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Abstract
As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70
2391), a population of identical phase oscillators, sine-coupled to a common
field, is a partially integrable system: for any ensemble size its dynamics
reduce to equations for three collective variables. Here we develop a pertur-
bation approach for weakly nonidentical ensembles. We calculate corrections
to the WS dynamics for two types of perturbations: those due to a distribution
of natural frequencies and of forcing terms, and those due to small white noise.
We demonstrate that in both cases, the complex mean field for which the
dynamical equations are written is close to the Kuramoto order parameter, up
to the leading order in the perturbation. This supports the validity of the
dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113)
for weakly inhomogeneous populations.

Keywords: Kuramoto model, oscillator populations, integrability, perturbation
theory

1. Introduction

The dynamics of oscillator populations generate a large amount of interest across different
fields of science and engineering [1–3]. Relevant physical examples are arrays of Josephson
junctions or lasers, metronomes on a common support, ensembles of electronic circuits, spin-
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torque, optomechanical and electrochemical oscillators [4–10], etc. The concept of coupled
oscillator populations also finds broad applications in life sciences, in particular in neu-
roscience [11–13], and even in the description of social phenomena [14, 15]. The paradig-
matic model in this field is the Kuramoto model of globally coupled phase oscillators [16–18].
Remarkably, this setup and its simple generalizations explain not only the emergence of
collective mode, which can be viewed as a nonequilibrium disorder-to-order transition [19],
but also many other interesting dynamical phenomena such as partial synchrony [20] and
chimera states [21, 22].

A striking property of a system of N identical oscillators, sine-coupled to a common field
(with the famous Kuramoto and the Kuramoto–Sakaguchi models being representatives of
this class), is the partial integrability of the system for >N 3, established in the seminal work
by Watanabe and Strogatz (WS) [23]. The WS theory (explained in sufficient detail below)
allows one to reduce the dynamics of N oscillators to that of three collective variables and

-N 3 constants [24–26] (see also recent review [3]) and is valid for arbitrary common force,
which can be e.g. stochastic [27]. The identity of the oscillators is essential, as well as the
restriction that all units are forced equally. However, natural systems always possess at least a
small degree of inhomogeneity, and this letter aims to extend the WS approach to cover this
case by constructing a perturbation theory.

The relevance of our theory is twofold. First, although the WS theory allows one to reduce
the dynamics to a low-dimensional system, in many important cases these equations are hardly
tractable analytically. The reason is that the global variables in the WS approach generally do
not coincide with the physically meaningful order parameters, because the corresponding
relations contain constants of motion that depend on initial conditions. Typically, to have a
solvable model, one imposes an additional condition on these constants, and thus drastically
reduces generality of the solution. We will see that due to perturbations, the constants of motion
evolve toward universal distributions, what provides a firm basis for practical applications of the
WS theory. Second, it is worth mentioning that because the WS integrability is only partial,
standard perturbation methods for fully integrable nonlinear systems, like those in Hamiltonian
dynamics, are not applicable here (weakly nonlinear methods cannot be adapted either), and we
have to develop the perturbative approach from the first principles.

We start with re-writing the original equations of the inhomogeneous oscillator population
in a equivalent, but suitable for a perturbation analysis, form. (This can be considered as an
analogy to writing Hamiltonian equations in action–angle variables and thus bringing them to a
form ready for an approximate analysis.) Next, in the limit of small inhomogeneity we
approximately reduce the dynamics to weakly perturbed WS equations with a certain dis-
tribution of WS constants. For an illustration of our theory we analyze two particular problems:
(i) an ensemble with distributions of the natural frequencies and of the forcing, i.e. the case of a
quenched (time-independent) disorder, and (ii) stochastic perturbations due to uncorrelated
white-noise terms acting on all units. For both examples we derive in the thermodynamic limit

 ¥N corrections to the WS equations as well as the relation between the Kuramoto order
parameter and the WS complex amplitude in the leading order in the perturbation amplitude.

2. Watanabe–Strogatz transformation for nonidentical oscillators

We start with general equations for N sine-coupled phase oscillators

j w= + + = ¼j-t H t F k NIm e , 1, , . 1k k
i k˙ ( ) [ ( ) ] ( )
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Here w and H describe general time-dependent common forcing. In particular, H can depend
on the mean field, like in the Kuramoto setup (see [28] for an example where mean field
enters w). Fk are general inhomogeneous terms that also can be time- and jk-dependent.
Notice that the case =F 0k is solved by the WS theory.

We re-write equation (1) as

*w= + + -j j
j

t
t F H t H t

d

d
e i e

1

2

e

2
2k

i i
i2

k k
k

( ) [ ( ) ] ( ) ( ) ( )

and perform the Möbius transformation [25] fromjk to the WS complex amplitude z and new
WS phases yk, according to

*
=

+
+

j
y

y
z

z
e

e

1 e
. 3i

i

i
k

k

k
( )

Next, we search for the solution for z in form of the WS equation (cf equation (10) in [24])
with an additional complex perturbation term P, to be determined later:

*
w= + - +z z

H H
z Pi

2 2
. 42˙ ( )

Substituting equations (1), (3), (4) into equation (2) we obtain for the WS phases

⎡
⎣⎢

⎤
⎦⎥*

*
y w= + +

+ +
-

-
+

-

y y- -
z H F

z z

z

P z

z
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2Re e 1

1

2Im e

1
. 5k k

i 2

2

i

2

k k˙ ( ) ( ) ∣ ∣
∣ ∣

[ ( )]
∣ ∣

( )

Since the Möbius transformation (3) from jk to the set y z,k( ) is under-determined, we
impose one complex condition to ensure uniqueness of determination of the complex variable
z. The condition can be rather arbitrary, but following [23–26] we require:

å =y

=N

1
e 0, 6

k

N

1

i k ( )

which, as discussed below, makes z mostly close to the standard Kuramoto order parameter Z
defined as

å= j

=
Z

N

1
e . 7

k

N

1

i k ( )

If the condition (6) is valid at =t 0 for the initial Möbius transformation, then it will be valid
at all times provided yå =exp i 0

t k k
d

d
[ ] . Substituting here equation (5), we obtain

* *å- = + + +y y

=
P P U

N
F z z z

i
1 e e , 8

k

N

k
1

2 i 2ik k[ ( ∣ ∣ ) ] ( )

where y= å-U N exp i2k k
1 [ ]. Together with the complex conjugate of equation (8), this

allows us to express P:

*å=
-

- + + - + -y y y y

=

- -P
U N

F z U z U z U
i

1
1 e 1 e e e .

9
k

N

k2
1

2i 2 i i 2ik k k k

( ∣ ∣ )
[ ( ) ( ∣ ∣ )( ) ( )]

( )
Equations (4), (5), (9) constitute a closed system for new variables yz, k . We emphasize that
our derivation of equations (4), (5), (9) is exact; the only restriction is that ¹z 1∣ ∣ and ¹U 1∣ ∣ ,
i.e. the cases of full synchrony and of two perfect clusters are excluded.
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As one can see from equation (9), for the non-perturbed case =F 0k the perturbation
term P vanishes and one obtains the WS equations [23, 24]. In the standard formulation, for

=F 0k we have *y w= + z HImk
˙ ( ) and therefore one can introduce variable α, satisfying

*a w= + z HIm˙ ( ), and constants y y a= -k k¯ , which completes the WS equations,
see [24].

It is instructive to discuss the physical meaning of the WS variables. The WS complex
amplitude r= Fz ei ,  r0 1, generally does not coincide with the order parameter Z,
although it may be close to it. Indeed, substituting the Möbius transformation (3) into
equation (7) we obtain [24]

*
*å å=

+
+

= - - -
y

y
-

= =

¥
-Z N

z

z
z z z C

e

1 e
1 1 , 10

k

N

m

m m
m

1

1

i

i
2

2 1
k

k
( ∣ ∣ )( ) ( ) ( )

where y= å-C N mexp im k k
1 [ ] are amplitudes of Fourier modes of the distribution of the WS

phases yk. Expression (10) is valid for <z 1∣ ∣ . One can see that generally z deviates from Z,
although their values coincide in the asynchronous state = =z Z 0. In the fully synchronous
state one should directly use equation (3), which yields that for =z 1∣ ∣ either all phases jk
coincide, i.e. also =Z 1∣ ∣ , or at most one oscillator deviates from the fully synchronous
cluster. A special case corresponds to the uniform distribution of the WS phases yk, i.e. to the
situation where all Cm with ¹m kN vanish ( ¹k 0 is an arbitrary integer). Then =z Z in the
thermodynamic limit  ¥N , while for a finite N there are corrections ~ z N∣ ∣ . This allows
one to consider the WS equation (4) as the one for the Kuramoto order parameter Z. For the
Kuramoto–Sakaguchi problem, where = bH Zei , this yields the closed equation for the
order parameter, first derived in a different way by Ott and Antonsen [29]. An essential part of
our perturbation approach below deals with the distribution of the WS phases, in fact we show
that due to inhomogeneities and noise it is close to the uniform one. A final remark on the
meaning of the new variables: the third WS variable, angle α, determines shift of individual
oscillators with respect to Zarg( ) and is not important for the collective dynamics.

3. The case of constant Watanabe–Strogatz order parameters

Analysis of equations (4), (5), (9) is not an easy task, even under the assumption that the
perturbation terms Fk are small. The main difficulty is that generally the WS complex
amplitude r= Fz exp i[ ] is time-dependent. Therefore below we restrict ourselves to the case
where, in the absence of perturbations, r = const and F = const˙ . Such a regime with r ¹ 1
appears in at least two situations which have recently attracted large interest. The first is the
chimera state (see [21, 22]), where a part of the population is fully synchronous, while the
other part is not. The latter sub-population is quantified by a uniformly rotating WS complex
amplitude z, which implies r = const, r< <0 14. Another situation is partial synchrony due
to nonlinear coupling, described in [20]. In both cases, there exists a rotating reference frame
where the WS complex amplitude is constant, i.e. r F =exp i const[ ] . In this frame, for the
unperturbed state the quantities w H, are constants and satisfy wr r= - + - FH i2 1 e2 1 i( ) .
Below we consider perturbations to this state.

It is convenient to introduce shifted WS phases according to y q= + Fk k and to write
= + FP Q Si ei( ) . Then the systems (4), (5), (9) can be re-written as a system of real

equations

4 Generally, more complicated, quasiperiodic chimera states are also possible.
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where wW = r
r

-
+

1

1

2

2 and q+ = å-X Y Ni exp i2k k
1 [ ]. Formally, the equations (11) are a system

of phase oscillators qk driven by forces Fk and subject to mean fields X Y S Q, , , . In the
unperturbed case =F 0k they reduce to a system of uncoupled uniformly rotating phase
oscillators.

4. Analysis of deterministic perturbations

Below we analyze equations (11) for two types of perturbations. In the first setup we consider
purely deterministic perturbations of the driving terms w H, , namely we take

e= + + jF-F u f hIm i ek k k k
i k( [( ) ])( ) . Here uk determine the spreading of natural frequencies

w e+ uk, while the terms f h,k k describe the variation of the forcing H for individual units (cf
equation (1)). Parameter e explicitly quantifies the level of inhomogeneity of the system; in
the following treatment it is assumed to be small. Expressing j-exp i k[ ] via the WS complex
amplitude z and phases qk according to (3), we obtain

⎡
⎣⎢

⎤
⎦⎥e

r r q
r q r

r r q
r q r

= +
+ -

+ +
+

+ +
+ +
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2 1 cos
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,k k k
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2

2

2

2

( ) ( )

which should be substituted in (11).
We analyze the resulting system in the thermodynamic limit  ¥N . In this limit the

perturbation terms u f h, ,k k k are described by their distribution density W u f h, ,( ) (without
any restriction we can assume = = =u f h 0⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ). Furthermore we look for a solution
with constant mean fields X Y S Q, , , . Then the system (11) can be solved self-consistently:
we find the stationary distribution of qk for the given values of the perturbations qw u f h, ,( ∣ ),
and then calculate the mean fields X Y S Q, , , according to

ò ò ò ò q q q=
p

X u f h W u f h w u f hd d d , , d , , cos 2 , 12
0

2
( ) ( ∣ ) ( )

and similarly for other quantities. Since the expressions are lengthy, we present only the
sketch of the derivation.

One can see that the r.h.s. of the equation for q̇ contains, together with constant terms,
only terms q q~cos , sin , i.e. q q q= + +A B Ccos sin˙ . Thus, the stationary distribution of
the WS phases has the form q q q~ + + -w u h f A B C, , cos sin 1( ∣ ) ( ) . As a result, the
integrals over θ in equation (12) (and in similar expressions for Y S Q, , ) are reduced to

solvable integrals of the type ò q q q q q+ + +
p -n A B Cd cos cos sin

0

2
0

1( )( ) . This leads to
rather lengthy but exact expressions, that can however be expanded and simplified using the
small parameter e. The resulting formulas contain first and second powers of u f h, , , but the
first powers disappear due to averaging with respect to density W u f h, ,( ). The final formulas
of the perturbation analysis, in the order e~ 2, are:
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Let us consider two cases where these expressions simplify. If only the natural frequency
of oscillators w is distributed, but the force H is the same for all oscillators, then ¹u 0,
= =f h 0. In this case

e r r
r

e
r

r
= -

+
W -

=
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= =S u X
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Q Y
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1
,

1
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2 2

2
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If the oscillators have the same frequency, but the sine-part of the force varies, then
= =u h 0 and ¹f 0, and we have

e r e
= -

W
= -

W
= =Q

f
X

f
Y S,

4
, 0. 15

2 2 2 2

2

⟨ ⟩ ⟨ ⟩ ( )

It is instructive to see how such perturbations look in terms of the original equation (4) for the
WS complex amplitude z; this is accomplished by recalling that = + FP Q Si ei( ) and

r= Fz exp i[ ], which yields

e= -
+

- W
P

z z

z
ui

1

1
162

2

2
2( ∣ ∣ )

( ∣ ∣ )
⟨ ⟩ ( )

for the case of the distributed natural frequencies, and

e= -
W

P
z

f 172 2⟨ ⟩ ( )

for the inhomogeneous forcing.
Finally, we express the Kuramoto order parameter j=Z exp i⟨ [ ]⟩ via the WS complex

amplitude z, using general relation (10). For the inhomogeneous population we see that
generally the amplitudes of the second harmonics = + FC X Yi e2

2i( ) of this distribution are
non-zero, e~X Y, 2 (higher harmonics have higher orders in e). Hence, the distribution of θ
is non-uniform, though the corrections are small, e~ 2:

r r= - - +FZ X Ye 1 1 i ,i 2[ ( )( )]

which yields for the two considered cases, in the leading order,
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5. Analysis of noisy perturbations

As a second application of our approach, we consider noisy perturbations to the oscillators
dynamics, taking ex=F tk k ( ), where x tk ( ) is a Gaussian white noise, x x ¢ =t t⟨ ( ) ( )⟩
d - ¢t t2 ( ). As above, we consider perturbation to the state with constant complex amplitude
z, thus our starting point are equations (11). Furthermore, we take the thermodynamic limit

 ¥N , allowing us to express the mean fields X Y S Q, , , as averages over the distribution
of the WS phases. Here it is convenient not to average the equations for S Q, directly, but to
find these mean fields from the solution of the Fokker–Planck equation for the distribution of
the phase θ, which follows straightforwardly from the Langevin equation

⎛
⎝⎜

⎞
⎠⎟q

r
r

q
r

q
r

ex
r r q

r
= W -

-
-

-
+

-
+

+ +
-

S S Q
t2

1
cos

1
sin

1

1 2 cos

1
. 19

2 2 2

2

2
˙ ( ) ( )

Looking for a stationary solution of the Fokker–Planck equation, we use smallness of e and
represent the stationary distribution density as q p p q p q= + +- - -w X Y2 cos 2 sin 21 1 1( ) ( )
(the expansion starts from the second harmonics terms because of the condition

q =exp i 0⟨ [ ]⟩ ). This leads to the following expressions for S Q, and qw ( ):

⎛
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q p e
r
r

q

= = -
+

-

» -
- W

-

S Q

w

0,
2 1

1
,

2 1
2

1
sin 2 . 20

2
2

2

1 2
2

2 2

( )

( ) ( )
( )

( )

Again, it is instructive to express the result of the perturbation analysis in terms of
equation (4) and to write a relation between the Kuramoto order parameter and the WS
complex amplitude:

⎡
⎣⎢

⎤
⎦⎥e e= -

+
-

= +
- W

P
z z

z
Z z

z

z

2 1

1
, 1 i

2

1
. 212

2

2
2

2

2

( ∣ ∣ )
∣ ∣

∣ ∣
( ∣ ∣ )

( )

Equations (16)–(18), (21) are the main result of the perturbation theory. They provide a
closed description of the nonideal populations of oscillators, where typically the driving field
H explicitly depends on the Kuramoto order parameter Z.

6. Discussion

We now discuss the results of the perturbation analysis. We have considered in details two
situations which have previously been treated in the framework of the standard WS analysis,
i.e. for identical units. In both analyzed cases, for a non-identity of parameters of the oscil-
lators and for a noisy driving, we obtained that the WS phases, which have an arbitrary
distribution in the non-perturbed case, tend to a nearly uniform distribution with corrections
e~ 2. This results in the approximate relation between the Kuramoto order parameter and the

WS complex mean field, which differ by a small deviation e~ 2. This means that for weakly
perturbed situations, the WS equation can be used for the evolution of the Kuramoto order
parameter, taking into account the above computed corrections e~ 2. As discussed above (see
also [24]), the uniform distribution of the WS phases is the case where the WS equations
reduce to the Ott–Antonsen equations [29]; sometimes this set of WS phases is called the Ott–
Antonsen manifold. Our perturbation analysis shows that small inhomogeneities ‘drive’ the
ensemble of oscillators to an e2-vicinity of the Ott–Antonsen manifold, but not exactly to it.
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A possible direction of future research is the consideration of more generic perturbations.
Of particular interest is a case where the interaction between units is more complex than pure
sine-coupling, e.g., when the second harmonic terms j~ -exp i2[ ] are present. Such a set up
can also be treated in the framework of the developed perturbation analysis; the results will be
reported elsewhere.
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