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We study how coherence of noisy oscillations can be optimally enhanced by external locking. Based on
the condition of minimizing the phase diffusion constant, we find the optimal forcing explicitly in the limits
of small and large noise, in dependence of the phase sensitivity of the oscillator. We show analytically that
the form of the optimal force bifurcates with the noise intensity; this is confirmed by the analysis of an
optimal locking forcing for an experimentally obtained phase sensitivity of a neural cell. In the limit of
small noise, the results are compared with purely deterministic conditions of optimal locking.
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Autonomous self-sustained oscillations may be
extremely regular (like, e.g., lasers) or rather incoherent
(like many biological oscillators, e.g., ones responsible for
cardiac or circadian rhythms). A usual way to improve the
quality of oscillations is to lock (synchronize) them by an
external pacing [1,2]. This is used in radio-controlled
clocks and in cardiac pacemakers; also, circadian rhythms
are nearly perfectly locked by the 24-h day-night force.
In this Letter we address a novel question: Which

periodic force ensures, via locking, the maximal coherence
of a noisy self-sustained oscillator? Of course, one has to
fix the amplitude of the force, so the nontrivial problem is
in finding the optimal force profile. We will treat this
problem in the phase approximation [1], which is valid for
general oscillators, provided the noise and the forcing terms
are small. In this approximation, the dynamics of the phase
reduces to a noisy Adler equation [2,3], and the maximal
coherence is achieved if the diffusion constant of the phase
is minimal. It should be noted that an optimal locking
problem has been recently discussed for purely determin-
istic oscillations. There, the optimal condition was formu-
lated as the maximal width of the Arnold’s tongue (the
synchronization region) or as the maximal stability of the
locked state [4–7].
In our case there is an additional parameter, the noise

intensity, and we will show that the optimal force profile, in
contradistinction to the purely deterministic case, depends
not only on the phase sensitivity properties, but also on the
noise amplitude. Moreover, the optimal forcing form
demonstrates bifurcations in dependence on the noise
strength; this we show both for the solvable case of
biharmonic phase sensitivity, and for a realistic case of
experimentally obtained sensitivity of a neural cell.
Furthermore, below we will also compare the limit of
small noise with purely deterministic setups.
Let us consider a self-sustained oscillator with frequency

ω; its phase in the presence of a small Gaussian white noise
obeys the Langevin equation

dφ
dt

¼ ωþ β−1=2ξðtÞ; hξðtÞξðt0Þi ¼ 2δðt − t0Þ; ð1Þ

where β−1 is the noise intensity. A small periodic forcing
with frequency Ω leads, in the first order in the force
amplitude, to the following phase dynamics [1,3]:

dφ
dt

¼ ωþ sðφÞfðΩtÞ þ β−1=2ξðtÞ: ð2Þ

Here sðφÞ is the phase response curve (PRC) (also know as
the phase sensitivity function), and fðΩtÞ is the phase-
projected force term. Our goal will be to find such a forcing
fð·Þ that maximizes the coherence, i.e., minimizes the
diffusion constant of the phase φ. This optimal force will
depend on the phase sensitivity function sð·Þ and on the
noise intensity β.
As the first step, we introduce the slow phase ϕ ¼

φ −Ωt (the diffusion constant of this slow phase is the
same as the original phase φ, because they differ by a
constant deterministic rotation) and perform the standard
averaging over the period 2πΩ−1 [1,2]; this yields

dϕ
dt

¼ ω −Ωþ gðϕÞ þ β−1=2ξðtÞ ¼ −
dvðϕÞ
dϕ

þ β−1=2ξðtÞ;
ð3Þ

where

gðϕÞ ¼ 1

2π

Z
2π

0

dysðϕþ yÞfðyÞ; ð4Þ

and we introduced the “potential”

vðϕÞ ¼ ðΩ − ωÞϕ −
Z

ϕ
gðyÞdy: ð5Þ

Let us consider a situation where the mean frequency of
oscillations is exactly that of the forcing; this means that
the slow phase ϕ performs a random walk without a bias.
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This happens for a purely periodic, noninclined potential.
This condition, as it follows from Eq. (5), defines the
optimal frequency of the forcing

Ω̄ ¼ ωþ hsihfi; ð6Þ

where we denote hfðϕÞi ¼ ð2πÞ−1 R 2π
0 fðϕÞdϕ. In other

words, the homogeneous term hsi in the phase sensitivity
function (which is, e.g., significant for type-1 neurons)
affects sensitivity of the frequency shift to the form of the
forcing, but does not affect coherence properties. Thus,
without loss of generality we can assume that hsi¼ hfi¼ 0
and Ω ¼ ω.
The problem of finding the diffusion constant D of a

particle in a periodic potential v, driven by a white
Gaussian noise, has been solved in Ref. [8] (and general-
ized to the case of an inclined potential in Ref. [9]):

D ¼ D0

hexpðβvÞihexpð−βvÞi ; ð7Þ

where D0 is the bare diffusion constant without potential.
Thus, the problem of maximizing the coherence reduces to
maximizing the expression

C ¼ hexpðβvÞihexpð−βvÞi: ð8Þ

As an additional condition we have to fix the intensity of
the force:

hf2i ¼ const: ð9Þ

The formulated optimization problem is quite complex
to be solved in general. Therefore, below we consider some
simplifying cases, and will perform a rather full analysis for
a simple biharmonic phase sensitivity function. The main
novel feature we will focus on are bifurcations in depend-
ence on the form of this function and on the noise intensity;
we will see that different forcing waveforms provide
optimal coherence in different domains of the param-
eter space.
For the analytical consideration below it is convenient to

use Fourier transforms, which we will denote by capitals:

sðxÞ ¼
X
k

Sk exp½ikx�;

Sk ¼
1

2π

Z
2π

0

sðxÞ exp½−ikx�dx; ð10Þ

and the same for functions f; g; v, Fourier harmonics of
which we denote as Fk;Gk; Vk, respectively. Because gðϕÞ
is, according to Eq. (4), a convolution of f and s, and v is
the integral of g, we have

Gk ¼ SkF−k; Vk ¼ ik−1SkF−k: ð11Þ

The condition on the norm of the force, Eq. (9), now reads

X
k

jFkj2 ¼ const: ð12Þ

We start with the case of strong noise (small β).
Expanding Eq. (8), we obtain a simple expression for
the quantity to be maximized:

C ≈ 1þ β2hv2i ¼ 1þ β2
X
k

k−2jSkj2jFkj2: ð13Þ

Together with Eq. (12), the maximum can be found by
virtue of Lagrange multipliers:

jFkj ∼ δk;K; where K ¼ argmaxðk−2jSkj2Þ: ð14Þ

Thus, for large noise, the optimal forcing is a purely
harmonic one, fðxÞ ∼ cosðKxÞ, where K is determined
from Eq. (14). Intuitively, this result can be understood as
follows. For strong noise, the forcing delivers a small
perturbation to an intensive Brownian motion of the phase.
Its effect on the random walk is a weak scattering,
proportional to the variance of the overall coupling term
[see Eq. (13)]. The contributions of forcing harmonics to
this variance are just summed, indicating that they can be
considered as independent scattering channels. For a fixed
overall forcing intensity, for any PRC, it is optimal to
concentrate the forcing in the mostly amplified channel,
i.e., to apply force at the harmonics with maximal value of
k−2jSkj2. For smaller noise, a multiple scattering becomes
significant and the channels are no more independent, so
that a more complex force maximizes the coherence.
The case of small noise is the limit, β → ∞. In this case,

the integrals in Eq. (8) can be asymptotically estimated as
Laplace integrals:

hexpðβvÞi ≈ ð2πÞ−1 expðβvmaxÞ;
hexpð−βvÞi ≈ ð2πÞ−1 expð−βvminÞ; ð15Þ

which gives

C ∼ exp½βðvmax − vminÞ�: ð16Þ

Suppose now that vmin ¼ vðx2Þ and vmax ¼ vðx1Þ. Then

lnC ∼ vmax − vmin ¼
Z

x2

x1

gðϕÞdϕ

¼ 1

2π

Z
2π

0

fðxÞdx
Z

xþx2

xþx1

sðyÞdy:

ð17Þ

Using additionally Eq. (9) with a Lagrange multiplier, we
obtain
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fðxÞ ¼ const
Z

xþx2

xþx1

sðyÞdy: ð18Þ

Substituting this into conditions gðx1Þ ¼ gðx2Þ ¼ 0, we get
an equation for Δ ¼ x2 − x1 (only this difference is
important, but not the values of x1; x2):

pðΔÞ ¼
Z

2π

0

sðzÞ
Z

Δ

0

sðzþ yÞdzdy

¼ 2π
X
k

k−1jSkj2 sin kΔ ¼ 0: ð19Þ

This equation has always a solution Δ ¼ π, but depending
on the form of the phase sensitivity function s there can be
other solutions, corresponding to local maxima of C; one
has to compare different possible values of Δ to find the
global maximum. OnceΔ is found, the corresponding force
can be expressed as

fðϕÞ ∼
Z

ϕþΔ

ϕ
sðyÞdy; Fk ∼ Sk

exp½ikΔ� − 1

ik
: ð20Þ

Here below we present the simplest nontrivial example,
where it is possible, in addition to the asymptotic cases of
small and large noise considered above, to perform the
analysis for intermediate noise levels. We consider the
biharmonic phase sensitivity function

sðxÞ ¼ 2
ffiffiffi
q

p
cos xþ 2

ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
cos 2x; ð21Þ

where parameter q describes the relative weight of the
harmonics [as has been mentioned above, a constant term in
sðxÞ affects only a possible frequency shift, but not the
coherence, and therefore is omitted here].
The limit of strong noise, Eq. (14), with jS1j2 ¼ q,

jS2j2 ¼ 1 − q, yields

fðxÞ ∼
�
cos 2x if 0 ≤ q < 1=5

cos x if 1=5 < q ≤ 1:
ð22Þ

The limit of weak noise leads to the following expression
for Eq. (19):

pðΔÞ ¼ q sinΔþ 1 − q
2

sin 2Δ: ð23Þ
For q > 1=2, the only root in Eq. (23) is Δ ¼ π, while for
q<1=2 there is an additional root Δ1¼arccos½−q=ð1−qÞ�.
Substituting this into Eq. (20), we obtain for small noise

jF1j2 ¼ 1 − jF2j2 ¼
�
2q if 0 ≤ q < 1=2

1 if 1=2 < q ≤ 1:
ð24Þ

Let us now consider general noise intensities. The
forcing in this case should be also generally biharmonic
[higher harmonics disappear according to Eq. (11)]:

fðxÞ ¼ a cos xþ b cos 2xþ c sin 2x; ð25Þ

with unknown constants a; b; c satisfying a2þb2þc2¼ 1.
In this representation the potential vðxÞ reads

vðxÞ ¼ −
ffiffiffi
q

p
a sin x −

ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
b

2
sin 2x −

ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
c

2
cos 2x:

ð26Þ

Unfortunately, after substitution of this potential in Eq. (8)
for the factor C, we obtain integrals which cannot be
expressed in a closed analytic form. However, for a purely
first-harmonic forcing (b ¼ c ¼ 0) and a purely second-
harmonic forcing (a ¼ 0), the factor C as well as its
derivatives can be expressed via first-order Bessel func-
tions. Thus, it is possible to find the domains of stability of
these pure forcing terms analytically, for arbitrary values of
noise intensity β. These lengthy but straightforward calcu-
lations give the stability boundaries in a parametric form:
The first-harmonic force loses stability at the curve on the
ðβ; qÞ plane, parametrically represented as

q ¼ z½−I4ðzÞ þ I0ðzÞ�
8I1ðzÞ þ z½−I4ðzÞ þ I0ðzÞ�

; β ¼ zffiffiffi
q

p : ð27Þ

The stability boundary of the second-harmonic solution is

q ¼ I1ðzÞ
I1ðzÞ þ 2zI0ðzÞ

; β ¼ 2zffiffiffiffiffiffiffiffiffiffiffi
1 − q

p : ð28Þ

We illustrate these domains in Fig. 1. Here we also show
numerically obtained dependencies of jF1j2 (the intensity
of the second harmonics is jF2j2 ¼ 1 − jF1j2) on param-
eters q and β, demonstrating bifurcations on the form of the
forcing.
Next, we discuss a relation between different criteria

used for the “optimal locking.”While here we optimize the
coherence in the presence of noise, in Refs. [4,5] purely
deterministic criteria have been suggested. It is instructive
to compare them with our approach in the limit of small
noise. Suppose that the coupling function gðϕÞ has zeros at
ϕ1;2 (where ϕ1 is the stable one) and extrema at ϕ3;4. In the
approach of [5], the linear stability at the stable equilibrium
jg0ðx1Þj is maximized. In the approach of [4], the width of
the synchronization region ∼jgðϕ3Þ − gðϕ4Þj is maximized.
In our maximization of the coherence, the potential barrier
for a noise-induced phase slip ∼j R ϕ2

ϕ1
gðxÞdxj should be

maximal. For the discussed above example of a biharmonic
phase sensitivity function, Eq. (21), all the optimal forcings
can be found analytically; they are generally also bihar-
monic. The approach of [5] yields in this case

jF1j2 ¼ 1 − jF2j2 ¼ q=ð4 − 3qÞ; ð29Þ
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while the approach of [4] gives

jF1j2 ¼ 1 − jF2j2 ¼
� 2q

4−3q if 0 ≤ q < 4=5

1 if 4=5 < q ≤ 1:
ð30Þ

We compare the results in Fig. 2. One can see that for the
minimal coherence, the presence of a strong first-harmonics
component in the forcing is more important than for other
criteria.
Finally, we present a practical example of application of

our approach. We study here the optimal forcing which
maximizes the coherence, for an experimentally found PRC
of a mitral cell of the mouse olfactory bulb [10]. The PRC
presented in Fig. 2(b) of Ref. [10] has three essentially
nonzero components; thus, we have to find optimal values
of Fk for k ¼ 1; 2; 3 using Sk from the experiment. The
result, obtained by virtue of the numerical maximization of
Eq. (8), is shown in Fig. 3. One can see a transition from the
pure first-harmonic forcing at small β to a nontrivial forcing

profile that includes all three harmonics in the small noise
limit; the second harmonics appears as a supercritical
bifurcation at β ≈ 3.
In conclusion, we have studied the problem of maxi-

mizing coherence of oscillations by external locking, in the
phase approximation. The optimal phase forcing function
depends not only on the phase response curve of the
system, but also on the noise intensity. For large noise, a
purely harmonic forcing is optimal, the number of the
harmonic depends on the phase sensitivity. For smaller
noise, a bifurcation to a more general, multiharmonic
forcing may occur. We have also demonstrated that differ-
ent optimality conditions in the purely deterministic case
lead to different optimal forcing functions, which also differ
from the limit of small noise when optimization of the
coherence is performed.
The approach of this Letter can be potentially general-

ized to a broader class of situations. Above we considered
an oscillatory system subject to two driving forces: One is
white noise that brings incoherence, and another is a purely
periodic forcing that brings coherence. More generally, for
nonautonomous systems [11] both forcing terms can be
nonideal: Noise can be correlated, and the applied force can
be not exactly periodic. Moreover, parameters of the
oscillator can vary in time. While coherence properties
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FIG. 2 (color online). The intensity of the first-harmonic
component in the optimal force as a function of parameter q,
for three optimization criteria. Top solid red line: Maximal
coherence in the weak noise limit, Eq. (24). Middle dashed
green line: Maximal width of the synchronization region,
Eq. (30). Bottom dotted blue curve: Maximal linear stability
of the locked state, Eq. (29).
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FIG. 3 (color online). Optimal forcing in dependence on the
noise intensity for the experimental phase sensitivity of a mitral
cell [10]. While for large noise the solution is the pure first-
harmonic one, according to the theory, for small noise a forcing
with dominating second harmonics is optimal.

 0.01

 0.1

 1

 10

 100

 0  0.1  0.2  0.3  0.4  0.5
q

12

1+2
(a)

 0

 0.5

 1

 0  0.1  0.2  0.3  0.4  0.5
q

5 10 50
(b)

 0

 0.5

 1

 0  5  10  15  20  25

q=0.3

q=0.1

(c)

FIG. 1 (color online). (a) Domains on the plane of parameters
ðq; βÞ where the optimal force has one harmonics (2: the second
one, 1: the first one), and two harmonics (1þ 2), according to
expressions, Eqs. (27) and (28). (b) The intensity of the first
harmonics jF1j2 as a function of q for different noise intensities β.
The thin dashed black line shows the limit of small noise,
Eq. (24). (c) Two dependencies of jF1j2 on the noise intensity β
showing bifurcations from one-mode to two-mode solutions at
critical values of β.
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in such cases can be studied by direct numerical simu-
lations, an analytic treatment (in contradistinction to the
ideal case considered above) remains a challenging task for
further studies, as already the phase reduction and the
averaging over fast oscillations are not straightforward.
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this work.
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