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Finite-size-induced transitions to synchrony in oscillator ensembles with nonlinear global coupling
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We report on finite-sized-induced transitions to synchrony in a population of phase oscillators coupled via a
nonlinear mean field, which microscopically is equivalent to a hypernetwork organization of interactions. Using
a self-consistent approach and direct numerical simulations, we argue that a transition to synchrony occurs only
for finite-size ensembles and disappears in the thermodynamic limit. For all considered setups, which include
purely deterministic oscillators with or without heterogeneity in natural oscillatory frequencies, and an ensemble
of noise-driven identical oscillators, we establish scaling relations describing the order parameter as a function
of the coupling constant and the system size.
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Collective synchronization phenomena are abundant in
complex nonlinear systems, and onset of synchrony can be
typically treated as a nonequilibrium phase transition. The
Kuramoto model [1] of globally coupled phase oscillators is
the simplest paradigmatic system, where this transition can be
explored nearly in full details [2]; also a relation to equilibrium
transitions is well studied [3]. This model is universally appli-
cable for ensembles of weakly coupled oscillators, possessing
harmonic phase sensitivity (e.g., Josephson junctions [4]). In
many cases one, however, needs to go beyond such a simple
setup, allowing for couplings that include higher harmonics;
this is relevant for electrochemical oscillators [5] and ϕ-
Josephson junctions [6]. Moreover, as suggested in Ref. [7]
and experimentally realized in Ref. [8], coupling terms can be
nonlinear functions of the order parameters (mean fields).

In this letter we describe nontrivial properties of the
synchronization transition in a model with simple nonlinear
coupling, where the coupling is at the second harmonics of the
phase but is proportional to the the square of the Kuramoto
order parameter. We will show that such an interaction on a
microscopic level represents a fully connected hypernetwork.
By performing the analysis in the thermodynamic limit, we will
demonstrate that for deterministic ensembles the asynchronous
state with a uniform distribution of the phases never loses
stability; for noisy oscillators it is possible to show that such an
asynchropnous state is the only stationary solution. Neverthe-
less, direct numerical simulations of finite populations yield
partially synchronous regimes. These regimes can be called
finite-size-induced ones; the main goal of this paper is to clarify
their nature. Our main tool is the analysis of scaling of partial
synchrony with the system size. We will establish scaling
properties of this finite-size-induced transition for different
setups: identical purely deterministic oscillators, identical
noisy oscillators, and a deterministic nonidentical ensemble
(the last setup is mostly close to the Kuramoto model). From
these scaling properties it follows that in the thermodynamic
limit the characteristic value of the observed order parameter
tends to zero, while the critical value of the coupling strength
at which partial synchrony is observed diverges. Thus, this
transition to synchrony can be called a finite-size-induced one.

Let us start with formulation of general phase equations for
an ensemble of nonlinear oscillators coupled via mean fields.

In the limit of weak coupling (or weak external forcing), the
dynamics of each oscillator can be described by its phase φ(t)
via the phase response function S(φ):

φ̇ = � + ω + S(φ)F ;

here � stands for the population mean natural frequency and
ω is an individual deviation from the mean. The term F is an
overall force produced by mean field coupling; i.e., it is a gen-
eral function of mean fields (Daido order parameters [9]) Zk =
〈eikφ〉 (here 〈〉 means averaging over the ensemble), which can
be represented as an expansion F = ∑

k,m hk,m(Zk)m (where
hk,m are constants). Next, let us introduce a slowly varying
phase ϕ(t) = φ(t) − �t and the corresponding slow order
parameters Z̄k = 〈eikϕ〉 = Zke

−ik�t . Using a Fourier repre-
sentation of the phase response function S(φ) = ∑

n sne
−inφ

we get the following general equation for the slow phase:

ϕ̇ = ω +
∑
n,k,m

sne
−inϕhk,mZ̄m

k ei(km−n)�t . (1)

Performing an averaging of Eq. (1) over the fast time scale
�−1 is equivalent to keeping only terms on the right-hand
side that do not contain explicit time dependence ∼eij�t ; i.e.,
we have to set n = km:

ϕ̇ = ω +
∑
k,m

skme−ikmϕhk,mZ̄m
k . (2)

This is the general form of the phase equation derived
for a weakly coupled oscillatory ensemble with generically
nonlinear (due to terms with m > 1) mean-field interaction (cf.
Ref. [7]). Recall that the simplest case where n = k = m = ±1
gives us the term ∼Z̄1e

−iϕ , and (2) reduces to the standard
Kuramoto-Sakaguchi model [10]. Considering further terms
with n = km = ±2, we get a generalized biharmonic
coupling ∼s1h1,1Z̄1e

−iϕ + (s2h2,1Z̄2 + s2h1,2Z̄
2
1)e−i2ϕ on

the right-hand side of the system (2). The case where the
biharmonic coupling depends linearly on the order parameters
(h1,2 = 0) was extensively studied in Ref. [11].

Here we focus on the effects produced by purely nonlinear
second-harmonic coupling s1 = h2,1 = 0 (see Ref. [12] for the
analysis of linear second-harmonic coupling s1 = h1,2 = 0)
and show that it is responsible for finite-size induced transi-
tions to synchrony with nontrivial scaling on the ensemble size.
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We will demonstrate that while synchrony disappears in the
thermodynamic limit, it is observed for finite ensembles. Thus,
throughout this paper we consider the following model, where
external noise also is taken into account for completeness:

ϕ̇k = ωk + εR2 sin(2� − 2ϕk) +
√

Dηk(t), k = 1, . . . ,N.

(3)

Here we denote Rei� = Z̄1 = N−1 ∑N
k=1 eiϕk , N is the size

of population, and the noise is Gaussian delta-correlated
〈ηk(t)ηm(t − t0)〉 = δkmδ(t − t0). Qualitatively, nontrivial fea-
tures of this model can be understood as follows. Because
the interaction is proportional to the second harmonics of the
phase ∼ sin 2ϕ, it supports formation of two clusters, with
phase difference π . However, the coupling term is determined
by the order parameter R, which vanishes if two symmetric
clusters are formed and is nonzero only due to asymmetry of
the clusters. This asymmetry, as we shall demonstrate below,
is due to finite-size fluctuations at the initial stage when the
clusters are formed from the disorder.

Before proceeding with the main analysis, we discuss
physical relevance of the model (3). First, the purely second-
harmonic coupling (s1 = 0) appears when the force acts on
nearly harmonic oscillators parametrically (a typical exam-
ple here is mechanical pendula suspended on a vertically
oscillating common beam). Another situation where the
second harmonic in S(φ) dominates is that of period-doubled
oscillations. Noteworthy, due to nonlinear coupling model (3)
represents a hypernetwork [13] of oscillators. Indeed, sub-
stituting the expression for the mean field in (3), one can
see that the microscopic coupling terms can be written as
∼ sin(ϕl + ϕm − 2ϕk). This means that effective interactions
are not pairwise (as in the standard Kuramoto model and its
numerous generalizations) but via triplets; this is exactly the
definition of a hypernetwork coupling structure.

Furthermore, it is worth discussing the role of different
order parameters in the problem. The order parameter Z̄1

governs the force acting on the oscillators and is therefore
of major importance. Because this force contains the second
harmonics only (∼sin 2ϕk), the appearing order is of “nematic”
type and corresponds to large absolute values of the order
parameter Z̄2; at these states the order parameter R = |Z̄1|
may be small. In the disordered, asynchronous states both
order parameters Z̄1,2 are small.

Linear stability analysis of a disordered state (R = 0) in
model (3) is straightforward, because coupling is nonlinear
in R and thus does not contribute. The solution is the same
as for the Kuramoto model with vanishing coupling [14]: the
disordered state is either neutrally (without noise D = 0) or
asymptotically stable. Thus, all the transitions described below
are due to nonlinear and finite-size effects.

We start with the simplest case where all oscillators have
identical frequencies (ωk = 0) and are not affected by noise
(D = 0). In this case, for any Rei� = const �= 0 there are two
stable positions for the phases: ϕ1 = � and ϕ2 = � + π . Any
distribution (n1,n2) with n1 > N/2 oscillators in the first state
is possible, with order parameter

R = 2n1/N − 1. (4)
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FIG. 1. (Color online) (a) The histograms of the two-cluster
states which result from the disordered initial conditions R ≈ 0,
for different ensemble sizes from N = 10 to N = 1000. (b) Scal-
ing p ∼ N−1/2F (RN 1/2); dashed line is a fitting curve F (x) =
5.2x3 exp[−1.45x3/2]. Theoretical derivation of this scaling relation
remains an unsolved problem.

Only the symmetric distribution with n1 = N/2 is not a
solution, because the mean field vanishes. Therefore, in
the thermodynamic limit N → ∞, the stationary two-cluster
distributions can be written as

ρ(ϕ) = Sδ(ϕ − �) + (1 − S)δ(ϕ − � + π ), (5)

with an arbitrary indicator constant S ∈ ( 1
2 ,1], the order

parameter is R = 2S − 1, and � is arbitrary.
A nontrivial question here is: Which of possible syn-

chronous states establishes if one starts from a fully disordered
initial configuration with uniformly distributed initial phases
0 � ϕk < 2π . Numerically obtained distributions of the final
states, for different sizes N , are shown in Fig. 1(a). Here the
order parameter R can attain only discrete values according
to (4), and p are probabilities of these states. Remarkably,
these distributions collapse perfectly after rescaling R →
R

√
N , p → p

√
N , as is shown in Fig. 1(b). This means that

the stationary order parameter scales as R ∼ N−1/2; i.e., it
disappears in the thermodynamic limit. To this scaling also
corresponds the scaling of the characteristic transient time
from initial disorder to a final synchronous configuration:
as one can see from (3), this time is ∼R−2 ∼ N , which is
confirmed by numerics (not shown).

Next, we consider the case when the oscillators have differ-
ent natural frequencies ωk and are not affected by noise D = 0.
We assume a Gaussian distribution g(ω) = (2π )−1/2e−ω2/2

(without loss of generality the width of the distribution is set
to 1 and the mean frequency to 0). First, following Ref. [11],
we find stationary solutions in the thermodynamical limit by
virtue of a self-consistent scheme. We will see, that although
the analysis of the thermodynamic limit does not provide a
transition to partial synchrony, it allows us to find states close
to that observed in simulations of finite systems. For the sake
of brevity of presentation we restrict ourselves to symmetric,
nonrotating solutions only, and then without loss of generality
one can set � = 0. For such states the conditional distribution
density ρ(ϕ|ω) is stationary, and the order parameter can be
defined as follows:

R =
∫∫

dω dϕ g(ω)ρ(ϕ|ω) cos ϕ. (6)

It is convenient to introduce an auxiliary parameter A= εR2

(the overall amplitude of the coupling function) and the
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rescaled frequency x = ω/A. It easy to see from (3) that all
the oscillators can be divided into those locked by the mean
field (|x| < 1) and the unlocked (rotating) ones (|x| > 1). The
distribution of the latter ones is inversely proportional to the
phase velocity ρu(ϕ|x) = C|A[x − sin(2ϕ)]|−1 (here C is a
normalization constant), and, because of the symmetry, it does
not contribute to the order parameter in (6). The distribution
of the locked oscillators ρL(ϕ|x) is in fact the same as in (5),
but frequency dependent:

ρL(ϕ|x) = S(x)δ(ϕ − �) + [1 − S(x)]δ(ϕ − � − π ), (7)

where �(x) = arcsin(x)/2. Similar to the case of identical
oscillators, the indicator function S(x) is arbitrary [due to
assumed symmetry we restrict ourselves to the case S(x) =
S(−x), asymmetric functions lead generally to rotating solu-
tions], it describes redistribution of oscillators between two sta-
ble branches ϕ = �(x) and ϕ = �(x) + π . Below we consider
the simplest case of constant indicator function S(x) = σ ∈
( 1

2 ,1]. In order to get the final closed self-consistent scheme, we
need to substitute the distribution function (7) into the defini-
tion of the order parameter (6). This yields the order parameter
R as a function of the coupling constant ε in a parametric (in
dependence on auxillary parameter A) analytic form:

R = A(2σ − 1)H (A), ε = AR−2,

H (A) =
∫ π

4

− π
4

2 cos ϕ cos 2ϕg(A sin 2ϕ) dϕ. (8)

Figure 2(a) illustrates stationary solutions R(ε) at different
indicator constants σ . The black curves denote the main
solution at σ = 1. At a critical coupling εc ≈ 2.17 two
branches, stable (black solid) and unstable (dashed line),
arise (stability is determined by direct finite-size numerical
simulations). Note that these lines are separated from the
disordered solution R = 0, although R ∼ ε−1 as ε → ∞ at the
unstable branch. Solutions for σ < 1 can be easily found from
the rescaling of the main dependence (at σ = 1) according
to (8). So the curves R(ε) at σ < 1 have qualitatively similar
structure; however, they are shifted to larger values of ε for
smaller values of σ [see dotted red lines in Fig. 2(a)]. In

particular, the critical points scale as Rc(σ ) = Rc(0)( εc(1)
εc(σ ) )

1/2
.

This blue bold line in Fig. 2(a) together with the black solid
line at σ = 1 define the region of possible synchronous
solutions, characterized by different indicator constants σ .

It is worth mentioning that the incoherent solution R = 0
exists at any value of coupling ε, and it is always stable in the
thermodynamical limit. However, in the finite-size simulations
of the system (3), we found that the incoherent state has a
finite lifetime: after a long transient a synchronous state from
the above described solution family [i.e., between the blue
bold and black solid curves in Fig. 2(a)] sets on, and this state
remains further stable. Blue markers in Fig. 2(a) denote the
averaged value of R obtained from direct numerical simula-
tions of (3) with N = 200. The averaging was performed over
∼1000 distinct simulation runs (until final time Tmax = 106)
with disordered initial conditions. The final state to which the
system jumps from the incoherence is not always the same and
has a deviation range depicted by the gray area in Fig. 2(a).

A more detailed description of the final synchronous state
is presented in Fig. 2(b). Here the top panel shows dependence

FIG. 2. (Color online) (a) Black solid and dashed curves: Solu-
tion of the self-consistent equations (8) for σ = 1. Blue bold curve:
Bifurcation line where two branches of synchronous solutions appear
for different σ . Blue markers: Mean value of R obtained from direct
numerical simulation of (3) with N = 200 and initial conditions in
the incoherent state. Dotted red lines: Solution of self-consistent
equation (8) for σ = 0.94 and σ = 0.82. The inset shows the averaged
lifetime T of the incoherent state for the finite-size ensemble. (b) The
top panel shows coordinates of phase ϕ as a function of internal
frequency ω in the stationary synchronous state (the data are shown
for 1000 different simulations at ε = 15, N = 200). The bottom panel
depicts function S(ω) in the range where the oscillators are locked and
form two distinct stable branches. The black solid curve stands for
averaged values of S(ω), the gray area denotes the standard deviation,
and the red markers depict one particular realization. In order to
calculate S(ω), the range ω ∈ [−2,2] was split into m subintervals.
In each subinterval we calculate the ratio of oscillators, located at
different branches. For the averaged black curve we use m = 20, for
the red curve m = 10. (c) The dependence of the averaged lifetime
T of the incoherent state is shown for different system sizes N . The
inset depicts the averaged value of order parameter R obtained from
finite-size finite-time (Tmax = 106) simulations of the system (3).

of the phases ϕ on the internal frequency ω. The area in the
center clearly shows two stable branches of locked oscillators.
Outside this area one can see the clouds of points, which depict
unlocked oscillators. The unlocked phases rotate in relation to
the mean field phase and, therefore, constitute an asynchronous
part of the ensemble. The bottom panel shows statistics of the
function S(ω), which is calculated in the range ω ∈ [−2,2]
where oscillators are typically locked to the mean field. The
function has a certain profile depicted in the bottom panel of
Fig. 2(b). As one can see, the distribution of locked oscillators
over the branches remains close to a constant value in the
center of the ω range; however, it drops significantly close to
the boundaries of the coherent region.

The averaged lifetime T of the incoherent state drastically
increases with the decrease of coupling constant ε, which
is shown in the inset of Fig. 2(a). Thus, below ε ≈ 7 it is
impossible to collect any reasonable statistics with a finite
simulation time Tmax = 106. However, even for relatively small
values of ε, the transition from the incoherent state is possible,
which is shown by the blue markers to the left of the gray area.
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It is instructive to characterize this finite-size induced
transition to synchrony in dependence on the system size
N . The dependence of averaged lifetime T on the rescaled
coupling ε/N , plotted in Fig. 2(c), demonstrates a nice collapse
of data points. This scaling follows from the fact that the
characteristic amplitude of the coupling term is εR2 and
R ∼ N−1/2 in the disordered state. Furthermore, in the inset
of Fig. 2(c) we show a rescaled order parameter, obtained
at the end of a fixed integration time Tmax; one can see that
it scales as 〈R〉 ∼ N−1/2f (εN ), which can be explained as
follows. For sufficiently small values of the coupling the
system always exhibits finite-size fluctuations R ∼ N−1/2 and
remains in the asynchronous state. With increase of ε, the
transition to synchronous state becomes more probable, which
leads to an increase of the averaged final value of R. The upper
branch reflects the scaling of the lowest border of synchronous
states R ∼ ε−2 mentioned above. Note that the critical value of
coupling resulting from this scaling is ε ∼ N , so the transition
effectively disappears in the thermodynamic limit.

Finally, we describe the finite-size-induced transitions to
synchrony in the ensemble of identical oscillators (ωk = 0)
with noise D �= 0 (3). Without lose of generality, we can
take D = 1, so that the only parameters are ε and N . In the
thermodynamic limit, when N → ∞, the system does not have
any nontrivial coherent solution, because due to the symmetry
ϕ → ϕ + π of the coupling function, the stationary density
ρ that follows from the Fokker-Planck equation is also sym-
metric [in the small noise limit it tends to (5) with S = 1/2];
thus the only stationary solution is the incoherent one with
R = 0. However, similar to the situations described above, for
small system sizes N a transition to synchronous two-cluster
configurations is observed (cf. Ref. [15]). In contradistinction
to the noise-free case, here also back transitions to disorder are
possible due to noise, so that at a long run the process looks
like an intermittent order-disorder dynamics.

Qualitatively, this dynamics can be understood as the
effect of noise on the multiplicity of synchronous states
described for the noise-free case above [cf. the discussion
around Eq. (5)]: due to small noise transitions between these
states (n1,n2) → (n1 ± 1,n2 ∓ 1) now occur. The transitions
rates can be estimated using Kramers’ formula; they are
exponentially small in the potential barrier, which is 2εR2

where R = |2n1/N − 1|. For small R, Kramers’ rate does not
apply; here one can phenomenologically set the transition rate
to a constant. As a result, one obtains for the order parameter
R a random walk model, which can be described by the
corresponding master equation. Without going into details,
which will be presented elsewhere, we present here the main
results of this statistical model. The stationary distribution
[Fig. 3(a)] shows a transition to synchrony at εc ≈ 0.35N ,
so that for larger couplings we get R ≈ 1, while below this
threshold only finite-size fluctuations around a disordered state
with R ∼ N−1/2 are observed. The characteristic time scale of
the time evolution from asynchrony to synchrony is, however,
extremely large, because Kramers’ rate at large R is expo-
nentially small. Thus, direct simulations of finite ensembles,
begun from a disordered state and performed over a finite time
interval Tmax, allow one to reveal only order parameters for
which Tmax � exp(εR2), thus Rmax ∼ (ln Tmax)1/2ε−1/2. At this

FIG. 3. (Color online) Dependence of the order parameter R on
the rescaled coupling constant for identical oscillators with noise.
(a) Stationary state in the master equation as described in text. The
inset shows the difference between the steady state (solid line) and
the one evolving from the disordered state at finite time (dashed
line) for N = 20. (b) Direct numerical simulations of ensemble (3)
(observation time Tmax = 106). The inset shows results for system
size N = 25, but for different initial conditions (solid line: starting
from a state with large R, dashed: starting from the disordered state).

stage the evolution becomes effectively “frozen.” We illustrate
this in Fig. 3(b): only for N � 15 does on observes a saturation
of the order parameter as predicted by the random walk model,
while for larger N , values of order parameter close to one are
never achieved during available integration times. Of course, if
one starts from a state with R close to one, it remains practically
frozen as well.

Summarizing, here we considered a model of oscillators,
globally coupled via a nonlinear function (in our case, square)
of the Kuramoto mean field. Equivalently, on the microscopic
level such a coupling can be described as a fully connected
hypernetwork. While the disordered state remains stable in
the linear approximation and in the thermodynamic limit, a
transition to synchrony is observed due to finite-size effects:
the characteristic critical coupling parameter value scales
typically as ε ∼ N , and the transient time from disorder to
order diverges as N → ∞. For the deterministic ensembles
we demonstrated scaling properties of the transition in the
form of dependence of the order parameter on the coupling
strength and the ensemble size. For the noisy case, the system
demonstrates effective breaking of ergodicity, being trapped
in frozen metastable states due to exponentially small hopping
rates. While we focused on the purely quadratic in mean field
coupling, the described framework allows one also to consider
a general combination of linear and nonlinear couplings. The
approach based on the master equation provides a framework
for a description of finite-size transitions not only in the
context of phase oscillator networks, but also in other types of
mean-field coupled systems demonstrating finite-size-induced
transition [15].
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