depending on the coefficients 
and , chimera distributions found by means of the
reduction of the Ott–Antonsen equation really lose
their stability. In particular,  at  and

 coincides with , whereas  at 
and  is equal to . Figures 2 and 3 demon-
strate the process of destruction of stationary chimeras
at  for each of these sets of  and .
According to detailed calculations, this process in the
range  occurs according
to the same scenario for various combinations of the
parameters  and . As a result of the development
of instability, the system of phase oscillators passes to
a regime characterized by the oscillatory variation of
the spatial structure (in particular, of the integral
quantity ) and by the simultaneous existence of
domains with the synchronous and asynchronous
behaviors of elements of the medium (see Figs. 2d, 2e
and Figs. 3d, 3e). The revealed oscillating (breathing)
chimera states exist for a long time interval
(4000 units) and do not decay at the addition of small

2bL
≈ .cr 4 443L

≈ .3 6 902bL
1000
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α1
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α0 α1

( ),Ĥ x t

perturbations. The scheme of appearance of such a
dynamics is similar to the Andronov–Hopf bifurca-
tion in lumped element models when a stable limit
cycle appears from the stable equilibrium state at the
variation of control parameters and the stable equilib-
rium state becomes unstable. However, in our case, a
typical continuous transition of a pair of eigenvalues
from the left complex half-plane to the right half-
plane does not occur, but points of the discrete spec-
trum  of linear perturbations of stationary chimeras
responsible for instability evolve from the imaginary
axis (see Figs. 2c, 2f, 2i and Figs. 3c, 3f, 3i).

As the length  increases from  to
, the period of the resulting oscillatory chi-

mera regime increases. Beginning with 
(  at ,  and

 at , ), station-
ary chimeras are no longer transformed to breathing
ones. At  and , in the
process of destruction of fundamental chimeras,
structural oscillations are first observed and all ele-
ments of the medium are synchronized (see Figs. 2g
and 2h), which is expectable because the homoge-
neous synchronous distribution is stable in this case.
When  and , all states
considered above are unstable. The direct numerical

λ p

L ( )α ,α0 1*L
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Fig. 2. (Color online) (a, d, g) Dynamics of the spatial distribution of individual frequencies  of phase oscillators. Regions
with synchronous and asynchronous motions of neighboring elements of the medium are clearly seen. (b, e, h) Dynamics of the
absolute value of the complex field . The results were obtained by the direct numerical simulation within a discrete analog
of the initial model given by Eqs. (1)–(3) with the parameters , ,  and the length of the system 
(a, b) 6.147, (d, e) 6.668, and (g, h) 7.231 and with the initial state close to a single-cluster chimera at a given length . (c, f, i)
Spectrum  of linear perturbations for the corresponding stationary inhomogeneous solutions of the Ott–Antonsen equation (4)
with the integral operator (5) with the kernel given by Eq. (3). Circles are the eigenvalues corresponding to the significant part of
the spectrum . In view of the problems with discretization, this set consists of not only real negative and imaginary numbers,
although it has the characteristic T shape. Diamonds are eigenvalues belonging to the point spectrum  responsible for insta-
bility; these eigenvalues are separated from the total set by means of a procedure described in [11].
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simulation shows that the system in this case exhibits
complex space–time regimes with irregular time evo-
lution of synchronous and asynchronous domains (see
Figs. 3g and 3h).

5. CONCLUSIONS
To summarize, oscillating (breathing) chimeras

have been found for the first time in a system of non-
linearly coupled identical phase oscillators with non-
linear delay continuously distributed on a ring.

The authors of [18, 19] mentioned the possibility of
existence of modulated chimera regimes but in dis-
crete populations rather than in a continuous medium.
A configuration of two interacting groups of globally
coupled phase oscillators was studied in [18]. The gen-
eralization of this configuration to the case of three
such populations was discussed in [19]. Using the
Ott–Antonsen approach, the authors of [18, 19]
passed from the initial problem to the study of the time
behavior of two or three order parameters whose
dynamics is described by low-order ordinary differen-
tial equations. The analysis has shown that equilib-
rium states for these equations corresponding to chi-
meras can undergo the Andronov–Hopf bifurcation
and can be transformed to stable limit cycles, which
were attributed to specific regimes with a periodically
varying degree of synchronization of oscillators in one
of the groups.

Breathing chimeras found in this work provide a
positive answer to the question formulated in [18] on
the existence of such chimeras in a system of identical
phase oscillators distributed on a ring. We emphasize
that a similar effect was detected in [15]. However, for
the formation of oscillations of chimera states, Laing
[15] artificially introduced the inhomogeneous delay

, used a different kernel , and assumed
that the natural frequencies of elements of the medium

( )α = α x ( )G y

are randomly dispersed. In [15], the dependence
 was not constant and satisfied periodic

boundary conditions at the bounds of the considered
spatial interval. Our nonlinear function  also has
this property. This circumstance is apparently decisive
for the formation of breathing chimeras.

The numerical calculations were performed at the
Lobachevsky supercomputer, Lobachevsky State Uni-
versity of Nizhny Novgorod. This work was supported
by the Russian Science Foundation (project no. 17-
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Interdisciplinary Science Center (grant no. M-2017a-
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