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Two types of quasiperiodic partial synchrony in oscillator ensembles
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We analyze quasiperiodic partially synchronous states in an ensemble of Stuart-Landau oscillators with global
nonlinear coupling. We reveal two types of such dynamics: in the first case the time-averaged frequencies of
oscillators and of the mean field differ, while in the second case they are equal, but the motion of oscillators
is additionally modulated. We describe transitions from the synchronous state to both types of quasiperiodic
dynamics, and a transition between two different quasiperiodic states. We present an example of a bifurcation
diagram, where we show the borderlines for all these transitions, as well as domain of bistability.
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I. INTRODUCTION

An ensemble of globally coupled limit-cycle oscillators is
a widely used model for many natural systems [1–5]. The
main, well-understood, effect in this setup is the emergence
of a collective mode (mean field) via synchronization of
ensemble elements [2,6]. A typical synchronization scenario
is as follows. If a homogeneous coupling between generally
nonidentical ensemble units is attractive and quantified by
parameter ε > 0, then, typically, with the increase of ε

beyond some critical value, a number of oscillators adjust
their (initially different) frequencies and form a synchronous
group. The units in this group have coherent, though slightly
different, phases and, as a result, produce a nonzero mean field.
With the further increase of ε, more and more oscillators join
the synchronous group and the mean field amplitude grows.
The situation becomes almost trivial if the oscillators in the
ensemble are identical: then full synchrony appears already
for an arbitrarily small attractive coupling.

The described synchronization scenario assumes that the
interaction remains attractive for all values of ε and for
all amplitudes of the collective mode. This is, however,
not a general case: one can expect that weak and strong
forcing on an oscillator may have different properties. In this
paper we are interested exactly in the situations when the
increase of the bifurcation parameter ε results in a change
of the interaction type from an attractive to a repulsive one,
yielding complex regimes already for the simplest setups
with identical units. In particular, our goal is to analyze the
quasiperiodic partially synchronous (QPS) regimes that appear
via a synchrony-breaking transition and are characterized by
scattered or clustered oscillator states and yet nonvanishing
collective mode; the most important feature is the quasiperi-
odic dynamics of oscillators. We describe two types of such
solutions. In one case, which we denote as QPS-I, the time
averaged frequencies of individual oscillators and of the mean
field are different. In the second case, labeled as QPS-II, the
averaged frequencies coincide, but the motion of oscillators
is additionally modulated. We demonstrate that these regimes
between full synchrony and complete asynchrony appear in
an ensemble of Stuart-Landau (SL) oscillators with global
nonlinear coupling. For this model, we analytically find the
conditions for two bifurcations resulting in emergence of two
types of QPS dynamics. Furthermore, we reveal transitions

between the QPS-I and the QPS-II dynamics, as well as
parameter domains where full synchrony coexists with the
QPS states.

The paper is organized as follows. First we introduce our
basic model in Sec. II. Then, in Sec. III we discuss the
weak-coupling limit and properties of partial synchrony in
the phase approximation. Next, in Sec. IV we analyze stability
of the synchronous and of the asynchronous state for arbitrary
coupling, and present the diagram of different states. Section V
presents the results of numerical analysis. We discuss and
summarize our results in Sec. VI.

II. STUART-LANDAU OSCILLATORS WITH GLOBAL
NONLINEAR COUPLING

Our basic model is a system of N identical Stuart-Landau
oscillators with global nonlinear coupling (cf. [7–9]):

ȧk = (1 + iω0)ak − (1 + iα)|ak|2ak

+ (ε1 + iε2)A − (η1 + iη2)|A|2A, (1)

where

A = ρei� = N−1
N∑

k=1

ak (2)

is the complex mean field. Here ω0 is the frequency of
small oscillations (it does not play any role since it can be
eliminated by a transformation to a rotating reference frame)
and α describes nonisochronicity of uncoupled oscillators.
The coupling is quantified by four parameters: parameters
ε1,2 describe linear coupling term ∼A, while parameters η1,2

describe nonlinear coupling ∼|A|2A. Notice that the case
of purely linear coupling was extensively studied by Hakim
and Rappel [10] and by Nakagawa and Kuramoto [11]; see
also [12]. We come back to this case in the discussion section
below.

In the synchronous regime a1 = · · · = aN = reiϕ = A, and
the stationary (uniformly rotating with frequency 	) solution
of Eqs. (1) can be easily found:

r2 = 1 + ε1

1 + η1
, 	 = ϕ̇ = ω0 + ε2 − (α + η2)(1 + ε1)

1 + η1
.

(3)
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In the fully asynchronous regime the mean field A vanishes.
This state is microscopically degenerate, as there is just one
condition on the distribution of N phases. Stability of the
asynchronous and synchronous states is studied in the next
sections.

Before proceeding to a more general analysis, we mention
one intermediate dynamical state which appears for a special
set of parameters. Indeed, if the ratio ε1+iε2

η1+iη2
is real, then for

|A|2 = ε1+iε2
η1+iη2

the coupling vanishes. In this regime, called
“bunch state” in [7], the oscillators are partially synchronized,
but the dynamics is purely periodic as all units have the same
frequency ω0 − α.

III. WEAK COUPLING LIMIT, PHASE APPROXIMATION,
AND PARTIAL SYNCHRONY

A. Weak coupling limit

Close to the asynchronous regime, where the amplitude A

is small, the coupling between the oscillators is weak. This
also holds for a nonsmall amplitude A, if coupling parameters
are small ε1,2 � 1, η1,2 � 1. For such a weak coupling, the
amplitudes |ak| are only slightly perturbed: |ak| ≈ 1. Then
ak ≈ eiϕk and the mean field A is simply the Kuramoto order
parameter R exp[i�] = N−1 ∑

j exp[iϕj ], 0 ≤ R ≤ 1. Using
the standard approach [2,4], Eq. (1) can be reduced to the phase
dynamics:

ϕ̇k = ω + E(R; ε1,2,η1,2)R sin[� − ϕk + β(R; ε1,2,η1,2)],

(4)

where ω = ω0 − α, while the amplitude E ≥ 0 and the phase
shift β in the coupling are determined from

E sin β = α(R2η1 − ε1) + ε2 − R2η2,

E cos β = ε1 − R2η1 − α(R2η2 − ε2).
(5)

Equation (4) can be considered as a nonlinear generalization
of the popular Kuramoto-Sakaguchi model [6]. Indeed, for the
linear coupling η1 = η2 = 0 we obtain exactly the Kuramoto-
Sakaguchi model,

ϕ̇k = ω + εR sin(� − ϕk + β), (6)

where

ε2 = (αε1 − ε2)2 + (αε2 + ε1)2,

β = Arg[ε1 + αε2 + i(ε2 − αε1)].

Generally, if both linear and nonlinear couplings are present,
instead of two constants ε and β we have two functions
E(R; ε1,2,η1,2), β(R; ε1,2,η1,2); this model has been suggested
and studied in [7,13]. Notice that this phase model also appears
as an approximation of the system of SL oscillators, coupled
through a common nonlinear load [7]. A very important
property of the model (4) is its partial integrability: according
to the Watanabe-Strogatz theory [14], dynamics of (4) is
described by three global variables and N − 3 constants of
motion; this description is valid for any N > 3, including the
thermodynamic limit N → ∞,

It is easy to see that synchronous solution of the model (4) is
stable if E(1; ε1,2,η1,2) cos [β(1; ε1,2,η1,2)] < 0. To determine
stability of the asynchronous state, we have to consider effect

of a small perturbation, i.e., effect of the mean field with R �
1. This means that we can neglect the terms R2η1,2 in (5)
and the model reduces to the Kuramoto-Sakaguchi system (6).
So, only the linear part of the coupling contributes to the
instability of the asynchronous state. The asynchronous state
will be unstable if the coupling is attractive, i.e., if cos β > 0.
This condition yields instability provided ε1 + αε2 > 0, and
stability otherwise.

B. Partial synchrony and quasiperiodicity
within phase approximation

Here we discuss partial synchrony in the framework of the
phase approximation (4). A detailed analysis of this model has
been presented in [7,13], so we just reproduce the basic ideas
for consistency.

Consider first the pure Kuramoto-Sakaguchi case (6). As
is well known, the synchronous state, R = 1, is stable if
|β| < π/2, and unstable if π/2 < β < 3π/2 (we remind
that ε > 0). For the asynchronous (splay) state, R = 0, the
stability conditions are reversed. Hence, there occurs either full
synchrony or full asynchrony. Notice that existence of other
attractive states with 0 < R < 1 or of many-cluster solutions
with R = 0 is excluded by the Watanabe-Strogatz theory [14].

Complementarity of stability domains for synchronous
and asynchronous solutions is a specific property of the
Kuramoto-Sakaguchi model. For general globally coupled
systems the situation can be different. So, we can expect
overlap of stability domains for some parameter region; then,
in this region, the system is at least bistable. Another possible
case, of our interest here, is when both fully synchronous
and fully asynchronous solutions are unstable. Then, for the
corresponding parameters the system is enforced to settle at
some nontrivial state between synchrony and asynchrony. An
example is given by Eq. (4), where β(R; ε1,2,η1,2) depends
on the order parameter R. Stability of the asynchronous state
is determined solely by β(0,ε1,2,η1,2), while for the state of
full synchrony, R = 1, the value β(1,ε1,2,η1,2) is relevant. If
cos β(0,ε1,2,η1,2) > 0 and cos β(1,ε1,2,η1,2) < 0, both fully
synchronous and asynchronous states are unstable [the border
between stability and instability domains for the synchronous
state is determined from the condition cos β(1,ε1,2,η1,2) = 0].
It means that an intermediate, partially synchronous state with
0 < R < 1 is established. The order parameter in this state is
given by the condition cos β(R,ε1,2,η1,2) = 0.

Next, we stress that system (4), like the Kuramoto-
Sakaguchi model, is fully described by the Watanabe-Strogatz
theory [14] which excludes the states with more than one
synchronous cluster for general nonidentical initial conditions.
Hence, at partial synchrony, all phases shall be scattered and
nonuniformly distributed on the unit circle. As it follows
from Eq. (4), this scattering results in different instantaneous
frequencies of all units. Furthermore, it results in the most
peculiar feature of this state, namely in a difference of the
time-average frequencies of the units and of the frequency
of the mean field. Let us denote these frequencies as 	 and
ν, respectively. (Notice that since oscillators are identical, all
	k = 	). In our previous publications [7,13] we called such
states with 0 < R < 1 and 	 	= ν self-organized quasiperiodic
(SOQ) solutions.
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Qualitatively the property ν 	= 	 = 〈ϕ̇〉 can be shown by
contradiction. Suppose first the contrary, ν = 	, and consider
the motion in the frame, rotating with the mean field frequency
ν. Then, according to Eq. (4), the points, representing some
oscillators, move forwards and some of them move backwards
with respect to the mean field. Hence, there are two values
of ϕ where the velocity in this frame changes its sign, and
one of these values corresponds to stable state and another
corresponds to an unstable one. So, the oscillators having these
phase values are in rest. Other oscillators move towards the
stable state and therefore merge into a cluster. Since clusters
in this setup are not possible, the assumption ν = 	 cannot
be true. Hence, either all oscillators move faster than the
mean field or all of them move slower, i.e., 	 	= ν. A detailed
quantitative analysis of system (4) can be found in [7,13].

It is important to notice that the phase model (4) is only
an approximation of the full system of Eqs. (1) for the case
when the amplitude dynamics is enslaved. In this situation
the amplitude perturbations decay rapidly, and instability of
the fully synchronous state occurs due to one real eigenvalue,
corresponding to the phase (as described in the next section).
Thus, for weak coupling we can expect that the above described
SOQ dynamics appears close to instability of the synchronous
state of the full system, when one real multiplier becomes
larger than unity. Here we denote such dynamics as QPS-I, to
be distinguished from another quasiperiodic state, discussed
below. However, the correspondence between QPS-I and SOQ
is not exact as, due to corrections to the first-order model (4),
some fine features may become different. For example, while
in model (4) several clusters are not possible due to the
Watanabe-Strogatz theory, already small perturbations to the
model generally destroy this property and enable clustering.

IV. BEYOND THE PHASE APPROXIMATION

We analyze stability of the fully synchronous state Eq. (3)
with respect to the evaporation of individual oscillators from
the synchronous cluster. In fact, one can always consider
purely transversal evaporation modes such that the mean field
A remains unchanged. Substituting ak = bke

i	t , we make
transformation to the coordinate frame, rotating with the
frequency 	, where 	 is given by Eq. (3). We obtain

ḃk = (1 + iω)bk − (1 + iα)|bk|2bk

+ (ε1 + iε2)B − (η1 + iη2)|B|2B, (7)

where ω = ω0 − 	 and B = N−1 ∑N
j bj . In the new frame,

synchronous motion corresponds to a resting point; we choose
the coordinate system so that bk = B = r . Linearizing the
equation around this point while keeping B = const, we obtain
after straightforward manipulations the eigenvalues

λ1,2 = (1 − 2r2) ±
√

(1 − 3α2)r4 + 4ωαr2 − ω2, (8)

related to evaporation multipliers as μ = eλT , where T =
2π/	 is the oscillation period [13,15].

If both eigenvalues (8) are negative, the fully synchronous
cluster is stable. The instability occurs when either one real
eigenvalue becomes positive, or a pair of complex eigenvalues
crosses the imaginary axis. The situation when one real
eigenvalue λ1 changes from negative to positive value is

exactly the transition described in Sec. III B above. One
can check that the condition λ1 = 0 in (8) in the limit
of small coupling terms ε1,2,η1,2 is exactly the condition
cos β(1,ε1,2,η1,2) = 0 where β is defined according to (5).

The comprehensive analysis of Eqs. (7) and (8) is hardly
feasible due to a large number of parameters. Therefore, we
consider here below only a special case of isochronous oscil-
lators, α = 0, which demonstrates both types of synchrony-
breaking transition, of our interest in this study. Additionally,
we fix η2 = 0, i.e., take purely dissipative nonlinear coupling.
Furthermore, we consider ε1,2 ≥ 0. Then, with account of
Eq. (3), we find ω = ω0 − 	 = −ε2, which yields

λ1,2 = (1 − 2r2) ±
√

r4 − ε2
2. (9)

a. Case of real eigenvalues. The condition for the eigen-
values to be real is r2 ≥ ε2. The bifurcation takes place when
λ1 becomes zero, which yields r2 = 1

3 (2 ±
√

1 − 3ε2
2) ≥ ε2.

Hence, we have ε2 ≤ 1/
√

3 ≈ 0.577 and the critical line is
found from the equation

2 ±
√

1 − 3ε2
2 = 3

1 + ε1

1 + η1
. (10)

b. Bunch states. Consider the case ε2 = 0. The eigenvalues
are λ1 = 1 − r2, λ2 = 1 − 3r2. Hence, synchrony becomes
unstable for r < 1, i.e., for η1 > ε1. Obviously, a neutrally
stable state, r = 1, 	 = ω0, and ρ = R = √

ε1/η1 is a solution
of Eq. (1). The case corresponds to the bunch state, cf. also [8].

c. Case of complex eigenvalues. The condition for the
eigenvalues to be complex is r2 < ε2 and the condition for the
real part to be zero is r2 = 1+ε1

1+η1
= 1

2 . Hence, the critical line
is determined by η1 = 1 + 2ε1 and ε2 > 0.5. For ε2 = 0.5 and
η1 = 1 + 2ε1 we have the “Takens-Bogdanov point” λ1,2 = 0.

d. Stability of the asynchronous state. This is accomplished
as described in Sec. III A. For the chosen parameters we obtain
from (5) E2 = ε2

1 + ε2
2 and β = arctan (ε2/ε1). Since ε1,2 > 0,

the asynchronous state is always unstable.
We emphasize that although synchrony breaking is quan-

tified by only two eigenvalues (8), the transition cannot be
described as a low-dimensional bifurcation, because all os-
cillators leave the synchronous cluster simultaneously, which
means that in the original N -dimensional phase space there is
N − 1-fold degeneracy of eigenvalues (8).

For an example of the bifurcation diagram we fix ε1 = 3;
thus, our bifurcation parameters are ε2 and η1. The results are
shown in Fig. 1. The blue solid line corresponds to Eq. (10);
here the largest real eigenvalue turns zero. The red bold
line η1 = 7, ε2 > 0.5 shows where the Hopf-like bifurcation
(complex eigenvalues) takes place. Below the blue solid line
and to the right of the red bold one the full synchrony is
unstable and partially synchronous dynamics sets in.

Next, we complement the diagram by the results of direct
numerical simulation.

V. NUMERICAL EXPLORATION

All computations have been performed for ω0 = 5 and
N = 501. For several points in the diagram we checked that
increasing of the ensemble size up to several thousands does
not influence the results. We analyze the bifurcation diagram
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QPS-I

SYN/QPS-II

SYN/QPS-I

FIG. 1. (Color online) Bifurcation diagram for ε1 = 3. Blue solid
line: here the largest real eigenvalue equals zero; red bold line: here
real parts of complex roots are equal to zero. Red filled circle marks
the Takens-Bogdanov point. Theoretical analysis is complemented by
the numerical study, which reveals five domains: stable full synchrony
(SYN), quasiperiodic partial synchrony (QPS-I and QPS-II), and two
domains where bistability between synchrony and partial synchrony
is observed (SYN/QPS-I and SYN/QPS-II). Red dashed and cyan
dotted curves are obtained numerically; they denote emergence of the
amplitude modulation and of the frequency difference, respectively;
see text for details. The line ε2 = 0, η1 > 3 corresponds to the partially
synchronous but not quasiperiodic bunch states. Four horizontal
black dashed-dotted lines show the cuts of the diagram illustrated
in Figs. 2, 4, 7, 8, and in the text.

in Fig. 1 by describing transitions at several fixed values of
ε2 (marked with dashed-dotted lines) while the parameter η1

increases.
For ε2 = 0,η1 > 3, the solution is a partially synchronous

bunch state (not shown). For small positive ε2 (we have taken
ε2 = 0.3 for illustration), the dynamics beyond synchrony
breaking is quasiperiodic, as is shown in Figs. 2 and 3 and
corresponds to regime QPS-I as described in Sec. III B. Beyond
the bifurcation, the frequency difference ν − 	 (we remind
that 	 and ν are frequencies of an oscillator and of the mean
field, respectively) smoothly grows, as well as the amplitude
modulation of oscillators (this can be also appreciated from
the phase portraits in Fig. 3). It can be also recognized that the
distribution of the points in a snapshot becomes more uniform
with increase of η1, which corresponds to the decrease of the
mean field amplitude. Notice that variations of the mean field
frequency and of the amplitude are small, so that the mean
field can be considered as harmonic.

Next we consider large ε2 = 3; see Figs. 4 and 5. In contrast
to the case of small ε2, we see that, with increase of η1, the
quasiperiodic motion initially appears due to the pure ampli-
tude modulation (regime QPS-II). It means that trajectory in
the phase space lays on a torus that encircles the original limit
cycle, and whose “thickness” grows smoothly with η1. The
ensemble elements split into several (quasi)clusters that rotate
around the torus in such a way that ν = 	. (We checked that for
the parameters used for the phase portrait plots, the averaged
frequencies and the amplitudes of all elements are the same up
to numerical precision). Then, when η1 attains some critical
value, the frequency difference appears by a jump (dotted
cyan curve in Fig. 1), and we observe a transition from QPS-II

0.6
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Ω
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0.1
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FIG. 2. (Color online) Transition from synchrony to quasiperi-
odic partial synchrony of type I for small ε2 = 0.3. (a) Mean field
amplitude ρ. (b) Frequency difference is the essential feature of the
QPS-I dynamics. Here we see that the mean field is faster than
the oscillators, and that the frequency difference ν − 	 smoothly
grows beyond the transition point. (c) Frequency modulation of
the oscillators and of the mean field is quantified by the standard
deviations of their instantaneous frequencies, denoted as σo and
σf ; these quantities are shown by blue solid and red bold curves,
respectively. (d) Here blue solid and red bold curves show the standard
deviations of oscillator and mean field amplitudes, denoted as δo and
δf , respectively.
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FIG. 3. (Color online) (a)–(c) Phase portraits, illustrating the
synchrony-to-QPS-I transition at ε2 = 0.3. Gray solid and blue bold
curves show trajectories of an oscillator and of the mean field,
respectively for η1 = 3.5 (a), η1 = 7 (b), and η1 = 10 (c). Open
circles (magenta) show a snapshot of the ensemble. (d)–(f) Probability
distribution w of instantaneous frequency of the oscillator, ωo (bold
black curve), and of the mean field, ωf (red curve) for η1 = 3.5,
η1 = 7, and η1 = 10, respectively.
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FIG. 4. (Color online) Transition from synchrony to QPS-II and
then to QPS-I, for ε2 = 3. The shown quantities are same as in
Fig. 2. In (d) we additionally show the minimal value of the oscillator
amplitude r (dashed curve). The first transition, synchrony to QPS-II,
takes place at η1 = 7, as predicted by the stability analysis. At
this point the amplitude and frequency modulation of oscillators
emerge smoothly, but the average frequencies are still equal, ν = 	.
At η1 ≈ 8.8 the second transition takes place; here the frequency
difference appears by jump.

to QPS-I. Geometrically, this transition can be described as
follows. With increase of η1, the torus becomes more and
more “thick” so that the minimal oscillation amplitude |a|
decreases and reaches zero at some value of η1. From now
on the rotation of the cluster encircles the origin on the x,y

plane, and, hence, the frequencies of an oscillator and of the
mean field start to differ. With further increase of η1, the
minimal |a| grows, but the trajectory continues to encircle
the origin. Notice that at the transition from QPS-II to QPS-I,
the frequency difference ν − 	 emerges by a jump and then
remains practically constant.

In fact, the trajectories of (quasi)clusters cannot be easily
recognized from the phase plots in Fig. 5. However, the dynam-
ics becomes much more illustrative for slightly nonidentical
units, as shown in Fig. 6. In this computation we take oscillator
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Im
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), 
Im

(A
)

-1 0 1
Re(a), Re(A)

-1 0 1

(a) (b) (c)

FIG. 5. (Color online) Phase portraits, illustrating the transitions
at ε2 = 3 (the same curves as in Fig. 3). (a) QPS-II state, η1 = 7.1.
(b) Close to the transition from QPS-II to QPS-I, η1 = 8.5. (c) QPS-I
state at η1 = 10.
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FIG. 6. (Color online) Same as in Fig. 5, but for slightly noniden-
tical oscillators. Now it is easy to see that the trajectory (represented
by a sequence of oscillators’ states marked with circles) in (a) does
not encircle the origin directly, but encircles the mean field, and
therefore the frequency difference ν − 	 = 0; this is the QPS-I state.
The trajectory in (c) directly encircles the origin and therefore the
frequencies differ; this is the QPS-II state.

frequencies uniformly distributed in ω0 − �,ω0 + �, where
� = 0.001. Noteworthy, for small ε2, inhomogeneity does not
affect the overall picture, but just slightly changes the threshold
for synchrony breaking.

Finally, we consider the intermediate values of ε2. The
essential interesting feature here is bistability and hysteresis. It
turns out that, with increase of η1, a QPS state gains its stability
while the synchronous state is still stable. Thus, partial and full
synchrony coexist in this domain. (Practically, we performed
simulations either starting from almost synchronous or from
almost asynchronous initial conditions. Alternatively, to deter-
mine the stability domain of QPS we started from the partially
synchronous state and decreased η1.) Analysis shows that this
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FIG. 7. (Color online) Hysteresis at the transition from syn-
chrony to QPS-I for ε2 = 0.7. The shown quantities are mean
field amplitude ρ (a), frequency difference ν − 	 (b), and standard
deviations σo (c) and δo (d) of the instantaneous frequency and of
the amplitude of the oscillators. In each panel solid blue line shows
the results obtained for nearly asynchronous initial conditions, while
dashed-dotted red line corresponds to nearly synchronous initial
conditions.
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FIG. 8. (Color online) Hysteresis at transitions between syn-
chrony, QPS-I and QPS-II for ε2 = 0.95. The shown quantities are
the same as in Fig. 7.

domain contains subdomains of QPS-I and QPS-II dynamics.
For illustration, we consider synchrony-breaking transitions
for two values of parameter ε2, ε2 = 0.7 and ε2 = 0.95. In
the former case, we observed a transition from synchrony to
the QPS-I dynamics. In contrast to small ε2 (cf. the picture
for ε2 = 0.3 in Fig. 2), here the frequency difference ν − 	

and the amplitude modulation appear by a jump; see Fig. 7. In
the latter case, ε2 = 0.95, we first observed a transition from
synchrony to QPS-II and then another transition to QPS-I (see
Fig. 8). It means that in this case, with increase of η1, first
the amplitude modulation appears by a jump, and then the
frequency difference appears at another critical value of the
parameter.

To conclude this section, we mention that we cannot claim
that the diagram in Fig. 1 yields a complete description of the
dynamics, because it is not possible to check all admissible
initial conditions. For example, for some small parameter
domain we have observed coexistence of both types of QPS
dynamics. We cannot exclude other interesting dynamical
regimes, but we believe that we have described the dominating
solutions.

VI. DISCUSSION AND CONCLUSIONS

In this paper we analyzed two regimes of partially syn-
chronous states in globally coupled identical oscillator popu-
lations. These regimes can be attributed to a type of bifurcation
at the transition from full to partial synchrony: QPS-I corre-
sponds to one real evaporation eigenvalue becoming positive,
while regime QPS-II corresponds to two complex evaporation
eigenvalues crossing real axis (in terms of multipliers, one real
multiplier becomes larger than 1 or two complex multipliers
become larger than 1 in absolute values). These transitions are
roughly related to two typical bifurcations from a steady state
to a periodic dynamics: SNIPER (saddle-node-infinite-period)
and Hopf bifurcations. The main difference is that in ensembles

of oscillators the transition is extremely high dimensional
(in fact, infinite dimensional in the thermodynamic limit) so
that usual low-dimensional bifurcation theory does not apply.
In particular, while we can reliably describe some robust
dynamical features like frequency difference between the
mean field and the individual oscillators, other fine dynamical
features such as appearance of clusters seem to be nonuniversal
and strongly model dependent.

For example, the simplest setup for the description of the
regime QPS-I is the nonlinear extension of the Kuramoto-
Sakaguchi model Eq. (4), but it does not allow for multiple
clusters. For phase models with a general coupling function
(not just one harmonics) of phase differences, called Daido
models [16], this does not hold. Therefore, for such models
one can expect (i) scattered states, (ii) clustered states, (iii)
and mixed states [scattered oscillators plus cluster(s)]. These
states may also be quasiperiodic. Certainly, the same can be
said if one goes beyond the phase dynamics approximation
and analyzes globally coupled multidimensional oscillators.
To the type (iii) belong also chimera states [17], originally
described for nonlocally coupled oscillators and for interacting
subpopulations. In a chimeralike state of a globally coupled
ensemble, one cluster coexists with a scattered subpopulation.
This regime can be considered as a special case of partial
synchrony; recently studied examples include ensembles of
phase oscillators with delay [18] and ensembles of SL
systems [9,19].

Noteworthy is that the chimera state was recently found [19]
in a well studied model of linearly coupled SL oscillators;
see [10,11]. The equations for complex variables ak read (in
our notation):

ȧk = (1 + iω0)ak − (1 + iα)|ak|2ak + ε̄(1 + iμ)(A − ak),

(11)

where A is defined according to Eq. (2). Notice that in the
weak-coupling approximation, this models reduces to the
Kuramoto-Sakaguchi case with ω = ω0 − α − ε sin β, β =
arctan μ, and ε = ε̄/ cos β. Thus, no partially synchronous
state can be found for weak coupling.

If one goes beyond the phase approximation and considers
the full equations, then, as shown in Ref. [11], there exists a
parameter domain where both synchrony and full incoherence
are unstable and therefore some partially synchronous state
appears. Namely, synchronous solution ak = A is always
stable if αμ > −1. Otherwise, for αμ < −1, synchrony is
stable if

ε > εc = −2(1 + αμ)

1 + μ2
.

Thus, with increase of coupling we can observe a transition of
incoherence–intermediate state–synchrony; numerics shows
that in the intermediate state the collective mode is chaotic
or exhibits a chimera state [19]. Notice that the transition from
the asynchronous state to the stable synchronous state happens
when one real eigenvalue becomes negative.

Remarkably, in the case of chaos the dynamics also
possesses the property, characteristic of the QPS-I regime,
that the frequencies of the mean field and of the units
are different. For an example we take the model (11) with
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FIG. 9. (Color online) Chaotic dynamics of the model (11).
Black solid line shows trajectory of an oscillator; blue bold line
depicts the mean field. Open circles show a snapshot of the ensemble.
(a) Phase portraits; (b) time dependence. Notice then when the
oscillator amplitude decreases, the mean field makes an additional
rotation with respect to the oscillator; thus, the time-averaged
frequencies differ, as is typical for a QPS-I state.

ε = 0.39, α = −1.5, μ = 1. For these parameter values the
dynamics of both oscillators and of the collective mode is
chaotic; see Fig. 9(a). Computation of average frequencies ν

and 	 shows that ν 	= 	. This fact obviously follows from the
plots of Re[a(t)], Re[A(t)]; see Fig. 9(b): when the amplitude
of an oscillator becomes relatively small due to chaos, the
phase slip occurs because the mean field makes an additional
rotation with respect to the oscillator. This picture agrees with a
qualitative description of phase synchronization of chaos [20],
where the effect of chaotic amplitudes is considered as an

effective noise which causes phase slips. Phase slips of chaotic
oscillators with respect to the mean field can be also observed
for intrinsically chaotic systems, e.g., for an ensemble of
globally coupled Rössler oscillators.

Finally, we notice that quasiperiodic partially synchronous
states can appear without synchrony-breaking transition. The
most known example is the van Vreeswijk model [21] of leaky
integrate-and-fire neurons where the quasiperiodic motion
emerges from the splay state.

In summary, we have analyzed a model of nonlinearly
coupled limit-cycle oscillators and revealed two routes to
two quasiperiodic states via synchrony breaking. These states
appear via two different bifurcations. Moreover, we have
shown the transition between QPS-I and QPS-II states, as well
as domains of bistability.

ACKNOWLEDGMENTS

The study was supported by COSMOS ITN (EU Hori-
zon 2020 research and innovation programme under Maria-
Sklodowska-Curie Grant Agreement No. 642563). We ac-
knowledge helpful discussions with A. Polity, M. Zaks, and
I. Belykh. A.P. was supported by Grant Agreement No.
02.B.49.21.0003 of August 27, 2013 between the Russian
Ministry of Education and Science and Lobachevsky State
University of Nizhni Novgorod.

[1] A. T. Winfree, J. Theor. Biol. 16, 15 (1967); The Geometry of
Biological Time (Springer, Berlin, 1980).

[2] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence
(Springer, Berlin, 1984).

[3] S. H. Strogatz, Physica D 143, 1 (2000); Sync: The Emerging
Science of Spontaneous Order (Hyperion, New York, 2003).

[4] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization. A
Universal Concept in Nonlinear Sciences (Cambridge Univer-
sity Press, Cambridge, England, 2001).

[5] D. Golomb, D. Hansel, and G. Mato, in Neuro-informatics
and Neural Modeling, Handbook of Biological Physics Vol. 4,
edited by F. Moss and S. Gielen (Elsevier, Amsterdam, 2001),
pp. 887–968; E. Ott, Chaos in Dynamical Systems, 2nd ed.
(Cambridge University Press, Cambridge, England, 2002); S.
C. Manrubia, A. S. Mikhailov, and D. H. Zanette, Emergence
of Dynamical Order: Synchronization Phenomena in Complex
Systems, Lecture Notes in Complex Systems Vol. 2 (World
Scientific, Singapore, 2004); J. A. Acebron, L. L. Bonilla, C.
J. P. Vicente, F. Ritort, and R. Spigler, Rev. Mod. Phys. 77,
137 (2005); M. Breakspear, S. Heitmann, and A. Daffertshofer,
Front. Hum. Neurosci. 4, 190 (2010).

[6] Y. Kuramoto, in International Symposium on Mathematical
Problems in Theoretical Physics, edited by H. Araki, Springer
Lecture Notes in Physics Vol. 39 (Springer, New York, 1975),
p. 420; H. Sakaguchi and Y. Kuramoto, Prog. Theor. Phys. 76,
576 (1986).

[7] A. Pikovsky and M. Rosenblum, Physica D 238, 27 (2009).
[8] O. V. Popovych, C. Hauptmann, and P. A. Tass, Phys. Rev. Lett.

94, 164102 (2005).
[9] L. Schmidt, K. Schönleber, K. Krischer, and V. Garcı́a-Morales,

Chaos 24, 013102 (2014); L. Schmidt and K. Krischer,
Phys. Rev. Lett. 114, 034101 (2015).

[10] V. Hakim and W.-J. Rappel, Phys. Rev. A 46, R7347 (1992).
[11] N. Nakagawa and Y. Kuramoto, Prog. Theor. Phys. 89, 313

(1993); ,Physica D 75, 74 (1994).
[12] P. C. Matthews, R. E. Mirollo, and S. H. Strogatz, Physica D

52, 293 (1991); H. Daido and K. Nakanishi, Phys. Rev. Lett. 93,
104101 (2004); ,96, 054101 (2006).

[13] M. Rosenblum and A. Pikovsky, Phys. Rev. Lett. 98, 064101
(2007).

[14] S. Watanabe and S. H. Strogatz, Phys. Rev. Lett. 70, 2391 (1993);
,Physica D 74, 197 (1994); A. Pikovsky and M. Rosenblum, ibid.
240, 872 (2011).

[15] K. Kaneko, Physica D 77, 456 (1994); A. Pikovsky, O.
Popovych, and Y. Maistrenko, Phys. Rev. Lett. 87, 044102
(2001).

[16] H. Daido, Physica D 69, 394 (1993); ,Prog. Theor. Phys. 89, 929
(1993); ,J. Phys. A: Math. Gen. 28, L151 (1995); ,Physica D 91,
24 (1996).

[17] Y. Kuramoto and D. Battogtokh, Nonlin. Phenom. Complex
Syst. 5, 380 (2002); D. M. Abrams and S. H. Strogatz,
Phys. Rev. Lett. 93, 174102 (2004); O. E. Omel’chenko,

012919-7

http://dx.doi.org/10.1016/0022-5193(67)90051-3
http://dx.doi.org/10.1016/0022-5193(67)90051-3
http://dx.doi.org/10.1016/0022-5193(67)90051-3
http://dx.doi.org/10.1016/0022-5193(67)90051-3
http://dx.doi.org/10.1016/S0167-2789(00)00094-4
http://dx.doi.org/10.1016/S0167-2789(00)00094-4
http://dx.doi.org/10.1016/S0167-2789(00)00094-4
http://dx.doi.org/10.1016/S0167-2789(00)00094-4
http://dx.doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/10.3389/fnhum.2010.00190
http://dx.doi.org/10.3389/fnhum.2010.00190
http://dx.doi.org/10.3389/fnhum.2010.00190
http://dx.doi.org/10.3389/fnhum.2010.00190
http://dx.doi.org/10.1143/PTP.76.576
http://dx.doi.org/10.1143/PTP.76.576
http://dx.doi.org/10.1143/PTP.76.576
http://dx.doi.org/10.1143/PTP.76.576
http://dx.doi.org/10.1016/j.physd.2008.08.018
http://dx.doi.org/10.1016/j.physd.2008.08.018
http://dx.doi.org/10.1016/j.physd.2008.08.018
http://dx.doi.org/10.1016/j.physd.2008.08.018
http://dx.doi.org/10.1103/PhysRevLett.94.164102
http://dx.doi.org/10.1103/PhysRevLett.94.164102
http://dx.doi.org/10.1103/PhysRevLett.94.164102
http://dx.doi.org/10.1103/PhysRevLett.94.164102
http://dx.doi.org/10.1063/1.4858996
http://dx.doi.org/10.1063/1.4858996
http://dx.doi.org/10.1063/1.4858996
http://dx.doi.org/10.1063/1.4858996
http://dx.doi.org/10.1103/PhysRevLett.114.034101
http://dx.doi.org/10.1103/PhysRevLett.114.034101
http://dx.doi.org/10.1103/PhysRevLett.114.034101
http://dx.doi.org/10.1103/PhysRevLett.114.034101
http://dx.doi.org/10.1103/PhysRevA.46.R7347
http://dx.doi.org/10.1103/PhysRevA.46.R7347
http://dx.doi.org/10.1103/PhysRevA.46.R7347
http://dx.doi.org/10.1103/PhysRevA.46.R7347
http://dx.doi.org/10.1143/ptp/89.2.313
http://dx.doi.org/10.1143/ptp/89.2.313
http://dx.doi.org/10.1143/ptp/89.2.313
http://dx.doi.org/10.1143/ptp/89.2.313
http://dx.doi.org/10.1016/0167-2789(94)90275-5
http://dx.doi.org/10.1016/0167-2789(94)90275-5
http://dx.doi.org/10.1016/0167-2789(94)90275-5
http://dx.doi.org/10.1016/0167-2789(94)90275-5
http://dx.doi.org/10.1016/0167-2789(91)90129-W
http://dx.doi.org/10.1016/0167-2789(91)90129-W
http://dx.doi.org/10.1016/0167-2789(91)90129-W
http://dx.doi.org/10.1016/0167-2789(91)90129-W
http://dx.doi.org/10.1103/PhysRevLett.93.104101
http://dx.doi.org/10.1103/PhysRevLett.93.104101
http://dx.doi.org/10.1103/PhysRevLett.93.104101
http://dx.doi.org/10.1103/PhysRevLett.93.104101
http://dx.doi.org/10.1103/PhysRevLett.96.054101
http://dx.doi.org/10.1103/PhysRevLett.96.054101
http://dx.doi.org/10.1103/PhysRevLett.96.054101
http://dx.doi.org/10.1103/PhysRevLett.98.064101
http://dx.doi.org/10.1103/PhysRevLett.98.064101
http://dx.doi.org/10.1103/PhysRevLett.98.064101
http://dx.doi.org/10.1103/PhysRevLett.98.064101
http://dx.doi.org/10.1103/PhysRevLett.70.2391
http://dx.doi.org/10.1103/PhysRevLett.70.2391
http://dx.doi.org/10.1103/PhysRevLett.70.2391
http://dx.doi.org/10.1103/PhysRevLett.70.2391
http://dx.doi.org/10.1016/0167-2789(94)90196-1
http://dx.doi.org/10.1016/0167-2789(94)90196-1
http://dx.doi.org/10.1016/0167-2789(94)90196-1
http://dx.doi.org/10.1016/0167-2789(94)90196-1
http://dx.doi.org/10.1016/j.physd.2011.01.002
http://dx.doi.org/10.1016/j.physd.2011.01.002
http://dx.doi.org/10.1016/j.physd.2011.01.002
http://dx.doi.org/10.1016/j.physd.2011.01.002
http://dx.doi.org/10.1016/0167-2789(94)90301-8
http://dx.doi.org/10.1016/0167-2789(94)90301-8
http://dx.doi.org/10.1016/0167-2789(94)90301-8
http://dx.doi.org/10.1016/0167-2789(94)90301-8
http://dx.doi.org/10.1103/PhysRevLett.87.044102
http://dx.doi.org/10.1103/PhysRevLett.87.044102
http://dx.doi.org/10.1103/PhysRevLett.87.044102
http://dx.doi.org/10.1103/PhysRevLett.87.044102
http://dx.doi.org/10.1016/0167-2789(93)90102-7
http://dx.doi.org/10.1016/0167-2789(93)90102-7
http://dx.doi.org/10.1016/0167-2789(93)90102-7
http://dx.doi.org/10.1016/0167-2789(93)90102-7
http://dx.doi.org/10.1143/ptp/89.4.929
http://dx.doi.org/10.1143/ptp/89.4.929
http://dx.doi.org/10.1143/ptp/89.4.929
http://dx.doi.org/10.1143/ptp/89.4.929
http://dx.doi.org/10.1088/0305-4470/28/5/002
http://dx.doi.org/10.1088/0305-4470/28/5/002
http://dx.doi.org/10.1088/0305-4470/28/5/002
http://dx.doi.org/10.1088/0305-4470/28/5/002
http://dx.doi.org/10.1016/0167-2789(95)00260-X
http://dx.doi.org/10.1016/0167-2789(95)00260-X
http://dx.doi.org/10.1016/0167-2789(95)00260-X
http://dx.doi.org/10.1016/0167-2789(95)00260-X
http://dx.doi.org/10.1103/PhysRevLett.93.174102
http://dx.doi.org/10.1103/PhysRevLett.93.174102
http://dx.doi.org/10.1103/PhysRevLett.93.174102
http://dx.doi.org/10.1103/PhysRevLett.93.174102


MICHAEL ROSENBLUM AND ARKADY PIKOVSKY PHYSICAL REVIEW E 92, 012919 (2015)

Y. L. Maistrenko, and P. A. Tass, ibid. 100, 044105 (2008);
D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, ibid.
101, 084103 (2008); E. A. Martens, S. Thutupalli, A. Fourriere,
and O. Hallatschek, Proc. Natl. Acad. Sci. USA 110, 10563
(2013).

[18] A. Yeldesbay, A. Pikovsky, and M. Rosenblum, Phys. Rev. Lett.
112, 144103 (2014).

[19] G. C. Sethia and A. Sen, Phys. Rev. Lett. 112, 144101
(2014).

[20] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev.
Lett. 76, 1804 (1996).

[21] C. van Vreeswijk, Phys. Rev. E 54, 5522 (1996);
P. Mohanty and A. Politi, J. Phys. A: Math. Gen. 39, L415
(2006).

012919-8

http://dx.doi.org/10.1103/PhysRevLett.100.044105
http://dx.doi.org/10.1103/PhysRevLett.100.044105
http://dx.doi.org/10.1103/PhysRevLett.100.044105
http://dx.doi.org/10.1103/PhysRevLett.100.044105
http://dx.doi.org/10.1103/PhysRevLett.101.084103
http://dx.doi.org/10.1103/PhysRevLett.101.084103
http://dx.doi.org/10.1103/PhysRevLett.101.084103
http://dx.doi.org/10.1103/PhysRevLett.101.084103
http://dx.doi.org/10.1073/pnas.1302880110
http://dx.doi.org/10.1073/pnas.1302880110
http://dx.doi.org/10.1073/pnas.1302880110
http://dx.doi.org/10.1073/pnas.1302880110
http://dx.doi.org/10.1103/PhysRevLett.112.144103
http://dx.doi.org/10.1103/PhysRevLett.112.144103
http://dx.doi.org/10.1103/PhysRevLett.112.144103
http://dx.doi.org/10.1103/PhysRevLett.112.144103
http://dx.doi.org/10.1103/PhysRevLett.112.144101
http://dx.doi.org/10.1103/PhysRevLett.112.144101
http://dx.doi.org/10.1103/PhysRevLett.112.144101
http://dx.doi.org/10.1103/PhysRevLett.112.144101
http://dx.doi.org/10.1103/PhysRevLett.76.1804
http://dx.doi.org/10.1103/PhysRevLett.76.1804
http://dx.doi.org/10.1103/PhysRevLett.76.1804
http://dx.doi.org/10.1103/PhysRevLett.76.1804
http://dx.doi.org/10.1103/PhysRevE.54.5522
http://dx.doi.org/10.1103/PhysRevE.54.5522
http://dx.doi.org/10.1103/PhysRevE.54.5522
http://dx.doi.org/10.1103/PhysRevE.54.5522
http://dx.doi.org/10.1088/0305-4470/39/26/L01
http://dx.doi.org/10.1088/0305-4470/39/26/L01
http://dx.doi.org/10.1088/0305-4470/39/26/L01
http://dx.doi.org/10.1088/0305-4470/39/26/L01



