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Abstract. We describe analytically synchronization and desynchroniza-
tion effects in an ensemble of phase oscillators driven by common noise
and by global coupling. Adopting the Ott-Antonsen ansatz, we reduce
the dynamics to closed stochastic equations for the order parameters,
and study these equations for the cases of populations of identical and
nonidentical oscillators. For nonidentical oscillators we demonstrate a
counterintuitive effect of divergence of individual frequencies for mod-
erate repulsive coupling, while the order parameter remains large.

1 Introduction

Synchronization in ensembles of oscillators with a weak mutual coupling and, specifi-
cally, for the case of global coupling, is a well understood phenomenon [1,2]. This effect
is important for various physical applications such as lasers and Josephson junctions,
engineered systems (colorfully highlighted by the famous incident with the Millennium
bridge in London [3]), neuronal networks (including pathological synchronization of
neuronal activity in neurodegenerative diseases) [4], colonies and populations of living
organisms, and even for many social systems.
Synchronization of ensembles of oscillators can be also caused by common noise

or non-periodic external action [5]; this interesting phenomenon is known in vari-
ous disciplines under different names: “reliability” for neurons [6], “consistency” for
lasers [7], synchronization of non-interacting populations by common varying condi-
tions [8]. Although the mathematical theory of synchronization by common noise has
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been significantly advanced [9–11], its physical mechanism is not as evident as the
mechanism of synchronization by mutual coupling (see, e.g., [12,13,17]). An impor-
tant difference is that the synchronization by common noise is not accompanied by
the frequency locking or by the frequency entrainment. Another peculiar property is
that a weak Gaussian intrinsic noise in two otherwise identical oscillators, synchro-
nized by the common noise, produces state deviations which are non-Gaussian, but
Lorentzian ones.
Remarkably, while mutual coupling can both synchronize and desynchronize

oscillators in a population (i.e., it can be either attractive or repulsive), noise can
only synchronize them. The interplay of de-/synchronization by global coupling and
synchronization by common noise is especially interesting due to the difference in
their basic mechanisms. Desynchronization by repulsive coupling counteracts syn-
chronization by common noise in a non-trivial way; they cannot simply cancel each
other. These subtle effects are important if one tries, say, to counteract noise-induced
synchrony by a repulsive coupling, or vice versa, what may be relevant for many
technical and biological systems.
Recently, we have reported on nontrivial effects due to competition of the com-

mon noise and desynchronizing global coupling in an ensemble of globally coupled
Kuramoto oscillators [18]; these results extend previous studies [19,20]. For a mod-
erate desynchronizing coupling, the synchronizing effect of common noise prevails
and a synchronous regime establishes. However, for the case of slightly nonidentical
oscillators, the average frequencies of individual oscillators are repelled, not attracted.
For a synchronizing coupling, the perfect frequency locking does not occur, although
the average frequencies of individual oscillators are attracted to each other. In the
present paper we provide a more detailed study of these phenomena, and extend the
description from the case of the purely dissipative coupling as in [18] to a general
global coupling of Kuramoto-Sakaguchi type.
Our basic model is an ensemble of infinitely many phase oscillators with the

Kuramoto-Sakaguchi coupling and common noise. This model provides an op-
portunity for a comprehensive analytical treatment via Watanabe-Strogatz and
Ott-Antonsen approaches [21–24] and, thus, allows for a deeper insight into the subtle
aspects of the interplay between the mechanisms of de/synchronization by coupling
and by common noise. The governing equations are:

ϕ̇ = Ω+ Im
(
H(t)e−iϕ

)
, (1)

where natural frequencies Ω have distribution g(Ω). In this thermodynamic limit, the
probability density w(ϕ, t,Ω) of oscillators with natural frequency Ω admits, according
to [24], a solution parametrized by a single complex quantity a(Ω, t): w(ϕ, t,Ω) =
1
2π (1 +

∑∞
j=1[(a(Ω, t)

jeijϕ + c.c.]), where a(Ω, t) obeys

ȧ(Ω, t) = −iΩa+ H∗(t)
2
− H(t)

2
a2 . (2)

For the ensemble of globally coupled oscillators driven by common noise and subject
to the Kuramoto-Sakaguchi coupling, we set

H(t) = μRe−iβeiΦ − σξ(t) ,
where the complex mean field is defined as the average over the whole population

ReiΦ =

+∞∫

−∞
dΩ g(Ω)

2π∫

0

dϕeiϕw(ϕ, t,Ω) =

+∞∫

−∞
dΩ g(Ω) a∗(Ω, t) .
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The equations for the oscillators then take the form

ϕ̇ = Ω+ σξ(t) sinϕ+ μR sin(Φ− ϕ− β) . (3)

Here σ is the common noise strength, ξ(t) is the normalized Gaussian white noise
signal, μ is the coupling strength, β characterizes the phase shift in the coupling, or,
in other words, the relative contributions of the “active” (∼ cosβ) and the “reactive”
(∼ sinβ) components of the coupling terms. The noise term in equation (3) is mul-
tiplied by sinϕ because any external forcing on an oscillator appears in the phase
approximation as this forcing multiplied by the phase sensitivity function, that is the
sine function in our case.
The main goal of this paper is to extend the results of reference [18], where the

case β = 0 has been considered, to a general situation with β �= 0. We will see that
the main parameters appearing in the theory are the effective coupling μβ = μ cosβ
and the effective frequency Ωβ = Ω− μ sinβ; many results will be identical to those
for β = 0 with the corresponding effective parameters. However, the behaviour of the
average of the oscillators’ frequencies will be more sophisticated; in particular, in the
case of β �= 0, we will observe a shift of the reference frequency, while it disappears
for β = 0.
The paper is organized as follows. In Section 2, we consider the dynamics of

the ensemble of identical oscillators, where perfect synchrony is possible. For identi-
cal oscillators the stability properties of the synchronous state and the time-average
dynamics of the order parameter are derived for a general case. However, a more subtle
characterization, namely, the probability density distribution for the order parameter
and calculation of the rate of transition to synchrony, can be made analytically only
with additional assumption of a high basic frequency of oscillations. In Section 3,
we consider a realistic situation of the ensemble of oscillators with nonidentical fre-
quencies. For nonidentical oscillators, the perfect synchrony becomes impossible, but
one can derive the time-average value of the order parameter for a highly synchro-
nous state and characterize the dynamics of the order parameter close to the state of
asynchrony J = 0. Further, for the case of high basic frequency of oscillators, a com-
prehensive description of the dynamics of the order parameter is possible, including
calculation of the probability density distribution. In Section 4, for the case of non-
identical oscillators, the average oscillators’ frequencies are calculated. One observes
no frequency locking, as in the noise-free case. However, the attraction of average
frequencies (for the synchronizing coupling) and a nontrivial phenomenon of their
repulsion (for desynchronizing coupling) accompany synchronization.

2 Ensemble of identical oscillators

For the case of identical oscillators Ωk = Ω, and we can rewrite (2), taking into account
that a∗ = R exp(iΦ), as

Ṙ =
μ

2
cosβ(1−R2)R− σξ(t)

2
(1−R2) cosΦ ,

Φ̇ = Ω− μ

2
sinβ(1 +R2) +

σξ(t)

2

(
1

R
+R

)
sinΦ . (4)

It is convenient to introduce a new order parameter J = R2/(1−R2) (with the
inverse relation R =

√
J/(1 + J)); in new variables we get stochastic equations in

the Stratonovich sense:

J̇ = μ cosβ J − σξ(t)
√
J(1 + J) cosΦ , (5)
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Φ̇ = Ω− μ sinβ J + 1/2
J + 1

+ σξ(t)
J + 1/2
√
J(1 + J)

sinΦ . (6)

In terms of J , synchronization R � 1 corresponds to J →∞, while asynchrony R = 0
corresponds to J = 0. The latter equation system can be treated analytically for
J � 1 (approaching the synchronized state) and J � 1 (evolution of the asynchronous
state J = 0).

2.1 Stability of the synchronous state: J � 1
For J � 1, to the leading order, equations (5), (6) read

J̇ = μβJ − σξ(t)J cosΦ , (7)

Φ̇ = Ωμ + σξ(t) sinΦ , (8)

where μβ ≡ μ cosβ and Ωμ ≡ Ω− μ sinβ. Equation (7) can be recast as ddt lnJ = μβ −
σξ(t) cosΦ, and the average rate of the exponential growth λ, namely the Lyapunov
exponent, λ ≡ 〈 ddt lnJ

〉
reads

λ = μβ − σ〈ξ(t) cosΦ〉 = μβ + σ2〈sin2 Φ〉 , (9)

where the equality 〈ξ(t) cosΦ〉 = −σ〈sin2 Φ〉 follows from the Furutsu-Novikov for-
mula. Positive value of λ means that the synchronous state J =∞ is stable. One can
see that λ has a positive contribution from the noise, and a contribution from the
coupling which can change sign.
The dynamics of Φ is governed by equation (8) and is independent of J . Equa-

tion (8) yields the Fokker-Planck equation for the probability density W (Φ, t);

∂

∂t
W +

∂

∂Φ
(ΩμW )− σ2 ∂

∂Φ

(
sinΦ

∂

∂Φ

(
sinΦW

)
)
= 0. (10)

This Fokker-Planck equation possesses a steady-state solution (which is π-periodic)

W (Φ) =
C

sinΦ

π∫

Φ

dΦ1
sinΦ1

e
Ωμ

σ2
(cotΦ1−cotΦ),

where constant C is determined by the normalization condition
∫ 2π
0

W (Φ) dΦ = 1.
Thus,

〈sin2 Φ〉 =

π∫

0

dΦ sinΦ

π∫

Φ

dΦ1
sinΦ1

e
Ωμ

σ2
(cotΦ1−cotΦ)

π∫

0

dΦ

sinΦ

π∫

Φ

dΦ1
sinΦ1

e
Ωμ

σ2
(cotΦ1−cotΦ)

, (11)

where 〈·〉 denotes averaging over different realization of noise.
The dependence of 〈sin2 Φ〉 on Ωμ/σ2 is plotted in Figure 1. This dependence

reveals that the influence of common noise on the stability of the synchronous
state [Eq. (9)] is more efficient for fast oscillations, and its efficiency monotonously
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Fig. 1. The dependence of 〈sin2 Φ〉 on Ωμ/σ2 determines the average exponential rate of
approach to synchronous state λ [see Eq. (9)]. It is plotted with the black solid line for the
exact solution (11), with the blue dashed line for the Galerkin approximation (13)–(14), and
with the red dash-dotted line for the asymptotic expansion (12). For the exact solution and
the Galerkin approximation, 〈sin2 Φ〉 tends to a non-zero finite value (approximately 0.2) as
Ωμ/σ

2 → 0.

decreases with the decrease of the natural frequency of oscillators. Below we provide
two practical ways to calculate the Lyapunov exponent, instead of calculating the
integrals in (11) directly.
Small noise limit σ2 � Ωμ. The integrals in equation (11) cannot be evaluated

analytically. However, one can analyse the asymptotic behaviour of 〈sin2 Φ〉 for Ωμ �
σ2. Using σ2 as a small parameter in equation (10), one can evaluate the series

W (Φ) = (2π)−1 + σ2W (1)(Φ) + σ4W (2)(Φ) + . . . and find 〈sin2 Φ〉 = 1
2 − σ4

8Ω2μ
+ . . . .

Hence,

λ = μβ + σ
2

[
1

2
− σ4

8Ω2μ
+O

(
σ6

Ω3μ

)]
. (12)

Galerkin approximation. Here we employ (see supplementary material for de-
tails) a 2-parametric normalized function Wm,Φ0(Φ) = am[1 +m sin

2(Φ− Φ0)]−1/2,
where am =

(
4K
√−m)−1, as a Galerkin approximation function [25]. This allows us

to evaluate approximately

Ωμ
σ2
=

√
1 +m

m

2

2 +m

E(
√−m)

K(
√−m) − 1

1− 1√
1 +m

(
π

2K(
√−m)

)2 (13)

and
〈sin2 Φ〉 = 1

2 +m

E(
√−m)

K(
√−m) . (14)

With equations (13) and (14), one has a dependence between 〈sin2 Φ〉 and Ωμ/σ2,
parameterised by m.
In Figure 1, one can see quite a fair agreement between the Galerkin approximation

and the exact solution (11), and assess the applicability domain of the asymptotic
formula (12).

2.2 Dynamics of 〈J〉ξ(t) and the evolution of asynchronous state J = 0
The equation for the dynamics of the average order parameter 〈J〉ξ (where 〈...〉ξ de-
notes averaging over noise realizations) can be derived from system (5)–(6): ddt 〈J〉ξ =
(μβ + σ

2)〈J〉ξ + σ2/2. For the system starting from the asynchronous state, J(0) = 0,



1926 The European Physical Journal Special Topics

the solution is 〈J〉ξ(t) = (e(μβ+σ2)t − 1)σ2/[2(μβ + σ2)]. The condition for growth of
〈J〉ξ

μβ + σ
2 > 0 (15)

differs from the condition of positivity of the Lyapunov exponent

μβ + σ
2〈sin2 Φ〉 > 0 , (16)

because for the (15) the contribution of large values of J is weighted heavier. While
equation (16) determines whether the system asymptotically (and irreversibly) tends
to the perfect synchrony J =∞, equation (15) determines whether the system tends
to avoid the asynchronous state, but does not forbid excursions back to low-synchrony
states from large values of J . Thus, the condition (15) is weaker than (16).

2.3 Transition from asynchrony (J = 0) to the synchronized state

There is a remarkable difference between the statistical properties of the evolution
toward the states of perfect synchrony, J =∞, and of asynchrony, J = 0. Where the
synchronous state is attracting, λ = μβ + σ

2〈sin2 Φ〉 > 0, the transition to it is irre-
versible, i.e., this state is an absorbing one. In contradistinction, the drift-attraction
μβ + σ

2 < 0 for the asynchronous state does not mean that trajectories converge to
this state. Indeed, since the noise term in (4) does not vanish at R = 0, the noise
“kicks-out” the system from this state. Thus, where the synchronous state is attract-
ing, the transition to synchrony is unidirectional, and the transition rate can be of
interest.
This transition rate can be generally found from the Fokker–Planck equation for

the probability density W (J,Φ, t). For stochastic system (5)–(6), it reads

∂

∂t
W +

∂

∂J
(μβJ W ) +

∂

∂Φ

([
Ω− μ sinβ J + 1/2

J + 1

]
W

)
− σ2Q̂2W = 0 , (17)

where operator Q̂ is defined as Q̂ ≡ ∂
∂J

(
−√J(1 + J) cosΦ

)
+ ∂
∂Φ

(
J+1/2√
J(1+J)

sinΦ

)
.

This equation can be treated analytically for a realistic case of large frequency Ω�
μ ∼ σ2.

2.3.1 Averaging over high frequency oscillations

For vanishing μ and σ, the probability density distribution is W (J,Φ, t) =
(2π)−1w(J), where

∫∞
0
w(J) dJ = 1. Hence, for μ ∼ σ2 � Ω, one can assume μ =

σ2μ1, Ω = Ω0 and employ the standard method of multiple scales; tn = σ
2nt and

W =W (0)(J, t1, t2, . . .) + σ
2W (1)(J,Φ, t0, t1, t2 . . .) + . . . . To the leading order, equa-

tion (17) yields W (0) = (2π)−1w(J, t1, t2, . . .). In the order σ2, equation (17) yields

∂W (1)

∂t0
+Ω0

∂W (1)

∂Φ
+
∂W (0)

∂t1
+

∂

∂J

(
μ1 cosβ J W

(0)
)

+
∂

∂Φ

(
−μ1 sinβ J + 1/2

J + 1
W (0)

)
− Q̂2W (0) = 0 .
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Integrating the latter equation over Φ from 0 to 2π, one finds ∂
∂t0

2π∫

0

W (1)dΦ +

∂w(J,t1)
∂t1

+ ∂
∂J
(μ1 cosβ J w(J, t1))− 1

2π

2π∫

0

Q̂2w(J, t1) dΦ = 0. To avoid linear growth

of W (1) with t0, one has to set the first term to zero. Calculation of the last inte-

gral yields 12π
∫ 2π
0

Q̂2w(J, t1) dΦ =
1
2
∂
∂J
(
√
J(1 + J)[ ∂

∂J
(
√
J(1 + J)w)− J+1/2√

J(1+J)
w]).

Thus, the probability density w(J, t) is governed by the equation

∂w

∂t
+

∂

∂J

([
μβJ +

σ2

2

(
J +
1

2

)]
w

)
− σ2Q̂2Jw = 0 , (18)

where Q̂J(·) ≡ 1√
2
∂
∂J

(√
J(1 + J) (·)

)
. Equation (18) can be treated as the Fokker-

Planck equation for the stochastic equation

J̇ = μβJ +
σ2

2
(J + 1/2) + σ

√
J(1 + J)

2
ζ(t) , (19)

where effective noise ζ is Gaussian and delta-correlated, 〈ζ(t)ζ(t+ t′)〉 = 2δ(t′) .
Strong desynchronising coupling (μβ < −σ2/2). Here equation (18) admits a
steady state probability density without probability flux:

w0(J) =

(
2(−μβ)
σ2

− 1
)
(1 + J)−

2(−μβ)
σ2 , (20)

which means that there are no adsorbing states in the system. Recall, the synchronous
state is not asymptotically attracting in this case (λ < 0). Probability density (20)
yields the average value and the variance of the original mean field

〈R〉 =
〈√

J

1 + J

〉

=

√
π

2

Γ
(
2(−μβ)/σ2

)

Γ
(
2(−μβ)/σ2 + 1/2

) , 〈R2〉 =
〈

J

1 + J

〉
=

σ2

2(−μβ) .

Asymptotically attracting synchrony (μβ > −σ2/2). Here only a solution with
finite probability flux j can be formally written:

wj(J) =
2j

σ2
(1 + J)2μβ/σ

2

∫ ∞

J

dJ1
J1
(1 + J)−1−2μβ/σ

2

. (21)

The probability “density” wj(J)|J�1 ∝ 1/J1 possesses a heavy tail, the integral
of which diverges. Hence, after normalization, one finds w(J <∞) = 0, while∫∞
J
w1(J1) dJ1 = 1, which corresponds to j → 0 and also means that all states are

accumulated at J =∞.

2.3.2 Transition to the synchronous state: first passage time

In the case where the synchronous state is absorbing, an interesting statistical quan-
tity is the characteristic time to reach it, starting from asynchrony. As the system
can approach the perfect synchrony state only asymptotically, the transition time is
infinite. However, one can consider how the system approaches the perfect synchrony
state and pose the problem of the first passage time for some large value J̄ . For
equation (19) [or Eq. (18)], the first passage time T (J0, J̄) from J0 to J̄ obeys

B(J0)
∂2T (J0, J̄)

∂J20
+A(J0)

∂T (J0, J̄)

∂J0
= −1 , (22)
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with T (J̄ , J̄) = 0,
(
∂T (J0, J̄)/∂J0

)|J0=J̄ = 0, and A(J0) = μβJ0 +
σ2

2 (J0 + 1/2),

B(J0) =
σ2

2 J0(1 + J0). Notice, in our problem J0 = 0 is the boundary of the domain
of possible states of the system. The solution to equation (22) is

T (J0, J̄) =

∫ J̄

J0

dJ1

∫ J1

J0

dJ2
B(J2)

e
−
J1∫

J2

A(J3)

B(J3)
dJ3

=
2

σ2

∫ J̄

J0

dJ1
J1

∫ J1

J0

dJ2
(1 + J2)

2μβσ
−2+2

(1 + J1)2μβσ
−2+3 .

Integrating over J2 and assuming J0 → 0, one obtains

T (0, J̄) =
σ−2

μβσ−2 + 3/2

∫ J̄

0

dz

z

(
1− 1

(1 + z)2μβσ
−2+3

)

=
1

σ2

[
ln(1 + J̄)

μβσ−2 + 3/2
+

J̄−(2μβσ
−2+3)

2(μβσ−2 + 3/2)2
+ τ

(
2μβ
σ2

, J̄

)]
, (23)

where τ(q, J̄) is small compared to the sum of the first and second terms in the
brackets for J̄ � 1. For 2μβσ−2 + 3 > 0, the first passage time is logarithmically
large ∝ ln J̄ , meaning that the synchronous state attracts the system trajectories
on average. For 2μβσ

−2 + 3 < 0, the first passage time diverges as a power law of
J̄ , meaning that the synchronous state is strongly repelling and the passages of the
system trajectories near it are rare events.
Physical picture for identical oscillators. We summarize the results of this

section as the following qualitative picture. In the competition between coupling and
noise there is a critical value of the coupling parameter μcritβ = −σ2/2. For μβ > μcritβ
noise wins: eventually the ensemble gets fully synchronized. For μβ < μcritβ , repulsive
coupling prevents full synchronization. However, the order parameter never vanishes,
thus one observes partial synchrony with a fluctuating order parameter.

3 Nonidentical oscillators: transition to synchrony

Let us now consider the case of nonidentical natural frequencies Ω and assume the
Lorentzian distribution of them with width γ: g(Ω) = γ

π[γ2+(Ω−Ω0)2] . According to
reference [24], a(Ω) can be considered as analytic function on the lower half-plane, and

one can evaluate R exp[−iΦ] = ∫ +∞−∞ dΩ g(Ω) a(Ω) = a(Ω0 − iγ). Hence, equation (2)
written for a(Ω0 − iγ) gives a closed equation for the order parameter; in terms of J
and Φ, we obtain

J̇ = μβJ − 2γJ(1 + J)− σξ(t)
√
J(1 + J) cosΦ, (24)

Φ̇ = Ω0 − μ sinβ J + 1/2
J + 1

+ σξ(t)
J + 1/2
√
J(1 + J)

sinΦ. (25)

3.1 Dynamics close to a highly synchronous state

For J � 1, equations (24)–(25) read
J̇ = μβJ − 2γJ2 − σξ(t)J cosΦ , (26)
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Φ̇ = Ωμ,0 + σξ(t) sinΦ . (27)

Similarly to equations (7) and (8), one can find 〈 ddt lnJ〉 = μβ − 2γ〈J〉 −
σ〈ξ(t) cosΦ〉 = μβ + σ2〈sin2 Φ〉 − 2γ〈J〉, where 〈sin2 Φ〉 is determined by equa-
tion (11). For nonidentical oscillators, γ �= 0 and the system does not attain perfect
synchrony; at a steady state the average of the time-derivative of lnJ is zero. Hence,

〈J〉 ≈ λ

2γ
. (28)

This equation is valid for 〈J〉 � 1, which is observed for small diversity γ � |λ|.

3.2 Evolution of asynchronous state J = 0

Averaging the equation for J , similarly to the case of identical oscillators, one
finds d

dt 〈J〉ξ = (μβ + σ2 − 2γ)〈J〉ξ − 2γ〈J2〉ξ + σ2/2. For the system starting from
the absolutely asynchronous state, J(0) = 0, as long as J � 1, this yields 〈J〉ξ(t) ≈
(e(μβ+σ

2−2γ)t − 1)σ2/[2(μβ + σ2 − 2γ)]. Similarly to the case of identical oscillators,
further treatment of the intermediate behaviour of the system is not possible for the
general case and requires certain approximations. The detailed analytical considera-
tion is possible for a realistic case of high oscillation frequency Ω� μ ∼ σ2, which is
considered below.

3.3 Statistics at high oscillation frequency

The averaging over high-frequency oscillations can be performed exactly like in the
case of identical oscillators. Equation (19) takes now the form

J̇ = μβJ − 2γJ(1 + J) + σ2

2
(J + 1/2) + σ

√
J(1 + J)

2
ζ(t) . (29)

For nonzero γ the state of perfect synchrony is not possible, thus the order parameter
fluctuates in the range 0 ≤ J <∞. For this statistically stationary regime the corre-
sponding Fokker-Planck equation for w(J) can be integrated yielding a steady state
probability density

w(J) =

(1 + J)2μβ/σ
2

exp

[
−4γ
σ2
(1 + J)

]

(
σ2

4γ

)2μβ/σ2+1
Γ

(
2μβ
σ2
+ 1,

4γ

σ2

) , (30)

where Γ(m,x) is the upper incomplete Gamma function. This solution allows to
express the moments of order parameters as

〈R2〉 = 1− 4γ
σ2

Γ

(
2μβ
σ2

,
4γ

σ2

)

Γ

(
2μβ
σ2
+ 1,

4γ

σ2

) , 〈J〉 = σ2

4Γ

Γ

(
2μβ
σ2
+ 2,

4Γ

σ2

)

Γ

(
2μβ
σ2
+ 1,

4Γ

σ2

) − 1 . (31)

In Figure 2 the average value of the order parameter 〈J〉 is plotted vs. coupling
strength μβ for different values of γ; one can assess the impact of the natural frequency
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Fig. 2. The order parameter 〈J〉 is plotted vs. μ cosβ/σ2 for different values of γ; the solid
curves from bottom to top correspond to γ = 1, 10−1, 10−2, 10−3, 10−4 [Eq. (31)], and the
dashed curve, which runs to infinity at μ cosβ/σ2 = −1, corresponds to identical oscillators,
γ = 0.

dispersion on the system synchrony. Notice that for identical oscillators, the perfect
synchrony state is attracting for μ cosβ/σ2 > −1/2.
Physical picture for the collective dynamics of nonidentical oscillators.

The ensemble of nonidentical oscillators under common noise neither synchronizes nor
desynchronizes. For all values of coupling and noise, the order parameter fluctuates
in the range 0 ≤ R < 1.

4 Nonidentical oscillators: frequency entrainment and repulsion

Let us now consider the dynamics of individual oscillators in the population. It is
convenient to study the phase relative to that of the synchronous cluster – specif-
ically, the dynamics of the phase difference ϕΩ − Φ. We have to complement equa-
tions (24) and (25) with the equation for the phase deviation of a particular oscillator
θω = ϕΩ − Φ [see Eq. (3)];

J̇ = μβJ − 2γJ(1 + J)− σξ(t)
√
J(1 + J) cosΦ, (32)

Φ̇ = Ω0 − μ sinβ J + 1/2
J + 1

+ σξ(t)
J + 1/2
√
J(1 + J)

sinΦ, (33)

θ̇ω = ω − μ
(√

J

1 + J
sin(θω + β)− J + 1/2

J + 1
sinβ

)

+σξ(t)

[

sin(Φ + θω)− J + 1/2
√
J(1 + J)

sinΦ

]

, (34)

where ω = Ω− Ω0. For simplicity of notations we omit hereafter the subscript ω.
The Fokker-Planck equation for the time-dependent probability density

W (J,Φ, θ, t) of the states of stochastic system (32)–(34) reads

∂

∂t
W +

∂

∂J

[
(μβJ − 2γJ(1 + J))W

]
+

∂

∂Φ

[(
Ω0 − μ sinβ J + 1/2

J + 1

)
W

]

+
∂

∂θ

[(
ω − μ

√
J

1 + J
sin(θ + β) + μ

J + 1/2

J + 1
sinβ

)
W

]
− σ2Q̂2W = 0 , (35)
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where the operator Q̂ is

Q̂ ≡ ∂

∂J

(
−
√
J(1 + J) cosΦ

)
+

∂

∂Φ

(
J + 1/2
√
J(1 + J)

sinΦ

)

+
∂

∂θ

((
sin(Φ + θ)− J + 1/2

√
J(1 + J)

sinΦ

))
. (36)

4.1 Distribution of the relative phase for high frequency of oscillations

For vanishing μ, σ, and γ, the probability density is W (J,Φ, θ, t) = (2π)−1w(J, θ),
where

∫ +∞
0
dJ
∫ 2π
0
dθ w(J, θ) = 1. Hence, for μ ∼ σ2 ∼ γ � Ω0, one can assume μ =

σ2μ1, γ = σ
2Γ1, ω = σ

2ω1 and employ the standard method of multiple scales; tn =
σ2nt and W =W (0)(J, θ, t1, t2, ...) + σ

2W (1)(J,Φ, θ, t0, t1, t2...) + ... . To the lead-
ing order, equation (35) yields W (0) = (2π)−1w(J, θ, t1, t2, ...). In the order σ2,
equation (35) yields

∂W (1)

∂t0
+Ω0

∂W (1)

∂Φ
+
∂W (0)

∂t1
+

∂

∂J

[
(
μβ,1J − 2γ1J(1 + J)

)
W (0)

]

+
∂

∂Φ

[(
− μ1 sinβ J + 1/2

J + 1

)
W (0)

]

+
∂

∂θ

[(
ω1 − μ1

√
J

1 + J
sin(θ + β) + μ1

J + 1/2

J + 1
sinβ

)
W (0)

]
− Q̂2W (0) = 0 .

Integrating the latter equation over Φ from 0 to 2π, one finds

∂

∂t0

∫ 2π

0

W (1)dΦ +
∂w(J, θ, t1)

∂t1
+

∂

∂J

[
(
μβ,1J − 2γ1J(1 + J)

)
w(J, θ, t1)

]

+
∂

∂θ

[(
ω1 − μ1

√
J

1 + J
sin(θ + β) + μ1

J + 1/2

J + 1
sinβ

)
w(J, θ, t1)

]

− 1

2π

∫ 2π

0

Q̂2w(R, θ, t1) dΦ = 0 .

To eliminate the linear growth of W (1) with t0, which would break the hierarchy of
smallness of expansion terms, one has to set the first term to zero. This integral can
be expressed as

1

2π

2π∫

0

dΦ Q̂2w(J, t1)=
∂

∂J

(
−J + 1/2

2
w

)
+
∂

∂θ

(
sin θ

2

J + 1/2
√
J(1 + J)

w

)

+Q̂2J,θw + Q̂
2
θw ,

where

Q̂J,θ ≡ ∂

∂J

(
−
√
J(1 + J)

2

)
+

∂

∂θ

(
sin θ√
2

)
, Q̂θ ≡ ∂

∂θ

(
cos θ√
2
− J + 1/2
√
2J(1 + J)

)

.
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Thus, the probability density w(J, θ, t) is governed by the equation

∂w

∂t
+

∂

∂J

([
μβJ − 2γJ(1 + J) + σ2

2
(J + 1/2)

]
w

)

+
∂

∂θ

[(
ω − μ

√
J

1 + J
sin(θ + β) + μ

J + 1/2

J + 1
sinβ − σ2

2

J + 1/2
√
J(1 + J)

sin θ

)
w

]

−σ2Q̂2J,θw − σ2Q̂2θw = 0 . (37)

Equation (37) can be treated as the Fokker-Planck equation for the stochastic equa-
tion system with two independent noises ζ1(t) and ζ2(t):

J̇ = μβJ − 2γJ(1 + J) + σ2

2
(J + 1/2)− σ

√
J(1 + J)

2
ζ1(t) , (38)

θ̇ = ω − μ
√

J

1 + J
sin(θ + β) + μ

J + 1/2

J + 1
sinβ − σ2

2

J + 1/2
√
J(1 + J)

sin θ + σ
sin θ√
2
ζ1(t)

+σ

(
cos θ√
2
− J + 1/2
√
2J(1 + J)

)

ζ2(t). (39)

The original noise ξ(t) generates two independent effective noises ζ1(t) and ζ2(t),
which are Gaussian and delta-correlated, 〈ζn(t)ζl(t+ t′)〉 = 2δn,lδ(t′) , as the signals
ξ(t) cosΩ0t and ξ(t) sinΩ0t are uncorrelated on time scales large compared to 2π/Ω0.

4.2 Highly synchronous dynamics for small disorder

Let us consider the case of small disorder γ � σ2 ∼ |μ| and 2μ/σ2 > −1. (Notice
that compared to Ω0, γ is considered to be of the same order of magnitude as σ

2

and μ, i.e., σ3 � γ � σ2.) For this case, the system states are accumulated at J � 1,
which can be used for integration of equation (37) over J . For w ≡ ∫ +∞

0
w dJ , with

f(J)w ≈ w limJ→+∞ f(J), one finds from equation (37):

∂w

∂t
+

∂

∂θ

([
ω − μ( sin(θ + β)− sinβ)− σ2

2
sin θ

]
w

)

− σ2

2

∂

∂θ

(
sin θ

∂

∂θ

(
sin θ w

))
− σ2

2

∂

∂θ

(
(cos θ − 1) ∂

∂θ

(
(cos θ − 1)w

))
= 0 ,

which can be simplified to

∂w

∂t
+

∂

∂θ

( [
ω − μ( sin(θ + β)− sinβ)]w

)
− σ2 ∂

2

∂θ2

(
(1− cos θ)w

)
= 0 . (40)

Let us consider the stochastically steady state, which corresponds to a constant in

θ probability flux j in (40):
(
ω − μ( sin(θ+β)− sinβ)

)
w − σ2 ddθ

(
(1− cos θ)w

)
= j.

In terms of the latter equation, the frequency locking, 〈θ̇〉 = 0, corresponds to j = 0.
For σ �= 0, it can be shown that the solution with j = 0 exists for one special value of
ω, meaning the complete frequency locking is not possible even for a small deviation
of the natural frequency from the ensemble mean frequency.
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For j �= 0, one obtains

w(θ) =
j

σ2

2π∫

θ

dψ
(1− cosψ)μβ/σ2
(1− cos θ)1+μβ/σ2 exp

[
− ω

σ2

(
cot

θ

2
− cot ψ

2

)
− μ sinβ

σ2
(ψ − θ)

]
.

(41)

This expression possesses good convergency properties at θ = 0 and 2π: w(0) =
w(2π) = j/ω; at nonzero ω it converges for any μ . The normalization condition yields
the state flux j as a function of μ, β, σ2, and ω: j = σ2 f

(
μ
σ2
, ω
σ2
, β
)
.

4.3 Average oscillator frequency for imperfect synchrony

Let us now calculate the average frequency of oscillations for the case of an im-
perfect synchrony. Technically, our task is to derive the average frequency for
equation (39) with finite but still large J . For an approximate calculation, let us recast
equation (39) as

θ̇ = ωβ − μb sin(θ + β)− σ2

2
c sin θ − σ√

2
sin θ ζ1(t) +

σ√
2
(cos θ − c) ζ2(t) , (42)

and consider it for constant coefficients ωβ , b and c calculated as average values:

ωβ ≡ ω + μ
〈
J + 1/2

J + 1

〉
sinβ = ω + μ

(
1− 1
2

〈
1

J + 1

〉)
sinβ ,

b ≡
〈√

J

1 + J

〉

= 1− 1
2

〈
1

1 + J

〉
− 1
8

〈
1

(1 + J)2

〉
+ . . . ,

c ≡
〈

J + 1/2
√
J(1 + J)

〉

= 1 +
1

8

〈
1

(1 + J)2

〉
+ . . . .

With distribution (30), one can evaluate

〈
1

(1 + J)n

〉
=

(
4γ

σ2

)n Γ
(
2μβ
σ2
+ 1− n, 4γ

σ2

)

Γ

(
2μβ
σ2
+ 1,

4γ

σ2

) . (43)

Stochastic equation (42) with constant coefficients yields the Fokker-Planck equation

∂w(θ, t)

∂t
+
∂

∂θ

[(
ωβ−μb sin(θ + β)

)
w(θ, t)

]
− σ

2

2

∂2

∂θ2

[(
1 + c2−2c cos θ

)
w(θ, t)

]
= 0 .

(44)
For a time-independent distribution w(θ), one can integrate the latter equation with
respect to θ and obtain

(ωβ − μb sin(θ + β))w − σ2

2

d

dθ

[
(1 + c2 − 2c cos θ)w] = j , (45)

where j = const is the integration constant, which is the probability flux in the system.
The flux j counts the average number of crossings of certain state θ0 per time or,
equivalently, the number of phase turnovers per time. Hence, 〈θ̇〉 = 2πj.
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(a) (b)

(c) (d)

Fig. 3. The dependencies of the average frequency 〈θ̇〉 on the frequency mismatch ω are
presented for β = 0 (a), π/4 (b), π/2 (c), and 3π/4 (d). The results of numerical calculations
for γ = 0.01 with continuous fractions are plotted in (a), (b), (d), where black circles corre-
spond to μ/σ2 = 0.4, blue diamonds to μ/σ2 = 0.2, green up-pointed triangles to μ/σ2 = 0,
red down-pointed triangles to μ/σ2 = −0.2, and orange squares to μ/σ2 = −0.4. The results
in (c) correspond to a reactive coupling, μ/σ2 = 0.8, 0.4, 0, −0.4 , −0.8, respectively (doubled
compared to (a), (b), (d)). Solid lines present the results for specified μ/σ2 and Γ = 0; dashed

lines show the slope 1 + 2μ cosβ/σ2, which means asymptotic behaviour 〈θ̇〉 ∝ ω1+2μ cos β/σ2 .

Unfortunately, we cannot give a practical closed expression for the density w.
In the supplementary material we describe a way to calculate it numerically using a
continuous fraction expansion. The results of calculation of 〈θ̇〉 are plotted in Figures 3
and 4. The case of β ∈ [π, 2π) does not require additional consideration because of
the symmetry (μ, β)↔ (−μ, β + π).
For small ω, one can evaluate the frequency using an approximation method,

described in the supplementary material. In the approximation the frequency ω0
corresponding to j = 0 is

ω0 = −μ
4

〈
(1 + J)−2

〉
sinβ . (46)

Notice that for imperfect synchrony, where J does not tend to infinity, the natural
frequency of an oscillator locked to the order parameter is nonzero for sinβ �= 0.
Its deviation from zero is stronger for a weaker synchrony. The average oscillator
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Fig. 4. The dependence of the biased average frequency 〈θ̇〉 − 〈θ̇〉ω=0 on the frequency
mismatch ω for γ = 0.01 and β = π/4 (a), π/2 (b), 3π/4 (c); marks are the same as in
Figure 3.

frequency in this approximation is

〈θ̇〉 =
⎡

⎣
π Γ
(
μeiβ

σ2
+ 1
)

Γ
(
2μ cos β
σ2

+ 1
)
Γ
(
−μe−iβ

σ2

)
sin
(
μe−iβ
σ2

π
)

⎤

⎦

2( 〈(1 + J)−2〉
4

) 2μ cos β

σ2

(ω − ω0),

(47)

where the average value 〈(1 + J)−2〉 is determined by equation (43). Notice, that the
magnitude of the first multiplier in equation (47) is of the order of 1, while 〈(1 + J)−2〉
is small for μ cosβ/σ2 > −1/2 and, hence, the proportionality coefficient between
〈θ̇〉 and (ω − ω0) is small for a synchronizing coupling (μ cosβ > 0) and large for a
desynchronizing coupling (μ cosβ < 0). For the limit γ → 0, where 〈(1 + J)−2〉 → 0,
the coefficient tends to zero and infinity, for a synchronizing and a desynchronizing
couplings, respectively.
Physical picture for the oscillators’ frequencies in a non-identical

population. All individual frequencies of the oscillators are different. For attractive
coupling, the frequencies become close to each other (are attracted to each other).
For repulsive coupling, the frequencies become more different (are repulsed). Qual-
itatively, one can understand this effect as follows. In the absence of coupling, the
frequencies remain the same, although the phases typically form a cluster; in the
cluster the instantaneous frequencies are nearly the same. This cluster is however
temporary: the phases stay together for some period of time, then the phase of a
fast oscillator makes an extra rotation with respect to a slow oscillator; this rotation
exactly compensates the closeness of the instantaneous frequencies during the stage
when the phases stay together. In the case of attractive coupling, the rotations are
more seldom, so they only partially compensate the closeness of the instantaneous
frequencies during the cluster stage. In the case of repulsive coupling, the rotations
are more frequent, thus they “overcompensate” the closeness of the instantaneous
frequencies during the cluster stage. This is illustrated in Figure 5.

5 Conclusion

In this paper we have presented a theory of synchronization of a population of
phase oscillators subject to global coupling and common noise. The coupling of the
Kuramoto-Sakaguchi type and the multiplicative noise can be both incorporated in
the Ott-Antonsen framework, allowing for a set of closed stochastic equations for the
order parameters. In our analysis of these equations we tried, whenever possible, to
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Fig. 5. Dynamics of the phase difference of two oscillators in an ensemble, for different
coupling strengths.

present analytical results for the statistical characteristics of the order parameters.
We studied also in detail an important situation of fast natural oscillations, where
averaging over the fast rotating phase allows one to significantly simplify the stochas-
tic equations.
The most interesting effects appear when the noise and the coupling compete,

namely when the coupling is repulsive, tending to desynchronize the ensemble (noise
is always synchronizing for phase oscillators). For identical oscillators, synchrony wins
up to moderate repulsive couplings, because the fully synchronized state is absorbing
one, contrary to the desynchronized state which is only weakly stable. For nonidentical
oscillators, full synchrony is impossible, so for all relations between the noise and the
coupling one observes finite fluctuations of the order parameter.
For nonidentical oscillators, the most surprising is the dynamics of averaged

oscillator frequencies. Here the difference in the synchronization by common noise
and by coupling manifests itself in a highly nontrivial way. Coupling without noise
pulls frequencies together when it is attractive, but do not influence frequencies if it is
repulsive. Noise without coupling does not influence frequencies at all. In the pres-
ence of noise and repulsive coupling one observes, quite counterintuitevly, divergence
of frequencies, while the order parameter can be relatively large.
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