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Reconstruction of a neural network from a time series of firing rates
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Randomly coupled neural fields demonstrate irregular variation of firing rates, if the coupling is strong enough,
as has been shown by Sompolinsky ez al. [Phys. Rev. Lett. 61, 259 (1988)]. We present a method for reconstruction
of the coupling matrix from a time series of irregular firing rates. The approach is based on the particular property
of the nonlinearity in the coupling, as the latter is determined by a sigmoidal gain function. We demonstrate
that for a large enough data set and a small measurement noise, the method gives an accurate estimation of the
coupling matrix and of other parameters of the system, including the gain function.
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I. INTRODUCTION

Understanding connectivity of networks of coupled dy-
namical units is a general problem appearing not only in
physics, but also in ecology, epidemiology, genetic regulation,
and climate dynamics (see, e.g., Refs. [1]). A particularly
important application field is neuroscience, where revealing
brain connectivity is a hot topic of current interest [2].
A general goal here is to reconstruct interactions between
the nodes based on the observations of neurophysiological
signals, e.g., on multichannel EEG or MEG measurements
(see Refs. [3] and recent review [4]).

Many methods developed here are based on cross-
correlations and mutual information analysis, applicable to
general stochastic processes [5]. However, if the data belongs
to a special class of processes with a known structure of the
dynamical laws, much better reconstruction of connectivity
can be achieved by virtue of special methods developed for
this specific class. For example, if the signal sources can
be considered as self-sustained oscillating units, powerful
methods of analysis based on the phase dynamics equations
have been developed [6].

In this paper we suggest a method for network recon-
struction under the assumption that the observed irregular
neural fields are firing rates, interacting according to a widely
accepted model for the neural field dynamics (see Sec. II). We
stress that in this paper we refer to the fields resulting from
numerical simulations rather than generated experimentally.
Each field is influenced by many others, which makes the
problem of reconstruction nontrivial. On the other hand, the
local dynamics is governed by a scalar differential equation,
the structure of which is rather simple, which makes the whole
problem tractable. Below we assume only knowledge of a
general structure of the underlying dynamical equations, but
not of their particular details; thus, our approach generalizes
that of Ref. [7], where knowledge of the functions determining
the dynamics has been assumed. Our method is analogous
to the approach used to reconstruct a network of time-
delayed units, suggested and applied to experimental data in
Ref. [8].

The paper is organized as follows. We introduce the neural
network model and demonstrate its chaotic behavior in Sec. II.
The method for reconstruction of the connectivity and its
application to the network introduced in Sec. II is described
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in Sec. III. Further possible extensions are discussed in the
Conclusion.

II. NEURAL NETWORK MODEL AND ITS DYNAMICS

In this paper we focus on the reconstruction of the
network structure that governs neural fields in the firing rates
formulation, which is one of the basic models in computational
neuroscience (see Refs. [9]; here we particularly follow
Ref. [10]). Each of n nodes is characterized by its time-
dependent firing rate x ;(¢), which evolves depending on inputs
from other nodes according to a system of ordinary differential
equations:

dx; " .
T'jd_t]+x'i=Fj<Zw'ika>7 j=1L....n. (1)
k=1

Here 7; is the time constant of relaxation of the field at
node j, and F; are gain functions at the nodes. The network
is determined by the nxn coupling matrix wj;. As has
been shown in Ref. [11], at large enough coupling such a
network demonstrates chaos, and this is a state that allows for
reconstruction of the network matrix w j; from the observations
xj(t), as described below. We stress here that the concept
of deterministic chaos is important in the context of a fully
deterministic model Eq. (1) because here chaos ensures
enough variability of the fields x;(¢), in contradistinction to
regular states like periodic orbits and steady states, where
reconstruction will not work. In fact, what is needed is a
sufficient degree of irregularity and variability of the fields
to explore different states as described below. On the other
hand, a sufficient degree of determinism is also needed, as the
method is based on the assumption of validity of Egs. (1).

We illustrate a chaotic state for the following set of param-
eters: n=100; 1 — 7% < 7; <14 7° are random numbers
taken from a uniform distribution with 7° = 0.1. Functions F I
have the same form but different amplitudes: F;(u) = o; /[1 +
exp(—u — p;)], where 1 —a® <a; <1+ are random
numbers taken from a uniform distribution with o® = 0.1.
The links w;; are nonzero with probability p. = 0.15 (thus, the
connections are relatively sparse); their values are taken from a
normal distribution w;; = JN(0,1) with J = 8. Finally, p; =
ni—05% ; Wijs where 1, is taken from a normal distribution
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FIG. 1. Example of chaotic neural fields (first 20 fields x;(#), for
i =1,...,20 are depicted with different colors).

N(0,1). Figure 1 shows the first 20 chaotic fields x;(#), for a
realization of parameters. This chaotic state is used below for
illustration of the reconstruction method.

III. RECONSTRUCTION OF THE
CONNECTIVITY MATRIX

A. Method of reconstruction

Suppose one observes the time series of all variables X(¢)
governed by Eq. (1). The problem is to reconstruct the coupling
matrix w from these observations. We notice that the functions
F; and parameters t; are unknown and are generally different.
We will see that the reconstruction method allows one to reveal
these quantities as well.

The main idea is to use the monotonicity of the functions F,
which we do not need to know explicitly. For illustration and
to simplify notations, we discuss below only reconstruction
of the function Fj, of the parameter t;, and of the coupling
constants w ;, all other quantities can be similarly determined.
We denote the row of the coupling constants as a vector ¢,
where ¢; = wy;.

Suppose first that parameter t; is known. Let us select all
those points from the time series, for which 7;x; + x; lies
in a small neighborhood of a given value y. Let us denote
the corresponding times as #;,f,, ... ,t,+1. Let us take vectors
X(t), k=1,...,m+ 1 at these moments of time. Then, for
all these vectors,

Fi[c-X(t)] =~ y.
This means, because function Fj is bijective, that
¢-X(t) ~¢-x(t;) forall k,j. 2)
Therefore, for all pairs of indices j,k we have
¢ - [X(t) — X(t))] ~ 0. 3)

However, these relations are not independent, because from
¢ - [X(te) — X(t))] = 0 and ¢ - [X(t) — X(1;)] ~ O follows that
¢ - [X(1) — X(t;)] =~ 0. Thus, we need a set of relations, where
each vector X(¢;) enters only twice. The simplest way to
accomplish this is to define differences:

(k) = X(try) — X)), k=1,...,m.
In terms of these vectors we can rewrite Eq. (3) as

Z(k)-c=0. “)
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We need to find ¢ from this set of equations. One can see
that system Eq. (4) does not depend on the choice of y, thus
we can take all possible observed values of y and obtain a
large set of M vectors Zz that satisfy Eq. (4). This whole
set should be used for determining the unknown coupling
vector C.

The formulated task is nothing more than solving homo-
geneous linear equations using singular value decomposition
(SVD); see, e.g., Ref. [12]. The problem reduces to finding
the null space of a M xn matrix A, composed of M vectors
Z(k) as the rows. Once the zero singular value of A is
found, the corresponding entry in the obtained unitary matrix
gives the vector ¢ (up to a normalization, which anyhow
cannot be found by this method because the function Fj is
unknown).

Above, we have assumed that the parameter 7 is given. In
a realistic situation, however, parameter t; is unknown. In this
instance, the procedure above can be used for a set of values of
71, chosen from a reasonable, constrained range. For each such
value the minimal singular value of matrix A can be found, and
the proper t; should be chosen as one yielding the minimum
of these singular values.

The method described above is based on the simple
observation that close values of the function F; mean that
the arguments of this function are also close to each other.
However, typically function F; is a sigmoidal function [in
models often tanh(-) is used], which has domains with the
derivative close to zero, where the inversion is nearly singular.
Therefore, the values of y = t1x; + x;, which are nearly
constants should be excluded from the analysis. Practically,
we use all the points for which |y| > o, with some threshold
o. After all these points were extracted from a time series,
the results were sorted. In this way, the nearest neighbors post
sorting are the closest points for which y(#;) = y(t,), and the
corresponding difference vector Z = ¥(¢;) — X(f2) can then be
used to fill the matrix A.

B. Numerical results

Here we present the results of the reconstruction of
coupling, for the chaotic regime presented in Fig. 1. Figure 2

A
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FIG. 2. Solidred line: y(t) = t,x; + x; is sampled with time step
0.05, points where |y| > 0.3 are shown with blue circles. One can
see that selection of relatively rapidly varying parts of the time series
allows one to avoid nonsensitive epochs where the field y(z) is nearly
constant.
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FIG. 3. Dependence of the minimal singular value on the
parameter t for different lengths of time series (from top to bottom:
total used time intervals 2500, 1250,500,250,100). The vertical line
shows the true value of 7.

illustrates the role of parameter o that discriminates tails of
function F; where its derivative is minimal. One can see
that taking o = 0.3 yields points in the bulk of the chaotic
variations.

In Fig. 3 we show the results of calculations of the minimal
singular value for the process presented in Fig. 2 with 0 =
0.3, versus the test values of 1y, for different total lengths
of the time series. One can see that for the method to work,
the length of the time series 7' should be large enough (in our
case T > 250)—otherwise the set of vectors Z is too small
and the distances between the neighbors of the sorted array of
values of y are too large.

Based on the analysis presented in Fig. 3, in Fig. 4
we show the results of the reconstruction of the coupling
coefficients [13], for four lengths of the time series used, that
demonstrate a pronounced minimum of the singular value. The
value of 7 was taken from the corresponding minima. In all
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FIG. 4. Original coupling constants w;; (circles) and the re-
constructed ones wy; for the data sets with total used time in-
tervals 7 = 2500,1250,500,250 (the corresponding markers). In
these sets the number of data points used for reconstruction was
8961,4174,1627,796, respectively.
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FIG. 5. Median errors for the reconstruction depicted in Fig. 4,
as functions of the total time interval used.

cases, the reconstructed coupling nearly coincides with the
true one. This proves that the accuracy of the method is good,
and it allows one to infer the connectivity matrix from the time
series.

In Fig. 4, one can hardly distinguish the markers as
they practically overlap. We have intentionally chosen this
presentation to demonstrate how small are the errors compared
to the characteristic values of the coupling constants. To
characterize the accuracy in more detail, we calculated the
medians of the distributions of errors |w;; — wj] j |, where w; ;
are coupling constants used in the simulations (they are shown
with circles in Fig. 4), and w’,‘j are reconstructed values. One
can see from Fig. 5 that, as expected, the accuracy is improved
if a longer time series is available.

Finally, we show in Fig. 6 how the function F; is
reconstructed after the coupling constants are found.

To check the robustness of the method, we studied how
measurement noise influences the quality of the reconstruction.
To this end, we added independent Gaussian random variables
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FIG. 6. Reconstruction of the gain function F;. The same data
points as in finding the coupling matrix Fig. 4, with T = 2500,
are used. Points depict values of 7,xX; + x; versus Zk wyx; at all
recorded time instants, where wj; are the reconstructed coupling
constants.
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FIG. 7. Original coupling constants w;; (circles) and the recon-
structed ones wy; for the data sets with total used time interval T’ =
5000, for two values of noise intensity: § = 0.012 and § = 0.016.
The noisy data sets have been preprocessed with the Savitzky-Golay
filter of order (16, 16, 4) (see Ref. [14]), the same filter has been used
to calculate the derivatives.

with variance 82 to the same time series as used in Fig. 4. The
results of the reconstruction for two noise intensities, shown in
Fig. 7, should be compared with the noise-free case in Fig. 4.
One can see that the reconstruction definitely worsens if the
noise amplitude exceeds approximately 1.5% of that of the
signal. Below this value, the quality of the reconstruction is
pretty good.
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IV. CONCLUSIONS

In summary, we have developed a method to reconstruct
the connection network behind a collection of interacting
neural fields, provided the observations of the firing rates on
the nodes are available. The method delivers the connectivity
matrix, together with the parameters characterizing the node’s
dynamics, such as the time constant and the gain function
at each node. We have demonstrated that for a reliable
reconstruction, a sufficient length of the time series and low
measurement noise are needed. In this first study we assumed
a rather ideal situation where data for all nodes are available
and the dynamics is purely deterministic; exploration of the
restrictions imposed by these assumptions is a subject of
ongoing research.

We have formulated the method for the neural field
model based on firing rates. There is an equivalent voltage
formulation of the model where, in fact, other variables are
used [10]. The approach described is not directly suited for
these variables; its corresponding generalization remains a
challenging task.
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