
Comment on “Asymptotic Phase for Stochastic
Oscillators”

The definition of the phase of oscillations is straightfor-
ward for deterministic periodic processes but nontrivial for
stochastic ones. Recently, Thomas and Lindner suggested
using the argument of the complex eigenfunction of the
backward density evolution operator with the smallest real
part of the eigenvalue, as an asymptotic phase of stochastic
oscillations [1]. Here, I show that this definition does not
generally provide a correct asymptotic phase.
The notion of the phase of periodic oscillators lies at the

heart of characterization of oscillatory processes. In deter-
ministic systems, the phase close to a limit cycle is defined
via construction of isochrons (isophases)—the surfaces of
Poincaré sections of the flow with the return time being
exactly the period of oscillations. Recently, the notion of
isochrons has been extended to stochastic systems, as the
surfaces of constant mean first return time [2]. A different
definition of the asymptotic phase of stochastic oscillations
has been suggested in [1], based on properties of the Fokker-
Planck operator describing the evolution of the probability
density. If the nontrivial eigenvalue of the backward Fokker-
Planck (BFP) operator with the least negative real part is
complex, the systems has been called robustly oscillatory.
For such systems, the asymptotic phase was defined in [1] as
the argument of the least stable complex eigenfunction.
While the phase is well defined for periodic self-

sustained oscillations, already for chaotic ones, it is in
many cases ill defined. It exists when one can find a good
foliation of the attractor by Poincaré surfaces of sections
(isochrons in the periodic case). Then, all trajectories cross
them in one direction, and a return to the particular surface
after one loop defines one oscillation cycle. When applying
this approach to noisy oscillators, one has to skip the
condition of crossing surfaces of the section in one
direction, but if, nevertheless, a return to the same surface
happens after performing a global loop, the oscillations and
the phase are well defined.
It is important that the foliation should be good, i.e.,

nonsingular. For example, for a damped linear oscillator

_x ¼ −γxþ ωy; _y ¼ −γy − ωx; ð1Þ
the lines arctanðy=xÞ ¼ const are crossed by nontrivial
trajectories, but this foliation is singular at the origin. In
physical terms, existence of a good foliation corresponds to
oscillations with nonvanishing amplitude; it is clear that
when the amplitude vanishes, the phase is not well defined.
If white Gaussian noise terms are added on the rhs of

Eqs. (1), the latter become the Langevin equations. The
eigenvalue problem for the BFP operator reduces to the
quantum-mechanical problem of a two-dimensional har-
monic oscillator, yielding the complex eigenvalues
λmn ¼ −imω − γn, n ¼ 0; 1; 2;…, m ¼ −n;−nþ 2;…;
n − 2; n. The lines of the constant argument of the least
stable eigenfunction (m ¼ �1, n ¼ 1) are the lines

arctanðy=xÞ ¼ const. However, this dynamics cannot be
characterized as limit-cycle-type oscillations, as the ampli-
tude fluctuates around zero, and the corresponding phase
does not exist.
The dissipative rotating dynamics described by (1) may

be combined with a true limit cycle. For example, in a
three-dimensional system, a deterministic limit cycle can
exist, with the phase obeying _θ ¼ Ω, while locally, in the
transverse direction (x; y), the attraction to the cycle is
described by system (1). With small noise, such a system
will have proper oscillations, with Poincaré surfaces of
section θ ¼ const. Now the BFP equation also includes
relaxation along the phase θ. If this relaxation is weak, then
the corresponding eigenvalue will be the least stable one,
and the eigenfunction, indeed, provides θ ¼ const as
surfaces of constant argument. However, if the noise along
θ is strong, then the least stable will be the eigenfunction
describing the transverse dynamics (1); in this case, the
argument of the corresponding eigenmode will not provide
the correct oscillation phase θ. On the contrary, the proper
foliation by the Poincaré surfaces of sections θ ¼ const
exists in both cases, thus, the approach of [2] provides a
proper phase.
In conclusion, while the phase is a rotating variable, in

the phase space of a noisy dynamical system, there can be
many rotations corresponding to complex eigenvalues of
the density evolution operator. Therefore, one generally
cannot identify the phase using the least stable complex
eigenfunction.
Two questions remain, in my opinion, open. (i) In the

case where the method [1] provides a proper phase variable,
are the corresponding surfaces of constant argument of the
eigenfunction also the surfaces of the constant mean first
return time [2]? (ii) Is it possible to distinguish between
proper and improper phase variables purely on the basis of
the BFP approach (e.g., by inspecting the invariant prob-
ability density in the domain where the amplitude of the
relevant eigenfunction vanishes)?
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