
Chapter 4
Unraveling the Chaos-Land and Its
Organization in the Rabinovich System

Krishna Pusuluri, Arkady Pikovsky, and Andrey Shilnikov

4.1 Introduction

Nonlinear wave and mode interactions often result in complex dynamics. Remark-
ably, already elementary systems of two and three weakly interacting waves can
demonstrate chaotic behavior [6, 12, 16, 28, 29, 39, 41]. One such simple model
is the so-called Rabinovich system, describing wave interaction with complex
dynamics in a system of three resonantly coupled waves, comprised of two
parametrically excited waves, and another wave that is in synchronism with this
pair [27]. It can exhibit the following states while remaining phase locked:

• the trivial static stabilization of parametric instability at low pump fields, which
corresponds to a fixed point with zero wave amplitudes in the phase space;

• the static and cyclic stabilizations of parametric instability elimination, cor-
responding to stable fixed points with non-zero wave amplitudes, and cyclic
oscillations of wave amplitudes, respectively;

• eventually, Lorenz like chaotic behavior with a stochastic stabilization region of
self-oscillations of wave amplitudes, at higher pump fields.
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The physical motivation for the Rabinovich system proposed in [27] is as follows.
A whistler wave with wave vector q and frequency !q propagates along a magnetic
field H in a non-isothermal magnetoactive plasma. This wave parametrically excites
a plasma wave (k, !k) and an ion sound (�, !�), provided that the resonance
conditions k C � D q, !k C !� D !q are fulfilled. These two parametrically
excited waves are resonant with the plasma wave (k1, !k1 ) where k1 D k � �,
!k1 D !k � !� , which is synchronous to the produced pair. As a result, one obtains
a closed set of amplitude equations for the three waves !k; !� , and !k1 , where the
energy that comes from the constant pump !q is distributed between the waves due
to nonlinear resonant coupling, and eventually is dissipated due to linear damping.

The simplified set of equations governing this resonantly coupled wave triplet
system—the Rabinovich system—is given by the following equations:

Px D hy � 	1x � yz

Py D hx � 	2y C xz

Pz D �z C xy : (4.1)

Here, x; y and z correspond to the amplitudes of the three resonantly coupled
waves—the parametrically excited plasma wave k, the parametrically excited ion
sound � and the synchronous plasma wave k1, respectively. Quantities h; 	1, and 	2
are the parameters of the system: the value of h is proportional to the pump field,
whereas 	1 and 	2 are the normalized damping decrements in the parametrically ex-
cited waves k and �, respectively. After the original investigation in [27], the studies
of this system have further been continued in [9–11, 15, 17, 18, 20–26, 37, 38, 40],
see also the contribution by S. Kuznetsov in this volume [19].

Although initial numerical simulations have revealed the presence of a Lorenz-
like chaotic behavior in the Rabinovich system, the exact boundaries of static,
periodic, and chaotic dynamics in the parametric space have not been identified. The
underlying structures governing the organization of chaos in the system, such as the
various homoclinic and heteroclinic connections, and codimension two bifurcation
points called the Bykov terminal points (T-points), with characteristic spirals typical
for Lorenz-like systems [2, 4, 8, 13, 34, 35], have not been disclosed either. Even as
of now, there is only a limited set of computational tools that can be employed to
detect such structures in the parametric space of a system, and especially, in Lorenz-
like models. In particular, tools based on Lyapunov exponents are computationally
effective to sweep, and find regions of stationary (equilibria states), periodic, and
chaotic dynamics. However, they fail to reveal details of fine or any constructions
of homoclinic and heteroclinic structures in the parametric spaces, that are the basic
and imperative building blocks of structurally unstable, deterministic chaos in most
systems. While parameter continuation techniques let some such structures to be
revealed, one has to possess specific skills and enormous patience to perform a
painstaking reconstruction of the bifurcation unfolding of the system in question, in
its 2D parameter plane, by separately following a few dozens of principal bifurcation
curves, one after the other [34, 35].
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One of the aims of the current study is to discuss and demonstrate a recent
advance in the field that became possible with the development of a suite of
computational tools utilizing symbolic representations of simple and chaotic dy-
namics. This allows for fast and effective identification of bifurcation structures
underlying, and governing, deterministic chaos in systems with the Lorenz strange
attractors, as well as those with spiral chaos with the Shilnikov saddle-focus [5, 42–
44]. Moreover, the latest advances in GPU and parallel computing techniques have
empowered us to achieve a tremendous degree of parallelization to reconstruct bi-
parametric sweeps, at a fraction of the time taken for traditional serial computational
approaches, for a comparable analysis. In this paper, we employ this computational
toolkit to disclose the bifurcation features of complex dynamics in the Rabinovich
system.

In the following sections, we will analytically describe, and numerically simu-
late, the solutions of the Rabinovich system. We will then describe the symbolic
apparatus and the computational techniques, and apply them to study this system.
Next, we will present our results and identify various important structures that
provide a framework to organize the complex dynamics arising in the system. A
brief description of the methods used in the study is presented towards the end.

4.2 Solutions of the Rabinovich System

The system (1) is Z2-symmetric—i.e., invariant under the involution .x; y; z/ $

.�x;�y; z/. All of its trajectories are confined within an ellipsoid given by u �

9h2k�1, where

u D 2x2 C y2 C .z � 3h/2

Pu � �ku C 9h2 (4.2)

At low pump amplitudes h < .	1	2/
1
2 , the system has just a single equilibrium

state O.0; 0; 0/, which is a global attractor of the system, pulling all trajectories
inwards. In this state, the system is below the threshold of parametric instability.
This equilibrium state O undergoes a pitchfork bifurcation at h D .	1	2/

1
2 , that gives

rise to two more equilibrium states C˙ .˙.z0l/
1
2 ;˙.z0l/

1
2 ; z0/ for larger pump fields

h > .	1	2/
1
2 , where z0 D .h2�	1	2/

1
2 and l D .h�z0/	�1

1 . After the bifurcation, i.e.,
beyond the parametric instability threshold, the zero equilibrium state O becomes
unstable, resulting in parametric instability elimination. The fixed points C˙ can
be either stable or unstable, depending upon the parameters of the system h; 	1 and
	2. Stable equilibria C˙ correspond to a static stabilization of parametric instability
elimination (Fig. 4.1a, b and d). Equilibria C˙ lose stability through an Andronov–
Hopf bifurcation that gives rise to a pair of stable periodic orbits, corresponding
to stable cyclic self-oscillations of wave amplitudes (Fig. 4.1f). Besides periodic
oscillations, the Rabinovich system may possess a Lorenz-like strange attractor
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Fig. 4.1 Snapshots of the dynamics of the right unstable separatrix �1 of the saddle O (black dot)
in the Rabinovich system, in the .x; y/-projection. Sections of �1 are color-coded in red when
y > 0, and in blue when y < 0, for the sake of clarity. Symbolic representations are as described in
Sect. 4.3. A bar in the symbolic representation denotes a repetitive sequence. The parameters are
set as 	1 D 1; 	2 D 4. At h D 3, �1 converges to the stable focus CC in (a), and comes close
to the saddle O at h D 3:95 in (b), generating a persistent sequence f111 : : : 1g. After the primary
homoclinic orbit of the saddle at the origin at h ' 3:9998 in (c), �1 converges to the stable focus
C� at h D 4:1 to generate the sequence f100 : : : 0g in (d). Chaotic attractor is seen in the system
at h D 8 in (e), and convergence to the periodic attractor f10g at h D 18 in (f).

within the finite-size ellipsoid, with stochastic variations of wave amplitudes,
which is associated with chaotic saturation of the parametric instability (Fig. 4.1e).
Here, the origin is a saddle with a two-dimensional stable manifold and a pair of
one-dimensional unstable separatrices, while the equilibrium states C˙ are saddle-
foci with one-dimensional incoming separatrices and two-dimensional unstable
manifolds. In addition, like the original Lorenz model, the Rabinovich system can
be bi-stable with coexisting stable equilibrium states C˙ and the strange attractor,
see [27]. Also, note that the three resonating waves remain phase locked while their
amplitudes exhibit the above-mentioned complex behaviors (see [40] for a further
exploration of this phase locking).

A homoclinic bifurcation occurs in the system when both outgoing separatrices
of the saddle (or of either saddle-focus) come back to it along the 2D stable
manifold. Figure 4.1c illustrates a single “right” separatrix of the saddle at the
homoclinic bifurcation. Before and after the primary homoclinic bifurcation, the
separatrix spirals converge towards either CC or C� (Fig. 4.1b, d). Similarly, a
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one-way heteroclinic connection occurs when the outgoing separatrix of the saddle
O connects with either of the saddle-foci C˙ by merging with a 1D incoming
separatrix (see Fig. 4.6). Note that such connections always come in pairs, due to
Z2-symmetry.

4.3 Symbolic Representation

The fundamental feature of the Lorenz attractor is that it is both dynamically and
structurally unstable [3, 14]. A trademark of any Lorenz-like system is the strange
attractor of the iconic butterfly shape, as the one shown in Fig. 4.1e. The “wings” of
the butterfly are marked with two symmetric “eyes” containing equilibrium states
CC and C�, stable or not, isolated from the trajectories of the Lorenz attractor.
This attractor is structurally unstable as it bifurcates constantly as the parameters
are varied. The primary cause of structural and dynamic instability of chaos in
the Lorenz equations and similar models is the singularity at the origin—a saddle
with two one-dimensional outgoing separatrices. Both separatrices densely fill the
two spatially symmetric wings of the Lorenz attractor in the phase space [2].
The Lorenz attractor undergoes a homoclinic bifurcation when the separatrices
of the saddle change the alternating pattern of switching between the butterfly
wings centered around two other symmetric equilibria, which can be stable foci or
saddle-foci depending on the parameter values. At such a change, the separatrices
come back to the saddle, thereby causing a homoclinic explosion in phase space.
The computational approach that we employ for studying Lorenz-like and similar
systems capitalizes on the key property of deterministic chaos—the sensitive
dependence of solutions on variations of control parameters. In particular, for the
Lorenz-type attractors, chaotic dynamics are characterized by unpredictable flip-
flop switching between the two spatial wings of the strange attractor, separated by
the saddle singularity at the origin. This is the main reason why the saddle O is the
primary source of instability in such systems, including the Rabinovich system. The
ideas of this computational research are greatly inspired by, and deeply rooted in,
the pioneering studies of L.P. Shilnikov [30, 31, 36]. His extensive knowledge of
homoclinic bifurcations helped to transform the theory of strange attractors into a
mathematical marvel [1, 2, 32, 33]. The reader may find more detailed information
about the Lorenz-like systems and symbolic computations in the original papers
[5, 42–44].

In order to identify regions with topologically identical dynamics in the paramet-
ric space, we follow the time progression of a single trajectory—the right outgoing
separatrix �1 of the saddle at the origin. We convert the flip-flopping patterns of this
trajectory around C˙ (see Fig. 4.2) into a binary symbolic sequence fkng obeying
the following rule:

kn D

(
1; when the separatrix �1 turns around CC,

0; when the separatrix �1 turns around C�.
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Fig. 4.2 Symbolic representation of the right separatrix �1 at the parameter values 	1 D 1, 	2 D
4, and h D 9. (a) Evolution of the trajectory in the phase space, projected onto the (xy)-plane. (b)
Time evolution of the y-variable. The principle of symbolic encoding: each portion of the trajectory
turning around the equilibrium state CC (red section) is represented by 1, whereas each portion
looping around C� (blue section) is represented by 0. The trajectory shown is thus converted into
the symbolic sequence f1011110011 : : :g

Alternatively, one can detect releva00nt events of dy
dt D 0, provided that d2y

dt2
is

negative or positive for 1 or 0, respectively, see the sampled trace y.t/ in Fig. 4.2b.
We use an overbar symbol to represent repetitive sequences. For example, the
periodic orbit turning once around CC, then once around C� and so on, generates
an infinite repetitive sequence f1010101010 : : :g, or f10g for short.

For a sequence fkng of length N, starting with some .j C 1/-th symbol (the very
first j-transients are skipped), we define a formal power series as follows:

P.N/ D

jCNX
nDjC1

kn

2.NCjC1/�n
(4.3)

This series is convergent, with its limit ranging between 0 and 1. Whenever
the followed separatrix, or any other such trajectory, after some initial transient
dynamics, orbits only around CC, so that its y.t/-coordinate always remains
positive, the corresponding binary symbolic sequence contains only 1s, i.e. kn D 1,
and therefore, P.N/ D 1 in the limit as N ! 1. In the case where the trajectory
continuously orbits only around C� after some transient, so that y.t/ < 0, kn D 0

and P.N/ D 0. Otherwise, periodic or aperiodic flip-flopping between and around
equilibria CC and C� generate either regular or chaotic sequences of 1s and 0s,
so that 0 � P � 1. This power series provides a way to uniquely quantify
the dynamics of the system for a given set of parameters, making it a dynamic
invariant. Two different sets of parameters with the same dynamic invariant value
show topologically identical behavior. The way we define this power series is
slightly different from how it was previously defined, with the current definition
giving increasingly higher weights to symbols towards the end of the sequence,
rather than the beginning, see [5, 42, 43]. This lets us achieve a greater contrast in
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the bi-parametric scans, and thereby, revealing greater dynamical details, between
neighboring regions of largely similar dynamics, that differ only in the last symbol
in their binary sequences due to homoclinic curves separating such regions (see
Sect. 4.5). Alternatively, one can also convert the binary sequences into a decimal
representation.

4.4 Bi-parametric Scans with Symbolic Computations

In order to obtain bi-parametric scans, we keep one of the three parameters of
the system—	1, 	2, or h, constant, while varying the other two. For each set
of parameters in the bifurcation plane, we always follow the positive unstable
separatrix �1 of the saddle at the origin in the Rabinovich system (1). Note that,
as the system is Z2-symmetric, our results stay the same even if the left separatrix
of the saddle is followed, provided there is the swapping of the symbols 0 • 1,
resulting in the same symbolic sequence fkng, and the corresponding invariant P.N/
values ranging within Œ0; 1�, by the above construction. These invariant values are
then projected on to the 2D parametric space, using a colormap that can uniquely
identify up to 224 different values of P.N/, via the whole spectrum of colors. This
results in the desired bi-parametric scans, such as the ones sampled in Figs. 4.3, 4.5,
4.7, 4.8, 4.9, and 4.10. Regions corresponding to similar dynamics, that generate
identical symbolic sequences of a given length, and therefore, carry the same
dynamic invariant values P.N/, are identified by the same colors in the bi-parametric
bifurcation sweep of appropriate resolution.

4.4.1 Emergence of Chaos via Homoclinic Explosion

In this section, we demonstrate how the symbolic computations technique can
gradually reveal the complex organization of dynamics, and the underlying non-
local bifurcations in the system. Figure 4.3 presents a series of .	2; h/-bi-parametric
sweeps, 	2 2 Œ2; 10� and h 2 Œ7; 12� and at fixed 	1 = 1, with increasing length/depth
of symbolic sequences, from 3 through 8, along with the case of nW 105–128 range.
As such, at every point in the given region, the symbolic dynamics remain identical
up to the first two symbols f10g, because the right separatrix always makes its
first loop around CC with y > 0, followed by a loop around C� with y < 0.
As the length of the trajectories, and therefore, of the sequences generated, is
increased, initially up to three symbols, i.e. nW 1; 2; 3, the scan detects a secondary
homoclinic bifurcation curve that separates the two sub-regions shown in blue and
red in Fig. 4.3a. In the red sub-region, the separatrix makes the third loop around C�

(Fig. 4.4a), whereas in the blue sub-region, its third loop is around CC (Fig. 4.4c).
The borderline separating these two sub-regions is a bifurcation curve (arguably of
codimension-1), corresponding to the secondary homoclinic orbit of the saddle at
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Fig. 4.3 Emergent chaos via homoclinic explosion in bi-parametric .	2; h/-scans with a fixed
	1 D 1. (a) Bi-parametric scan of length 3, nW 1–3. The secondary homoclinic curve encoded
as f10g (see Fig. 4.4b) divides the parametric space into two distinct subregions: f100g (red) (see
Fig. 4.4a) and f101g (blue) (see Fig. 4.4c); (b) a longer scan with the first four symbols, nW 1–4,
reveals an additional homoclinic curve, f100g, dividing the red region f100g (red) of (a) into
two subregions: f1000g and f1001g, while the blue region f101g of (a) is partitioned into two
subregions f1010g and f1011g by the homoclinic curve f101g; sweeps with (c) nW 1–5, (d) nW 1–6,
and (e) nW 1–8 gradually disclose finer underlying structures of homoclinic bifurcation unfolding;
(f) multi-colored, “noisy” sweep with a long sequence of nW 105–128 is indicative of a region with
structurally unstable, chaotic dynamics in the system (see Sect. 4.4.3.1)

Fig. 4.4 Progressive snapshots of the right 1D separatrix of the saddle in different sub-regions of
Fig. 4.3a with a fixed 	1 D 1, decoded with the first three symbols. (a) Dynamical and symbolic
representation f100g at 	2 D 4, h D 7:5; (b) secondary homoclinic orbit f10g at 	2 = 4, h ' 7:6;
(c) at 	2 D 4, h D 7:7, the trajectory corresponds to the symbolic sequence f101g
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the origin (Fig. 4.4b). This homoclinic bifurcation curve, marked by f10g, divides
the parametric space in Fig. 4.3a into two distinct sub-regions corresponding to the
sequences starting with f100 : : :g and f101 : : :g, respectively. Note that both the
homoclinic curve and the entire region of Fig. 4.3a are identified with the same
symbolic sequence. As we include one more symbol, i.e., as n runs from 1 to
4 in the computation of P.N/, both sub-regions of Fig. 4.3a, red and blue, are
further subdivided by bifurcation curves representing longer homoclinic orbits of
the saddle, see Fig. 4.3b. The homoclinic curve f100g divides the red sub-region
f100g of Fig. 4.3a into two sub-regions coded by f1000g and f1001g in Fig. 4.3b.
Similarly, the blue sub-region f101g in Fig. 4.3a is subdivided into two sub-regions
coded by f1010g and f1011g in Fig. 4.3b, by the homoclinic bifurcation curve f101g.
Adding more symbols to the computation of the bi-parametric sweep increases its
depth, lets us detect more complex homoclinic bifurcations, and gradually reveals
the underlying structures that result in the complexity of the system (Fig. 4.3c–e).
In this case, the complexity is organized around a central point called a terminal
point (T-point) (Fig. 4.3e), which will be discussed further in the next section. For
very long sequences with nW 105–128 range, the bi-parametric scan indicates that
the system continuously undergoes a plethora of homoclinic bifurcations as the
parameters are varied, and exhibits structurally unstable dynamics due to these
uncontrollable homoclinic explosions (Fig. 4.3f).

4.4.2 Heteroclinic Connections and Bykov T-Points

Fine organization of the structure of the chaotic region with the primary T-point
is revealed in greater detail in Fig. 4.5. It demonstrates the complex universality
and self-similarity of characteristic spirals typical for most Lorenz-like systems.
Here, the primary T-point is marked T1. At this codimension-2 point, the 1D
outgoing (unstable) separatrix of the saddle, after the first two loops f10g (common
to the entire parametric space under consideration here), merges with the 1D
incoming (stable) separatrix of the saddle-focus CC, thus forming a one-way
heteroclinic connection (Fig. 4.6a, e). Note that both the saddle and the saddle-
focus have stable and unstable manifolds that transversally intersect in the 3D phase
space of the Rabinovich system. This makes the heteroclinic connection closed as
t ! ˙1. Thus, at the T-point T1, the separatrix makes an infinite number of
revolutions around CC before it comes back to the saddle. As such, its symbolic
representation is given by the sequence f101g, where the overbar represents a
repetitive subsequence. As we move away from T1 along the adjacent spiral in
the parameter space, the number of revolutions of the separatrix around CC keeps
decreasing, and becomes finite. It is known that a Lorenz-like system, near a T-point,
exhibits a multiplicity of secondary T-points with increasing complexity, called as
Bykov T-points [2, 4, 7, 8, 13, 34, 35]. The short parametric scan in Fig. 4.5 detects
several notable secondary T-points marked as T2, T20, T3, T30, T4, and T40, and
the spiral structures associated with them. At T4, the outgoing separatrix of the
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Fig. 4.5 Self-similar organization of Bykov T-Points and heteroclinic connections: bi-parametric
(	2; h)-sweep at 	1 D 1, with nW 5–12 range, detects—primary T-point: T1—f101g; secondary
T-points: T2—f101101g, T20—f101110g, T3—f10110g, T30—f10101g, T4—f1010g, and T40—
f1001g. A primary saddle in the parametric space is marked with the symbol S. Heteroclinic
connections with corresponding y-progressions at some of these T-points are presented in Fig. 4.6

saddle O, after the initial two loops f10g, makes one more loop towards CC and
then merges with the 1D incoming, stable separatrix of the other saddle-focus C�.
That is why, this heteroclinic connection is symbolically represented as f1010g

(Fig. 4.6b, f). Similarly at T40, the outgoing separatrix, after the initial two loops
f10g, makes a loop towards C�, and then hits CC. Thus, this heteroclinic connection
is represented as f1001g (Fig. 4.6c, g). At T2, the complexity of the heteroclinic
connection further increases: after the two initial loops f10g, the next two loops are
around CC, followed by one loop around C�, and then the separatrix comes back to
CC; its coding is given by f101101g (Fig. 4.6d, h). The T-points depicted in Fig. 4.5
can be summarized as follows:

• T1: f10 1g—Two loops followed by heteroclinic connection to CC

• T4: f101 0g—Three loops followed by heteroclinic connection to C�

• T40: f100 1g—Three loops followed by heteroclinic connection to CC
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Fig. 4.6 T-point configurations (a)–(d) and matching time progressions (e)–(h): heteroclinic
connections and the y-variable time evolutions at: (a), (e) T1—f101g; (b), (f) T4—f1010g; (c),
(g) T40—f1001g; and (d), (h) T2—f101101g, as depicted in the bifurcation diagram in Fig. 4.5

• T3: f1011 0g—Four loops followed by heteroclinic connection to C�

• T30: f1010 1g—Four loops followed by heteroclinic connection to CC

• T2: f10110 1g—Five loops followed by heteroclinic connection to CC

• T20: f10111 0g—Five loops followed by heteroclinic connection to C�

4.4.3 Global Bifurcations and Organization of Chaos

In this section, we study the global organization of chaos using bi-parametric sweeps
of the .	2; h/-parameter plane (Figs. 4.7 and 4.8) and of the .	1; 	2/-parameter plane
(Figs. 4.9 and 4.10). We begin this discussion with Fig. 4.7, showing the .	2; h/-
sweep with nW 5–12 range, at 	1 D 1. It detects several low-order T-point-like
structures, labeled by T1 through T7, as well as characteristic spirals—bifurcation
curves of homoclinic orbits and separating saddles. A small sub-region of this
diagram nearby T1 is magnified in Fig. 4.5 of Sect. 4.4.2. Figure 4.8a presents a
deeper/longer bi-parametric sweep with nW 105–128 range. Here, we skip a relatively
long initial transient of the separatrix, to reveal the long-term dynamics of the
Rabinovich system. The underlying idea here is a sweep utilizing a typical trajectory
of the Rabinovich system, which does not necessarily have to be the separatrix
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Fig. 4.7 Bi-parametric (	2; h)-sweep at 	1 D 1, with nW 5–12 range, discloses a recursive series
of Bykov T-point-like structures marked as T1–T7, saddles, as well as regions of stable periodic
dynamics (solid colors) of the system, in the bifurcation diagram

that is employed for the purpose of homoclinic structures. With this new approach,
we can reveal the occurrence of chaotic, structurally unstable dynamics emerging
through homoclinic explosions, and detect these regions in the parameter space.
Such a region in the parameter plane appears to look like a noisy region, due
to the interference of multiple colors corresponding to constantly changing P.N/,
due to homoclinic bifurcations that densely fill in, as the control parameters are
varied. On the other hand, regions, corresponding to structurally stable (normally
hyperbolic) dynamics due to Lyapunov stable equilibria and periodic orbits, i.e.,
the so-called Morse-Smale systems, are coded with solid colors. Note that the same
color throughout a region or across regions, corresponds to topologically identical
dynamics, by construction.
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Fig. 4.8 Deterministic Chaos Prospector in action: bi-parametric (	2; h)-sweep at 	1 D 1 with
nW 105–128 to study long-term dynamics of the system: (a) sweep without periodicity correction
reveals spiraling artifacts, pseudo T-points, as well as Bykov T-points (labeled by T1–T7). (b)
Sweep enhanced with periodicity correction eliminates spiraling artifacts due to transient dynamics
in the existence region of stable periodic orbits. It also detects multiple stability windows (parallel
bands of solid colors) representing stable dynamics within the otherwise chaotic regions
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Fig. 4.9 Bi-parametric .	1; 	2/-sweeps with nW 5–12 range at (a) h D 35, and (b) h D 15, reveal
universality and organization of the chaos-land, featuring characteristic spirals and saddles that are
embedded into the solid-color regions of stable dynamics
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Fig. 4.10 Deterministic Chaos Prospector in action: bi-parametric .	1; 	2/-sweeps with nW 105–
128 range at h D 35 in panels (a), (c) and at h D 15 in panels (b), (d), detect regions of chaotic,
structurally unstable dynamics, and simple, Morse-Smale dynamics due to the existence of stable
equilibria and periodic orbits, in the “noisy” and solid-colored regions in the parameter plane,
respectively. Artificial spiral structures appearing in (a), (b) are eliminated with the periodicity
correction technique used in (c), (d). Panels (c), (d) reveal multiple stability windows of simple
dynamics in the otherwise chaotic—“noisy” regions

4.4.3.1 Deterministic Chaos Prospector Using Periodicity Correction

A discernible problem of consequence with the symbolic representation of stable
periodic orbits of complex configurations existing in the Morse-Smale systems is
their shift-symmetry or shift-circularity feature. For example, the following four
sequences: f0110g, f0011g, f1001g, and f1100g represent the same [stable] periodic
orbit, which can be either symmetric or asymmetric in the phase space. To compare
whether two such orbits are topologically conjugate or not, at least in their symbolic
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representation, one has to come up with a consistent rule to sort out and normalize
all of their corresponding binary sequences. This issue becomes principal when one
deals with skipping arbitrarily long initial transient of typical trajectories converging
to a periodic attractor of the system, at the given parameter values.

Let us re-iterate: the transient history of two orbits, before they settle down on the
same, or topologically same, periodic orbit can be quite different. Consider a tran-
sient trajectory converging to a figure-8 periodic orbit that alternatively loops around
CC and C� back and forth. This orbit admits two symbolic descriptions: f10g and
f01g, which are differently color-mapped on to the parameter space. The existence
of such an orbit is detected by the 105–128-range sweep shown in Fig. 4.8a; here,
we skip 104 initial symbols. Depending on the transient behavior and whether the
following 105th symbol is either “0” or “1”, the point in the corresponding region
is color-coded differently, even though the global attractor is the same figure-8
periodic orbit. As a result, this sweep detects faulty spiral structures, representing
f10g or f01g sequences, shown in blue and light green colors, respectively, around
centers labeled as T5;T6, and T7 in Fig. 4.8a, along with some faulty saddles, which
happen to be artifacts of the implemented simulation approach.

In order to overcome this issue, we developed the technique of “Periodicity
Correction” to detect periodic orbits, and to determine their periods using a circular
permutation approach. This allows us to consistently choose the same symbolic
representations for similar periodic orbits, correctly compute the corresponding
P.N/-value, and colormap it to the parameter plane. As with the above example,
identical periodic sequences f10g and f01g are normalized to f01g to determine
its P-value. Similarly, the three representations—f101g, f110g, and f011g for the
same (or topologically similar) periodic orbit(s) of periodicity 3, are normalized
to the smallest valued binary sequence f011g to evaluate the P.N/-value, and the
corresponding color-code (see Sect. 4.5).

Figure 4.8b presents the sweep of the same resolution and depth as Fig. 4.8a,
but using periodicity correction. One can see that, with this technique, the diagram
is free of the aforementioned spiral artifacts in the region (dark blue) of existence
of the stable figure-8 periodic orbit corresponding to the sequences f10g or f01g.
Nevertheless, the presence of those spirals in the scan without periodicity correction
(Fig. 4.8a) indicates the existence of heteroclinic connections close to the centers
of those pseudo T-point spirals—T5;T6, and T7. Indeed, the points labeled by
T1 and T2 appear to be genuine T-points with quite complex long-term dynamics,
whereas the points labeled by T3, T5, T6, and T7 correspond to stable heteroclinic
connections between the saddle-foci CC and C�, that the transitioning figure-
8 periodic orbit approaches in the limiting case. The point T4 is located next
to the boundary between stable and chaotic regions, and it is rather difficult to
evaluate its contribution at this resolution. In addition, Fig. 4.8b reveals multiple
parallel bands of constant colors with gradually decreasing widths, within the
otherwise noisy regions. This is indicative of the presence of stability windows
corresponding to regular, periodic dynamics alternating with chaotic behaviors.
Bands of such constant colors are not detected in Fig. 4.8a, which suggests that, in
these regions, though the long-term dynamics are ultimately identical, convergence
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along distinct paths creates a “masquerading” effect that the developed technique of
periodicity correction exposes. Overall, we call this technique “Deterministic Chaos
Prospector,” since it readily identifies regions of simple (Morse-Smale) and chaotic
structurally unstable dynamics in the parametric plane.

Figure 4.9 presents the (	1; 	2)-parametric sweeps of the Rabinovich system
for two different values of h: h D 35 in panel (a) and h D 15 in panel (b); in
both cases, a short symbolic scanning is done with nW 5–12 range. Both sweeps
disclose a stunning complexity of the organization of the bifurcation unfolding
of the system, with a plethora of Bykov T-points with characteristic spirals, and
separating saddles in the chaotic region, that greatly stand in contrast to the Morse-
Smale regions of simple and stable dynamics. To conclude, long sweeps with the
scanning range nW 105–128 to expose the long-term dynamics of the Rabinovich
system at h D 35 and at h D 15 are presented in Fig. 4.10a and b, respectively. Both
indicate the occurrence of chaotic, structurally unstable dynamics, clearly depicted
by the seemingly noisy regions. As seen above, periodicity correction gets rid of
some of the spiral structures around the pseudo T-points (Fig. 4.10c, d). With the
enhanced technique, we can also easily identify multiple bands or stability windows
corresponding to periodic attractors, within the chaos-land of the system under
consideration.

4.5 Methods

Computations of bi-parametric sweeps are performed on a workstation with Intel
Xeon(R) 3.5 GHz 12-core CPU and 32 GB RAM, with an NVidia Tesla K40 GPU
for parallelization using CUDA. A bi-parametric sweep over a grid of 5000 � 5000

mesh points, with a scanning depth nW 5–12 (Fig. 4.5) takes about 4.45 s, whereas, for
long-term dynamics with nW 105–128 (Fig. 4.3f), it is about 42 s. With the periodicity
correction algorithm employed, these numbers increase to approximately 4.68 s
and 43.7 s, respectively. Visualizations of the sweeps and trajectories are done
using Python. The colormap is constructed by discretizing the range of computed
P-values, i.e., [0,1], into 224 distinct levels and assigning them RGB (Red-Green-
Blue)-color values which are arranged in the following order—increasing values
of Blue color from 0 through 1, decreasing values of Red color from 1 through 0,
and randomly assigned values of Green color between 0 and 1. As such, P D 1

is associated with a bluish color, while P D 0 with a reddish color. With this
colormap, we can identify distinct topological dynamics of up to 24 symbols long.
As seen in Fig. 4.3, since two neighboring regions differ in the last symbol, the
corresponding P-value is defined in such a way that the weight of the last symbol is
the highest, so that the two neighboring regions fall in either half of the color map
range Œ0; 1�, and thus, have the greatest contrast. In regions where the equilibrium
state at the origin is stable, and is the only global attractor of the system, the P
value is complementarily set to �0:1, which is outside the normalized range of all
computed P-values. Similarly, adjacent regions in the parametric space close to the



58 K. Pusuluri et al.

pitch-fork bifurcation, through which the stable origin becomes a saddle with 2D
stable and 1D unstable manifold, and also gives rise to a couple of saddle foci C˙,
are assigned a P value �0:05, which is also outside the normalized computed range.
In both cases, this is done due to monotone convergence to the steady state or slow
transients, which do not admit proper partitioning of the phase space of the system
to generate symbolic representation of its solutions.

In order to construct sweeps with periodicity correction, we first detect periodic
orbits in each sequence. For a sequence of length N, we check for periodic orbits of
periodicity up to N

2
, starting from 2. If a periodic orbit is detected, it is normalized to

the principal cyclic permutation with the lowest numerical value in the sorted list of
all of its cyclic permutations. For example, the periodic orbits f110g, f101g, f011g

are all normalized to f011g, which is then used to fill up the symbolic sequence of
length N for the computation of the corresponding P.N/-value.

4.6 Conclusions

In this study we have shown that

• Symbolic representation is an effective tool to reveal the bifurcation origins
of complex, chaotic dynamics in the Rabinovich system, and in other similar
systems.

• Bi-parametric scans disclose fine organizational features of deterministic chaos
due to complex, self-similar assemblies of homoclinic and heteroclinic bifurca-
tions with a plethora of accompanying T-points, spiral structures, and separating
saddles in the fractal, self-similar regions in the parameter plane, that correspond
to complex chaotic dynamics. There is no other current computational technique
that can reveal the complexity of chaos in the parameter plane with such stunning
clarity and completeness.

• The technique of periodicity correction gets rid of a variety of artifacts due to
shift-cycling in symbolic representation of complex periodic orbits, in addition
to effectively detecting stability windows of regular dynamics that are embedded
within the chaotic regions.

• We developed “Deterministic Chaos Prospector”—the paradigm based on the
concept of structural and dynamic instability, which presents a novel and highly
efficient approach to identify the regions of chaotic and stable dynamics in the
parameter space of a system under consideration.

• Massively parallel multi-parametric sweeping based on symbolic representation,
using general purpose GPU-computing, presents the new generation, optimal
time computational method to study a chaotic system that admits a proper
partition of its phase space.
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