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We generalize the Kuramoto model of globally coupled oscillators to multifrequency communities. A situation
when mean frequencies of two subpopulations are close to the resonance 2 : 1 is considered in detail. We construct
uniformly rotating solutions describing synchronization inside communities and between them. Remarkably, cross
coupling across the frequencies can promote synchrony even when ensembles are separately asynchronous. We
also show that the transition to synchrony due to the cross coupling is accompanied by a huge multiplicity of
distinct synchronous solutions, which is directly related to a multibranch entrainment. On the other hand, for
synchronous populations, the cross-frequency coupling can destroy phase locking and lead to chaos of mean
fields.
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I. INTRODUCTION

Models in the form of coupled oscillators are ubiquitous
in various scientific fields, ranging from physics and chem-
istry [1] to biology [2], as well as in some interdisciplinary
applications [3]. In many cases the dynamics of oscillatory
ensembles can be successfully studied in the phase approx-
imation [4,5]. When the coupling between the oscillators is
relatively weak, one can neglect changes in the amplitude
dynamics of natural limit cycles of the oscillators and describe
the system in terms of the phases only. This technique is
known as phase reduction, and it represents, basically, one of
the few rigorous mathematical approaches to study complex
nonequilibrium nonlinear oscillatory dynamics.

The simplest setup here represents a globally coupled
ensemble with weak interaction and relatively close natural
frequencies. The phase reduction here leads to the system of
globally coupled phase equations where interaction between
the oscillators is described by a 2π -periodic function of
phase differences [4,6–8]. The classical and well-studied
Kuramoto–Sakaguchi model appears when only the first
Fourier mode in the interaction function is present, which
leads to simple sinusoidal coupling. There is almost 40 years
of intensive studies dedicated to the explanation of bifurcations
and dynamics in this model [9,10]. A surprising recent result
discovered a possibility of a low-dimensional description of the
classical Kuramoto model in terms of macroscopic order pa-
rameters [11–13]. However, this reduction to low-dimensional
systems does not imply simplicity of dynamical behavior. In
contrast, Ref. [14] report on quite complex transitions and
bifurcations in the Kuramoto–Sakaguchi models.

The cases of multiharmonic coupling functions [8,15]
appear to be more complicated and are usually responsible
for new dynamical effects in comparison with the classical
setup with purely sinusoidal functions. In large ensembles,
the multiharmonic case leads to appearance of so-called
multibranch entrainment solutions with a huge multiplicity
of possible synchronous states [8,15,16]. The latter also leads
to nontrivial noise-induced effects [17].

One of the directions in this growing theoretical field
is dedicated to multifrequency oscillator communities. As

mentioned before, the Kuramoto-type models were obtained
under assumptions of the weak-coupling limit and the close-
ness of natural oscillator frequencies. However, when the
spreading of the frequencies is huge in comparison to the
interaction strength, the phase reduction leads to another type
of phase model. A natural setup here implies the existence of
a certain number of oscillator subpopulations (communities),
such that the frequencies inside each population are close but
differ significantly across the distinct communities [18–20].
This situation is inspired by theoretical and experimental
results from neuroscience [21], indicating that distinct inter-
acting brain areas exhibit different natural oscillatory rhythms.

In this paper we consider a particular problem when distinct
oscillatory communities have natural frequencies close to a
high-order resonance. First, we derive general phase equations
for globally interacting ensembles and distinguish different
types of resonant coupling which may appear in the system.
Next, we concentrate on the simplest case of two interacting
populations whose mean frequencies are close to a 2 : 1
resonance. The aim of this paper is to demonstrate possible
effects of high-order resonances with this simple example. To
describe the dynamics, we adapt the self-consistent approach
developed in Ref. [16] for calculating stationary order parame-
ters for multiharmonic coupling functions. Our analysis shows
that the model exhibits reach dynamical behavior, including
multibranch entrainment (multiplicity) and chaotic collective
oscillations.

II. PHASE EQUATIONS FOR RESONANTLY
COUPLED POPULATIONS

In this section we present a general scheme of coupling
in resonant, multifrequency populations of oscillators. We
assume that each oscillator is described solely by its phase
φ, which satisfies the following equation:

φ̇ = ω + S(φ)F,

where ω is oscillator’s natural frequency, S(φ) is its phase-
response curve, and F is the force acting from other oscillators.
In order to simplify the notation, we consider a thermodynamic
limit, where the number of units in all populations and
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subpopulations tends to infinity (although at the end we also
write the governing equations for a finite-size case). We assume
that the ensemble is divided into M distinct subpopulations (we
use index n for referring to them), around M distinct mean
frequencies ωn. Additionally, there can be a small individual
deviation from the mean frequency � (typically described by
a unimodal distribution around zero). We now introduce slow
phases by writing explicitly the fast rotating terms ∼ωnt . In
fact, we can also chose frequencies of fast rotations �n to be
close, but not exactly equal, to ωn. We will use this freedom
to be able to make perfect averaging below. Our slow phases
ϕn(�) = φn − �nt satisfy equations

ϕ̇n(�) = � + Sn(�nt + ϕn)Fn, (1)

where now individual mismatches � for the group n are
distributed generally asymmetrically, with some small shift
∼ωn − �n.

Next, we assume that coupling between the groups and
inside each group is due to mean fields only. These mean
fields for each subpopulation are represented by generalized
order parameters

Z
(n)
k = 〈eik(�nt+ϕn)〉 = Z

(n)
k eik�nt ,

where averaging is over the distribution of the slow phases
following from Eq. (1) and over the distribution of �. The
introduced order parameters Z are slow functions of time
because they are defined via the slow phases:

Z
(n)
k = 〈eikϕn〉. (2)

In general, the force acting on the oscillators of the group n is
from all other groups and is a generally nonlinear function of
order parameters, which one can expand in powers of them.
However, in this paper we restrict ourselves to linear coupling
only, i.e., we assume that Fn is a linear function of the order
parameters:

Fn

(
Z

(1)
k , Z

(2)
k , . . .

) =
∑
k,m

h
(m)
n,kZ

(m)
k =

∑
k,m

h
(m)
n,kZ

(m)
k eik�mt .

(3)
Representing the phase response function Sn as a Fourier

series

Sn(φ) =
∑

p

snpeipφ

and substituting this into Eq. (1), we obtain

ϕ̇n(�) = � +
∑

p

snpeipϕeip�nt

[∑
k,m

h
(m)
n,kZ

(m)
k eik�mt

]

= � +
∑
p,k,m

snph
(m)
n,kZ

(m)
k eipϕei(p�n+k�m)t . (4)

Now one has to perform averaging of Eq. (4) to reveal
evolution of the slow phase. The fast terms on the right-hand
side (r.h.s.) are those containing explicit time dependence with
one of the frequencies �n or with a combination of them.
Such a combination can be small: this is exactly the case of
a resonance that is of special interest to us. Here, we use the
freedom to choose of particular values of �n, to make the
resonance exact. This means that some linear combination of

frequencies �n vanishes exactly. Performing averaging means
just keeping these terms on the r.h.s. of Eq. (4) and neglecting
all other containing explicit time dependence.

Expansion (4) can be treated in many setups of particular
resonant conditions, we describe here some evident cases:

(1) One population of oscillators. In this case only one fre-
quency � exists. Here the only terms surviving the averaging
are those with p + k = 0; this leads to the Daido model [8].

(2) Two subpopulations. Here the main interest is in the
resonance of two frequencies �1,�2. The simplest case is
just the second-harmonic resonance: �2 = 2�1. In this case
only those cross-population coupling terms with p + 2k = 0
survive. Similarly, for high-order resonances like a�2 = b�1

(with integer a, b) the terms with ap + bk = 0 contribute.
(3) More than two subpopulations. One can see from

Eq. (4) that, in the case of linear coupling, there is no direct
interaction involving more than two subpopulations. So the
resulting coupling is a combination of terms stemming from
pairwise resonances. We mention here for completeness that
several nonlinear coupled populations of oscillators have been
treated in Refs. [19,20]. In Ref. [19] three populations of
oscillators have been considered, with a resonance condition
�1 + �2 = �3, where the coupling terms contain combi-
nations of three phases like φ1 + φ2 − φ3. In Ref. [20], a
nonresonant situation was studied, where the coupling terms
are phase independent.

We restrict ourself in this paper to the simplest case of
two resonant subpopulations with �2 = 2�1. As described
above, after averaging only terms where combinations
∼(�1,2 − �1,2) and ∼(�2 − 2�1) appear, survive, which
are responsible for the interaction within one and between
subpopulations, respectively:

ϕ̇1(�) = � +
∑

k

s1,−kh
(1)
1,kZ

(1)
k e−ikϕ1

+
∑

k

s1,−2kh
(2)
1,kZ

(2)
k e−i2kϕ1 ,

ϕ̇2(�) = � +
∑

k

s2,−kh
(2)
2,kZ

(2)
k e−ikϕ2

+
∑

k

s2,−kh
(1)
2,2kZ

(1)
2k e−ikϕ2 . (5)

We now insert here the definition of the slow order
parameters (2) and obtain

ϕ̇1(�) = � +
〈∑

k

s1,−kh
(1)
1,ke

ik(ϕ̃1−ϕ1)

〉

+
〈∑

k

s1,−2kh
(2)
1,ke

ik(ϕ̃2−2ϕ1)

〉
,

ϕ̇2(�) = � +
〈∑

k

s2,−kh
(2)
2,ke

ik(ϕ̃2−ϕ2)

〉

+
〈∑

k

s2,−kh
(1)
2,2ke

ik(2ϕ̃1−ϕ2)

〉
, (6)

where averaging is over variables with a tilde. Now we can
define effective coupling functions inside the subpopulations
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f11, f22 and coupling functions across the subpopulation
f12, f21 as

f11(φ) =
∑

k

s1,−kh
(1)
1,ke

ikφ, f22(φ) =
∑

k

s2,−kh
(2)
2,ke

ikφ,

(7)
f12(φ) =

∑
k

s1,−2kh
(2)
1,ke

ikφ, f21(φ) =
∑

k

s2,−kh
(1)
2,2ke

ikφ.

Now we can formulate equations for finite populations,
replacing averages 〈〉 by corresponding sums. We assume that
subpopulations 1 and 2 have N1 and N2 units, respectively.
Furthermore, one can now also transform back to the original
fast phases, because in the averaged formulation the absolute
values of the frequencies do not play any role. Denoting the
phases in the subpopulation at a smaller frequency (we will
also call it the first subpopulation below) as φp, and the phases
in the subpopulation at a larger double frequency (referred
hereafter as the second subpopulation) as ψp, we get

φ̇q = ωq + 1

N1

N1∑
k=1

f11(φk − φq) + 1

N2

N2∑
p=1

f12(ψp − 2φq),

(8)

ψ̇q = νq + 1

N2

N2∑
k=1

f22(ψk − ψq) + 1

N1

N1∑
p=1

f21(2φp − ψq),

where we also have split notations for frequencies in two
subpopulations. This system is a generalization of the Daido
model [8] to two resonantly coupled ensembles. Below we
consider the case where coupling functions f contain the
first harmonics only; this corresponds to the Kuramoto–
Sakaguchi-type coupling. In this case each coupling function
is determined by two parameters, the amplitude and the phase
shift. One of the phase shifts in the cross coupling can be set
to zero by shifting all the phases in one subpopulation with
respect to another one. Thus, our coupling functions will be

f11(x) = ε1 sin(x − α1), f22(x) = ε2 sin(x − α2),

f12(x) = γ1 sin(x − β), f21(x) = γ2 sin x.

Next, we fix the distributions of the frequencies. As after
the averaging the system is invariant under transformation
φ → φ + At , ψ → ψ + 2At for arbitrary A, we can set
the average value of the natural frequencies in the first
subpopulation φ to zero. Hence, the average frequency δ in the
second subpopulation is the relevant parameter responsible for
the frequency mismatch between the communities. We assume
that the frequencies ω and ν are distributed according to the
Lorentzian distributions, with equal widths. Because we still
have a freedom of changing the timescale, we assume that this
width is one:

g1(ω) = 1

π (ω2 + 1)
, g2(ν) = 1

π [(ν − δ)2 + 1]
. (9)

The resulting microscopic system of oscillators to be consid-
ered below thus reads

φ̇n = ωn + ε1

N1

N1∑
k=1

sin(φk − φn − α1)

+ γ1

N2

N2∑
k=1

sin(ψk − 2φn − β),

ψ̇m = νm + ε2

N2

N2∑
k=1

sin(ψk − ψm − α2)

+ γ2

N1

N1∑
k=1

sin(2φk − ψm), (10)

with frequencies defined according to the distributions (9).
We now also write down the basic equations in the

thermodynamic limit. Here three complex order parameters
X1, X2, Y appear defined as

Xk = Xke
i�k = 〈eikφ〉 =

∫∫
dφdωg1(ω)ρ(φ|ω)eikφ,

k = 1,2, (11)

Y = Yei�y = 〈eiψ 〉 =
∫∫

dψdνg2(ν)ρ(ψ |ν)eiψ ,

while equations for the phases are

φ̇ = ω + ε1X1 sin(�1−φ−α1) + γ1Y sin(�y − 2φ1 − β),

ψ̇ = ν + ε2Y sin(�y−ψ−α2) + γ2X2 sin(�2 − ψ). (12)

The formulated system of equation will be subject of our
analysis below, where we will concentrate on main dynamical
effects caused by the resonant cross-coupling terms ∼γ . In
numerical simulations we use microscopic equations (10),
while in the theoretical construction the thermodynamic limit
formulation (11,12) is used.

Before proceeding, we shortly discuss possible generaliza-
tions of the formulated equations. Generally, two subpopu-
lations can be in a resonance a : b, i.e., a�2 = b�1. Then,
instead of Eqs. (8), one obtains

φ̇q = ωq + 1

N1

N1∑
k=1

f11(φk−φq) + 1

N2

N2∑
p=1

f12(aψp − bφq),

ψ̇q = νq + 1

N2

N2∑
k=1

f22(ψk−ψq) + 1

N1

N1∑
p=1

f21(bφp − aψq).

(13)

If both a,b > 1, the Ott–Antonsen ansatz used below is not
valid, but one can apply the self-consistent theory to find
uniformly rotating synchronous states; this analysis however
goes beyond the framework of this paper.

III. SELF-CONSISTENT SOLUTIONS IN THE
THERMODYNAMIC LIMIT

Here we present the self-consistent scheme allowing us
to find stationary (or, more generally, uniformly rotating)
synchronous solutions of the system (11,12).

A. Ott–Antonsen ansatz for second subpopulation

The problem partially simplifies by the observation that, for
the subpopulation ψ at the double frequency, the Ott–Antonsen
ansatz [12] can be applied. Indeed, the second of Eqs. (12) can
be rewritten as

ψ̇ = ν + Im[H(t)e−iψ ], H = ε2e
−iα2 Y + γ2X2. (14)
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According to the Ott–Antonsen theory, the equation for the
order parameter Y obeys (under some additional assumptions
which we assume to be satisfied here), in the case of a
Lorentzian distribution (9), an ordinary differential equation
(ODE)

Ẏ = Y(iδ − 1) − 1

2
(H∗Y2 − H) = Y(iδ − 1)

− ε2Y
2

(e−iα2 |Y|2 − eiα2 ) − γ2

2
(X∗

2Y2 − X2). (15)

B. Uniformly rotating ansatz

We now construct a solution for the ensemble of oscillators
φ. Here we cannot use the Ott–Antonsen ansatz, because
the latter is only applicable for the driving terms possessing
one harmonic of the phase, like in Eq. (14). The equations
for φ possess both the first and the second harmonics. In
order to find stationary values of the mean fields, we adapt
the self-consistent scheme developed in Ref. [16] for the
deterministic biharmonic Kuramoto model (for the noisy case
a similar method can be used, see Refs. [17,22]).

In this self-consistent approach one finds uniformly rotating
distributions, i.e., distributions that are stationary in a rotating
reference frame. Let us denote the frequency of this frame
�, it will be determined self-consistently as a result of the
calculations. According to this, we introduce constant phases
of the order parameters

�1 = �t, θ2 = �2 − 2�t, θy = �y − 2�t (16)

(here the phase shift of the first order parameter X1 is set to
zero, this can be always done by the time shift). Also, we
introduce a new phase variable ϕ = φ − �t + α1, distribution
of which is expected to be stationary. This variable obeys

ϕ̇ = ω − � + ε1X1 sin(−ϕ) + γ1Y sin(θy + 2α1 − β − 2ϕ).
(17)

C. Stationary solution in a parametric form

The structure of equation (17) for the first population is
very similar to the biharmonic Kuramoto model considered
in Ref. [16]. The difference is that, in the case of the cross
coupling, the second harmonic [the term ∼γ1 in Eq. (17)]
is proportional to the mean field of the second population
Y and not to the own mean-field X2, as in the case of the
biharmonic Kuramoto model [16]. Nevertheless, due to the
similar mathematical structure, nearly the same self-consistent
method as in Ref. [16] can be adapted here. In this section we
briefly outline the calculation scheme; all the details can be
found in the appendix.

First, it is convenient to introduce auxiliary parameters that
directly determine the form of the phase velocity: an overall
magnitude of the coupling term R, a parameter u determining
relative importance of first-harmonic and second-harmonic
terms: ε1X1 = R sin u, γ1Y = R cos u, and a parameter v =
θy + 2α1 − β determining the phase shift. Another two pa-
rameters are the rescaled rotating frequency z = �/R and the
rescaled natural oscillator’s frequency x = ω/R. The form
of the coupling function depends solely on u and v, in some
range of these parameters (see Fig. 5 in the appendix) and some

oscillator frequencies, there are two possible stable states for
the phase (due to the presence of the second Fourier mode in
the coupling function). Therefore the redistribution between
these states is needed to define the distribution density of the
population. This redistribution is defined by an indicator
function S(x) which takes values between zero and one,
and can be any function. So, fixing S(x) and parameters
R, u, v, x, z one can find the distribution of the phase ϕ for
each frequency x. Averaging the observables eikϕ over this
distribution and the distribution of frequencies [needed for
calculation of Eq. (11)] then reduces to calculating integrals
F1 exp iQ1 and F2 exp iQ2 as functions of S(x) and parameters
R, u, v, z [see Eqs. (A8)]. Finally, the solution of the problem
is represented in the parametric form: according to Eqs. (A9)
and (A10), we can represent the order parameters X1, X2, the
frequency �, and the parameters of the coupling as functions of
the introduced auxiliary parameters R, u, v, z, and of indicator
function S(x):

X1 = RF1, X2 = RF2, θ2 = Q2 − 2α1, � = Rz,

ε1 = sin u

F1
,α1 = Q1, γ1 = R cos u

Y
, β = θy + 2Q1 − v.

(18)

D. Accounting for coupling between subpopulations

As one can see from the obtained relations (18), the pa-
rameters of the internal interaction inside the first community
ε1 and α1 are determined unambiguously by this parametric
representation. However, the constants of the cross-coupling
γ1 and β require knowledge of the order parameter Y. Taking
into account the transformation of variables (16), the uniformly
rotating solution of the Ott–Antonsen equation (15) for the
second population, the mean field Y is determined according
to the following relation:

Yeiθy [i(2� − δ) + 1] + ε2Yeiθy

2
(e−iα2Y 2 − eiα2 )

+ γ2X2

2
(e−iθ2Y 2e2iθy − eiθ2 ) = 0. (19)

This complex equation determines Y and θy as functions of
all other parameters; substitution of these values to Eqs. (18)
gives the values of cross-coupling parameters γ1 and β.

In the general-case solution of Eq. (19) cannot be rep-
resented in an analytic form and one should use certain
numerical methods to find them (a parametric representation of
solutions may be possible, but we already have four auxiliary
parameters; introducing another two appears not practical).
However, in two special cases, Eq. (19) can be reduced to a
simple polynomial equation with analytic solutions available.
Namely, (i) for ε2 = 0, the problem reduces to a complex
quadratic equation, and (ii) for the special case � = δ = 0
and v = 0, equation (19) reduces to a real cubic equation. The
latter case corresponds to the simplest situation when there are
no phase shifts in coupling functions: α1,2 = β = 0.

Summarizing, the self-consistent approach for calculation
of stationary synchronous solutions of the problem (11)
and (12) consists of the following steps: (i) for a given set
of the parameters R, u, v, z and of the indicator function
S(x), one constructs the distribution function ρ(ϕ|x) by using
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microscopic dynamics (A2). (ii) Next, by using the function
ρ(ϕ|x) and equations (A8) and (18), one determines the
stationary values of order parameters X1 and X2, the rotating
frequency �, and the corresponding coupling constants ε1 and
α1. (iii) In the following step, one should solve Eq. (19) for
any fixed values of ε2, α2, γ2, and δ. As a result, one obtains
the stationary value for the mean field Y and the remaining
constants of the cross-coupling γ1 and β from Eq. (18).

The solution is in the parametric form: varying the set of
auxiliary parameters R, u, v, z, together with ε2, α2, and γ2,
one gets different solutions for the mean fields X1, X2, and
Y, together with their dependence on the coupling constants
ε1, γ1, and β. This can be done for any indicator function
S(x), which determines redistribution of the phases of the first
subpopulation between possible stable locked states, if the
multibranch entrainment is possible.

In the next sections we apply the self-consistent scheme
to characterize main types of synchronous states existing in
the system of two coupled subpopulations (11) and (12). We
focus on the effects caused by the resonant cross coupling
between the population; therefore, for the internal coupling
we consider the simplest situation when α1 = α2 = 0. For
the sake of simplicity, we restricts ourselves to the following
parameters area: ε1 = ε2 = ε and γ1 = γ2 = γ. It appears
that the latter choice of parameters simplify the presentation

of the results; nevertheless, it contains all the main effects
peculiar for the high-order resonant interaction.

IV. INTERNALLY ASYNCHRONOUS POPULATIONS,
APPEARANCE OF SYNCHRONY DUE TO

RESONANT COUPLING

We start with the analysis of the case when the pop-
ulations are internally asynchronous, hence, without the
cross-coupling (γ = 0) the only stable state for each pop-
ulation is asynchrony when all mean fields vanish: X1,2 =
0, Y = 0. For the Lorentzian distribution of frequencies,
the synchronization sets in at the critical coupling ε = 2.
Therefore, in the following section we concentrate on the
case ε < 2, i.e., the internal coupling inside each popu-
lation is insufficient to maintain synchrony in the system
(or even is repulsive, if ε < 0). The frequency mismatch δ

together with the cross-coupling constant γ and the phase
shift β constitute a set of main control parameters in the
system.

Figure 1(a) shows the area of existence of stationary syn-
chronous solutions in the three-dimensional (3-d) parameter
space (δ,β,γ ). The surface M depicted in the Fig. 1(a) denotes
the border of existence of synchronous states: above the surface
there exist stationary synchronous solutions with X1,2 �= 0

(a) (b)

m

m

m

z

z

z

(c)

M

(d)

M

FIG. 1. (Color online) (a) The surface M depicts the boarder of synchronous states in the parameter space (δ,β,γ ): above the surface
synchrony with X1,2 �= 0 and Y �= 0 exists, below only asynchronous state is possible. The internal coupling ε = 1 for each population, hence,
population are internally asynchronous. (b) The dependence of order parameters on the coupling constant γ is shown for δ = β = 0 and ε = 1.
The curves denote theoretical calculations using the self-consistent scheme, markers correspond to the direct numerical calculations of the
finite-size ensemble (10) for N = 8 × 105. (c), (d) Cuts of the surface M are shown for constant values of the frequency mismatch δ [in panel
(c)] and the phase shift β [in panel (d)].
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and Y �= 0, below M only the asynchronous state exists and is
stable. Figure 1(b) explains the bifurcation diagram depicted
in Fig. 1(a), here we fix the parameters δ = β = 0 and plot
the order parameters X1,2 and Y as a function of parameter γ

[the latter corresponds to the vertical line passing through the
origin in the Fig. 1(a)]. As one can see from the plot, there is
a minimal critical coupling γcr corresponding to the point m

where two branches of synchronous solutions arise. The upper
branch appears to be stable, which is confirmed by direct
numerical simulation of the finite-size ensemble. The lower
branch is unstable and disappears at point z, merging with the
trivial state. The family of the points m obtained at different
values of β and γ constitutes the surface M depicted in
Fig. 1(a).

The form of the surface is invariant under transformation
δ → −δ, β → −β; that is why only the part with δ > 0 is
shown in Fig. 1(a). Expectedly, M has a global minimum at
the point δ = β = 0 what means that, substantially, the phase
shift and the frequency mismatch act against synchronization.
Figures 1(c) and 1(d) show several cuts of the surface M at
constant values of δ = const. [in Fig. 1(c)] and β = const. [in
Fig. 1(d)]. For the greater part of the parameter range, the phase
shift acts against synchronization, as one can easily see from
Fig. 2(c) where the borders of stationary synchronous states

are plotted on the plane (β,γ ). When the frequency mismatch
mismatch is absent (δ = 0), the curves are symmetric with
respect to the line β = 0, and the critical coupling increases
with growth of the absolute value of β. However, it is not
always the case for a nonzero frequency mismatch. The
examples for δ �= 0 in the Fig. 2(c) clearly indicate a nontrivial
fact that the global minima of the curves in the (β,γ ) plane
are shifted towards negative values of β. Similarly, on the
(δ,γ ) plane, the boarder of synchronous states has global
minimum at a nonzero value of δ for finite phase shift
β = π/4.

Remarkably, the transition to synchrony here is always
accompanied by the multiplicity of different synchronous
states with the multibranch entrainment [8,15] in the first
subpopulation. The issue of multiplicity for the biharmonic
Kuramoto model has been studied in detail in Ref. [16].
The multiple synchronous states appear as a result of strong
second harmonic ∼ei2ϕ in the global force acting on oscillators
of the first subpopulation. Apparently, in order to get a
synchronization in the ensembles due to the cross coupling,
the constant γ has to be strong enough, as one can easily see
from the bifurcation diagram in Fig. 1(a). The latter implies
that the coupling function h(u,v,ϕ) [see Eq. (A2)] always
has a double-well form, hence, there is always a possibility

(a) (b)

(c)

FIG. 2. (Color online) The areas of existence of stationary synchronous solutions on the parameter planes (β,γ ) shown for the case
ε = 1 and δ = 0. Different curves correspond to boarder of synchronous states with different indicator functions S(x) = σ = const. (different
multibranch entrainments). Above the curves, solutions with X1,2 �= 0, Y �= 0 exist. Inset shows boundaries of synchronous states plotted for
different values of constant ε. From bottom to top ε = 1.5, ε = 1.0, ε = 0.5, ε = −0.1. Note that the dashed line corresponds to the negative ε,
so the internal coupling is slightly repulsive (desynchronizing) in this case. (b) Dependencies of order parameters X1,2, Y on cross-coupling γ

are shown for states with different σ (see legend). Solid curves denote solutions of self-consistent equations, markers denote direct calculations
of the finite-size ensemble. Other parameters are ε = 0.5, β = 0, δ = 0. (c) The same as panel (b) but for ε = 1.5.
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to redistribute oscillators between the two stable branches in
different ways [in other words, to choose an arbitrary indicator
function S(x) in the self-consistent scheme]. As a result, for
the case of internally asynchronous populations (when ε is not
large enough), a family of synchronous states appears with dis-
tinct multibranch entrainments. Figure 2(a) shows the critical
coupling constants γ at which synchronous states with distinct
redistributions S(x) appear. For the sake of simplicity we chose
S(x) = σ = const. The dependencies of order parameters X1,
X2, and Y on the cross-coupling constant γ for different types
of multibranch entrainments (characterized by constant σ ) are
presented in Fig. 1(b). The main state σ = 0 arises first (i.e.,
at a minimal coupling strengths γ ) in comparison with other
states with the multibranch entrainments σ �= 0. Expectedly,
in all cases an increase of the coupling constant γ leads to an
increase of the order parameters, hence, more oscillators are
entrained in both populations.

Here in this section we concentrated on the effects caused
by the cross-coupling γ and paid less attention to the role
of the internal coupling ε. It is worth mentioning that, in the
simplest form (pure sinusoidal coupling), the interaction inside
the communities produces a relatively straightforward effect.
Namely, increase of the coupling ε leads to enlargement of the
area of synchrony existence in the parameter space (see inset
in Fig. 2).

V. INTERNALLY SYNCHRONOUS POPULATIONS:
CHAOTIC DYNAMICS

In this section we consider the case when ε > 2, hence, the
populations are internally synchronous even without cross-
coupling term ∼γ . Here we report on nontrivial phenomena
when resonant cross coupling yields chaotic collective oscil-
lations.

Figure 3(a) shows the diagram of stationary synchronous
states versus the phase shift in the cross-coupling function
β. The solid curves correspond to solution obtained from the
self-consistent approach (described above), while the markers
denote direct numerical calculations of the ensemble (10) at the
same parameter values. As one can easily see, the stationary
states remain stable until β is less than a certain critical value
[indicated by colored area in the Fig. 3(a)]. However, when
the phase shift becomes relatively close to π , the synchronous
solutions lose stability, and immediately the system switches to
a chaotic oscillation mode. The corresponding time series is
presented in the Fig. 3(b). Remarkably, chaotic oscillations
are characterized by a drift of the phase difference �� =
�2 − �y [see the lowest panel in the Fig. 3(b)], thus locking
of the collective modes disappears. As one can easily see, the
system exhibit phase slips which are indicated by jumps of the
phase difference �� → �� ± 2π [see transitions between
the horizontal dashed lines in Fig. 3(b)]. Between the slips, the

(a) (b)

(c)

Re(C)

Im(C)

X1

p

FIG. 3. (Color online) (a) Dependence of order parameters on phase shift β. Solid and dashed curves denote solutions obtained from the
self-consistent approach. Stable solution corresponds to solid line, unstable to dashed line [stability was checked by direct simulation of the
ensemble (10)]. Markers correspond to simulation of finite-size ensemble (10) for N = 104 oscillators. The colored area denotes the chaotic
region with large amplitude of order-parameter oscillations. Parameters ε = 4.5, γ = 2.8. (b) Time series of the finite-size ensembles in the
chaotic regime. Parameters ε = 4.5, γ = 2.8, β = −3.0, N = 104. (c) Projection of the phase trajectory on the three-dimensional space where
C = YX∗

2 (see text for details). Parameters are the same as in panel (b).
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(a)

A

B

C

(b)

A B C

A B C

FIG. 4. (Color online) (a) The region of existence of chaotic mode on the parameter plane (ε,γ ) is presented for β = π − 0.1, δ = 0,
and N = 104. (b) Dependencies of the order parameter X1 and phase difference �2 − �y are presented for ε = 5, β = π − 0.1, δ = 0, and
N = 104. The gray area denotes the asynchronous regime where the phase difference �2 − �Y goes beyond the interval [−π,π ], so the
ensembles (macroscopic order parameters) are unlocked. The latter area is characterized by irregular chaotic oscillations of macroscopic order
parameters [see Figs. 3(b) and 3(c)].

phase difference exhibits oscillations with growing amplitude
in the vicinity of the stationary state [horizontal dashed lines
in Fig. 3(b)]. Such behavior is associated with the structure
of the chaotic attractor depicted in Fig. 3(c). It appears that
chaotic behavior can be described as Shilnikov chaos arising
close to a homoclinic bifurcation of a saddle-focus equilibrium
state. The steady state [point p in the Fig. 3(c)] clearly
depicts a saddle-focus structure, with a two-dimensional
unstable manifold (see blue solid part of the phase trajectory).
Therefore, starting from the vicinity of the point p, the system
exhibits growing oscillations, and then leaves a vicinity of the
stationary state p. However, after performing a large excursion
(during which also the phase difference can change by 2π ),
the phase trajectory returns to a local vicinity of the point p

along the stable direction [see red solid curve in the Fig. 3(c)],
which gives rise to macroscopic chaotic oscillations in the
system.

Figure 4(a) aims to explain the structure of the parameter
area where chaotic mode exists. As one can see, for each
sufficiently strong internal coupling ε, there is always a certain
range of the cross-coupling constant γ where oscillations are
irregular. With an increase of the cross-coupling γ , the system
passes from the area A (the area where the regular stationary
synchronous solution is stable) to area B which corresponds to
chaotic motion. As mentioned above, area B is characterized
by a drift of the phase difference and large-amplitude irregular
oscillations of the order parameters [see Fig. 4(b)]. Further
increase of constant γ leads back to a regular stationary
synchronous solution [Fig. 4(b)]. The size of the area B on the
(ε,γ ) plane is strongly related to the phase shift in coupling
function: the closer parameter β is to π , the larger area B

is on the (ε,γ ) plane. One can conclude that, for chaos and
desynchronization to occur, the presence of the phase shift β

in the coupling function is essential. It is worth mentioning that
the chaotic mode observed in direct simulations appears to be
weakly dependent on the system size N , if the latter is large.
Calculations with N = 103 and N = 5 × 102 reveal almost the
same boundaries of existence (Fig. 4) and similar dynamical
properties. However, for smaller ensembles (N ≈ 102), strong
finite-size fluctuations interfere with the chaotic dynamics and

may cause large differences in the structure of parameter space
and dynamics.

VI. CONCLUSIONS

Phase reduction is one of the few mathematical techniques
which allows one to perform analytical studies of complex
nonlinear oscillatory systems. Perhaps the most popular and
well-studied phase model is the classical Kuramoto system
which describes an ensemble of globally coupled oscillators
with a sinusoidal type of interaction function. The derivation of
various Kuramoto-type models is based on the assumption of
closeness of natural oscillatory frequencies. However, in many
realistic situations, oscillators may have definitely different
frequencies; an example of this are neural populations that
can produce brain waves wide across the spectrum. For
multifrequency populations one has to extend basic models
of phase dynamics; in previously considered cases such an
extension also led to new dynamical regimes [19,20].

In the present paper we develop an extension of the phase
synchronization theory for multifrequency resonant oscillator
communities. After analyzing general possible resonant terms
for linear mean-field coupling, we focus on the simplest
high-order resonant case, when two communities of oscillators
are globally coupled and have natural population frequencies
close to the rational relation 2 : 1. First, given the assumption
on mean population frequencies, we derive the simplest form
of phase equations for the high-order resonant interaction
between two globally coupled communities of oscillators.
Basically, the structure of the model consists of two main parts:
the first part represents the standard sinusoidal term describing
Kuramoto-type interactions inside each community; the sec-
ond component represents resonant cross coupling between the
populations. Next, we combine the two approaches described
in Refs. [16] and [12] to derive a self-consistent scheme
allowing us to calculate stationary synchronous solutions of
the system in the thermodynamic limit.

In this paper we focus on studying how cross coupling
promotes synchronization and look for novel dynamical effects
due to the high-order resonance. Hence, we consider two
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qualitatively different cases: in the first case the populations
were internally asynchronous, so the internal coupling strength
was relatively weak or repulsive. Here we construct the
bifurcation diagram showing how synchronous regimes appear
in dependence on the main parameters of the model. We
demonstrate that sufficiently strong resonant cross-coupling
results in stationary synchronous solutions appearing in both
subpopulations. Thus, the synchrony can be only mutual. The
nontrivial fact here is that the transition to synchrony due
to the cross coupling is always accompanied by multiplicity
of distinct synchronous states, similar to the case of the
biharmonic Kuramoto model [16]. In the second setup, we
considered an opposite situation, when the internal coupling is
strong, such that almost all oscillators are locked to the mean
fields in the absence of the cross coupling. Here we report on a
quite nontrivial effect wherein the asymmetric cross coupling
can destroy the stationary synchronous state, introducing
chaos into the system. The mean fields of two subpopulations
not only demonstrate chaotically varying amplitudes, but the
subpopulations also desynchronize from each other in the
sense that the phase shift between the mean fields is no longer
constant but performs a biased random walk.
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APPENDIX

To proceed with the self-consistent solution of Eq. (17),
it is convenient to introduce four auxiliary parameters
{R, u, v, z} = P in the following way:

ε1X1 = R sin u, γ1Y = R cos u, � = zR,

v = θy + 2α1 − β. (A1)

Now Eq. (17) takes the following form:

ϕ̇ = R[x − z − sin u sin ϕ − cos u sin(2ϕ − v)]

= R[x − z − h(u,v,ϕ)]. (A2)

We denote x = ω/R and h(u,v,ϕ) = sin u sin ϕ +
cos u sin(2ϕ − v). The new variables and parameters
have the following meaning (which is very similar for the
biharmonic case [16]):

(1) θ2 and θy are stationary phases of the first (mean field
X2) and the second populations, respectively.

(2) R = (ε2
1X

2
1 + γ 2

1 Y 2)1/2 is an overall magnitude of the
interaction function for the first population. Roughly speaking,
relatively large values of R indicate coherent dynamics
with relatively high amplitudes X1 and/or Y . R = 0 means
vanishing order parameters X1 = Y = 0, which corresponds
to complete asynchrony.

(3) u is a parameter reflecting relative strengths of coupling
terms in the first and second harmonics: (sin u = ε1X1

R
and

cos u = γ1Y

R
, respectively).

(4) z = �/R is the rescaled rotating frequency of the order
parameters.

(5) x = ω/R is the rescaled individual frequencies of
oscillators.

(6) v = θy + 2α1 − β is an effective phase shift of the
second-harmonic coupling term with respect to the coupling
at the first harmonics.

(7) h(u,v,ϕ) = sin u sin ϕ + cos u sin(2ϕ − v) is the
rescaled coupling function.

At some constant values of parameters P in Eq. (A2), at
each value of x one can find the stationary distribution function
ρ(ϕ|x,P) and then calculate the corresponding complex order
parameters:

X1 = e−iα1R

∫∫
ρ(ϕ|x,P)eiϕg(Rx)dxdϕ

= e−iα1RF1(P)eiQ1(P),

X2e
iθ2 = e−i2α1R

∫∫
ρ(ϕ|x,P)ei2ϕg(Rx)dxdϕ (A3)

= e−i2α1RF2(P)eiQ2(P),

Fm(P)eiQm(P) ≡
∫∫

dxdϕρ(ϕ|x,P)eimϕg(Rx), m = 1,2.

Our next goal is to calculate the integrals Fm(P); for this
we need to find, by using the dynamical equation (A2),
the stationary distribution function ρ(ϕ|x,P). Let Hmin and
Hmax denote the global minimum and the global maximum
of function h(u,v,ϕ), respectively [Fig. 5(b)]. All oscillators
can be separated into locked ones (for Hmax � x − z � Hmin)
or rotating unlocked ones (x − z > Hmax or x − z < Hmin).
The distribution function of rotating oscillators (index r) is
inversely proportional to their phase velocity:

ρr (ϕ|x,P) = C(x)

|x − z − h(ϕ,u,v)| , (A4)

where C(x) is the normalization constant:

C(x) = 1∫ 2π

0
dϕ

|x−z−y|
.

The stationary phases of locked oscillators (index l) can be
found from the following relation:

x − z = h(u,v,ϕ). (A5)

When finding ϕ as a function of x for nonrotating (locked,
index l) phases, we have to satisfy an additional stability
condition ∂h(u,v,ϕ)

∂ϕ
> 0, which follows from the dynamical

equation (A2). In the (u,v) plane there are two regions V1

and V2 [Fig. 5(a)] with qualitatively different properties of
the system (A2) and different types of distribution function
ρl(ϕ|x,P), respectively:

{u,v} ∈ V1.In this case function h(u,v,ϕ) has a double-
well form like shown in Fig. 5(b). According to Eq. (A2),
oscillators can be located on two possible stable branches
highlighted by the solid curves in Fig. 5(b): the first branch
is ϕ = �1(x,P) in the range ϕ ∈ [ϕ1,ϕ2] and another branch
is ϕ = �2(x,P) for ϕ ∈ [ϕ3,ϕ4]. Here and below we assume
�1(x,P) to be the biggest stable branch. In the range (x −
z) ∈ (xb

1 ,xb
2 ) [Fig. 5(b)] there is an area of bistability on

the microscopic level: the oscillators with the same natural
frequency x can be locked at two different phases �1(x,P) and
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(a)

(b)

h

H

H
(c)

h

FIG. 5. (Color online) (a) Regions V1 and V2 in the plane of parameters (u,v): Domain V1 corresponds to a double-well form of function
h(u,v,ϕ) [(b) and (d)], while in V2h(u,v,ϕ) has a single-well form like that shown in panel (c). (b) Example of function h(u,v,ϕ) with four
extrema. There are two stable branches (solid curves) for stationary phases of locked oscillators. The left branch ϕ = �1(x,P) is larger than the
right one ϕ = �2(x,P). (ϕ1,2,x1,2) denotes coordinates of the extrema corresponding to the branch �1, while (ϕ3,4,x3,4) denotes extrema at �2.
In the domain h(ϕ) ∈ [xb

1 ,xb
2 ] there is a bistability on the microscopic level: in this domain the oscillators can be locked either on the branch

�1 in the range ϕ ∈ [ϕb
1 ,ϕ

b
2 ] or on the branch �2 in the range ϕ ∈ [ϕb

3 ,ϕ
b
4 ]. (c) Example of function h(u,v,ϕ) with only two extrema and one

stable branch ϕ = �1(x,P) (solid curve).

�2(x,P). Therefore, the distribution function has the following
form:

ρl(ϕ|x,P)

=

⎧⎪⎪⎨
⎪⎪⎩

[1 − S(x)]δ(ψ − �1(x,P)) + S(x)δ(ϕ − �2(x,P))
for (x − z) ∈ [

xb
1 ,xb

2

]
δ(ϕ − �1(x,P)) for (x − z) ∈ [x1,x2] \ [

xb
1 ,xb

2

]
δ(ϕ − �2(x,P)) for (x − z) ∈ [x3,x4] \ [

xb
1 ,xb

2

]
.

(A6)

Here 0 � S(x) � 1 is an indicator function describing
the redistribution over the stable brunches; this function is
arbitrary.

{u,v} ∈ V2.In the second case, function h(u,v,ψ) has only
two extrema [Fig. 5(c)] and there is only one stable branch
ϕ = �1(x,P). The distribution function is

ρl(ϕ|x,P) = δ(ϕ − �1(x,P)) for x ∈ (z + x1,z + x2).
(A7)

Taking into account the expressions obtained for the
distribution function (A4), (A6), (A7), the integrals in Eq. (A3)
can be rewritten as a sum of five terms:

Fm(P)eiQm(P) =
∫ ϕ2

ϕ1

dϕeimϕg(R(z + h))
∂h

∂ϕ

−
∫ ϕb

2

ϕb
1

dϕeimϕS(z + h)g(R(z + h))
∂h

∂ϕ

+
∫ ϕ4

ϕ3

dϕeimϕg(R(z + h))
∂h

∂ϕ

−
∫ ϕb

4

ϕb
3

dϕeimϕ[1 − S(z + h)]g(R(z + h))
∂h

∂ϕ

+
∫
X

∫ 2π

0
dxdϕ

g(Rx)C(x)eimϕ

|x − z − h| . (A8)

Here the first and the second terms stand for integration over
the first branch �1 in the range [ϕ1,ϕ2]. The second term
accounts for certain redistribution S(x) of oscillators between
the branches in the range [ϕb

1 ,ϕb
2 ] [Fig. 5(b)]. Similarly, the

third and the fourth terms correspond to integration over the
possible stable branch �2 in the range [ϕ3,ϕ4]. In the same
way, the fourth term accounts for redistribution of oscillators
between branches in the range [ϕb

3 ,ϕb
4 ] [Fig. 5(b)]. In the last

term the interval X = (−∞,z + Hmin)
⋃

(z + Hmax,∞) is the
domain of frequencies where the oscillators are not locked.

Thus, the order parameters X1 and X2 and the frequency �

as functions of introduced auxiliary parameters R, u, v, z:

X1,2(P) = RF1,2(P), θ2 = Q2(P) − 2α1,

�(P) = Rz. (A9)

Also, from the relations (A1) and (A3) one can conclude that
the following holds:

ε1 = sin u

F1(P)
, α1 = Q1(P),

γ1 = R cos u

Y
, β = θy + 2Q1(P) − v. (A10)
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