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Abstract. We study numerically secondary modes on top of a chaotic state 
in disordered nonlinear lattices. Two basic models are considered, with or 
without a local on-site potential. By performing periodic spatial modulation 
of displacement and kinetic energy, and following the temporal evolution of 
the corresponding spatial profiles, we reveal different modes which can be 
interpreted as first and second sound.
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1. Introduction

Statistical properties of dynamical regimes in nonlinear lattices have been a focus of 
research since the discovery of the Fermi–Pasta–Ulam (FPU) paradox [1]. Generally, 
one expects that such lattices at large energy densities demonstrate chaos. However, 
statistical properties of the irregular state can be quite peculiar, e.g. demonstrating 
anomalous statistics of Lyapunov vectors [2] and anomalous thermal conductivity [3]. 
One of the ways to characterize chaotic dynamics is to look at the excitations on top 
of it. In different contexts such modes are referred to as hydrodynamic or sound-type 
modes. Wave-like modes evolving from the perturbations of density and temperature 
can be roughly classified as the first and the second sound, respectively. The goal of 
this paper is to study such modes numerically in strongly nonlinear disordered lattices.

Perturbations on top of a disordered background can be considered in two basic 
setups. In one setup one produces a local in space perturbation and studies its diffusive 
spreading (see, e.g. [4–7]). For a hard-point chain (elastically colliding particles on a 
line), in [8] an anomalous diffusion corresponding to a Lévy walk of the energy was 
found. Interestingly, the same approach can be applied to the spreading of a localized 
energy hump over a vacuum background (instead of on top of a finite energy density). 
This problem has been intensively studied for disordered lattices in the context of 
Anderson localization destruction by nonlinearity, mainly for a nonlinear Schrödinger 
equation [9–11], but also for disordered strongly nonlinear lattices of the type we study 
in this paper [12–14]. In the latter case the spreading has been successfully described 
by a nonlinear diffusion equation.

In another setup, which we also follow below, a spatially periodic perturbation is 
imposed, and its relaxation to equilibrium is followed. In [15, 16] acoustic modes on top 
of a chaotic background have been studied in this way. In [17, 18] a spatially periodic 
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temperature profile has been imposed in lattices of the FPU type with and without on-
site potential, by coupling to a white noise thermostate, whose intensity was spatially 
modulated; after release of the thermostate the relaxation to a uniform temperature 
was followed.

These two types of modes are related to concepts of first and second sound in 
the quantum theory of solids [19]. While the first sound just corresponds to a clas-
sical sound wave, the second sound is typically interpreted in terms of a quantum-
mechanical description of oscillations. They are represented as a gas of phonons 
with different interaction mechanisms interpreted as scattering processes. Local 
temperature perturbations in a gas of phonons may, at low temperatures, propagate 
as waves, similar to the second sound in superfluidic systems. To the best of our 
knowledge, a classical theory of second sound is missing. Nevertheless, in classical 
systems one can attack the problem numerically, like in [17, 18]. On the other hand, 
in quantum-mechanical treatment one starts with ideal lattices without defects, and 
effects of disorder on the second sound are mainly unexplored. In classical setups, 
it is easy to introduce disorder and nonlinearity to lattice systems and explore the 
effects of these factors.

In this paper we present numerical studies of sound-like modes in disordered, 
strongly nonlinear lattices. In these lattices coupling and on-site terms in the poten-
tial energy start with powers larger than two, so that in the linear approximation 
there are no propagating waves (so called sonic vacuum). Correspondingly, there are 
no linear phonons in the quantum formulation of the problem [16]. The most promi-
nent example is the Hertzian chain of hard balls [20], see also [21]. In such lattices 
nonlinear waves, so-called compactons [22, 23], can propagate, but in the presence of 
disorder compactons are not possible. For a finite energy density such lattices demon-
strate chaos: contrary to usual FPU-type chains, there is no threshold for chaos due 
to the absence of linear terms (in some sense, the strongly nonlinear lattices can be 
considered as the high-energy limit of usual lattices with linear and nonlinear terms; 
our model A below is thus a high-energy limit of the FPU lattice). Moreover, as we 
also show below, in homogeneous strongly nonlinear lattices, where all nonlinear terms 
have the same power, there is no essential dependence on the energy density level, just 
the time scale depends on it. This universality strongly simplifies the study, as there 
is no qualitative dependence on the energy density level. Otherwise, we expect that 
usual nonlinear lattices for high energy densities will demonstrate similar properties.

2. Lattice models

In this paper we consider two types of strongly nonlinear lattices: without local poten-
tial, and with it. We will call them model A and model B, respectively. The Hamilton 
function for model A reads

∑ κ= +
−+

H
p q q

2

( )

4
,

l

l
l

l l
2

1
4

 (1)

and model B is described by Hamiltonian
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∑ β κ= + +
−+

H
p q q q

2 4

( )

4
.

l

l
l

l
l

l l
2 4

1
4

 (2)

In the case of regular lattices, parameters κ β,l l are constants. For disordered lattices 
they are quenched random variables. For model A we considered uniformly distributed 
independent values of κl: ⩽ ⩽κ0.5 1.5l . For model B parameter κ was set to 1, and the 
parameter βl was chosen from a uniform distribution ⩽ ⩽β0.5 1.5l . In fact, most of the 
calculations have been performed for both cases, regular and disordered lattices, with 
almost coinciding results. Thus we present here numerics for disordered lattices only.

Regimes in nonlinear lattices generally depend on the energy density. For example, 
in the FPU lattice, nearly periodic, recurrent regimes are observed for small energy 
densities, while chaos predominates at large energies. In models A and B, the potential 
terms are powers of the coordinates, moreover the local and the coupling potentials 
in model B have the same power. Therefore regimes in these models are independent 
of the energy density: the latter can be rescaled together with the time so that the 
Hamiltonian remains invariant: α→ ′E E , α→ ′−t t1/2 . This means that the basic regime 
does not depend on the energy density, just its characteristic time scale is dependent 
on it. Thus below we set energy density to 1.

In both lattices a chaotic state is observed, independently of the presence of disor-
der. We illustrate this in figure 1 by showing time dependencies of the coordinates and 
the momenta in chains of 32 oscillators.

3. First sound modes

In this section we study the properties of the ‘first sound mode’ on top of a cha-
otic state described above. Our procedure is as follows (see [15, 16]). First, equa-
tions of the lattice of length L have been integrated from random initial conditions 
until a statistical equilibrium is achieved. Next, a small harmonic in space perturba-

tion with the wave number πk2 , where ⩽< k0
1

2
, has been added to all the coordi-

nates: ε π→ +q q klcos 2l l . From the subsequent integration of the lattice, the average 
response amplitude of the mode at this wave number has been calculated as a function 

of time: ⟨ ⟩π= ∑Q k t q kl( , ) cos 2l l . Practically, we have not used the ensemble average, 
but instead simulated a very long lattice so that an additional average was not needed. 
Indeed, the lattice contains kL periods of the perturbation, which due to irregularity 
of the underlying dynamics can be considered as independent, so that just the summa-
tion over the lattice index l ensures averaging over kL effectively independent samples. 
The only relevant parameter determining the spacial scale is thus the wave number 
of the perturbation k. The overall length of the lattice L just measures the number of 
independent samples and the quality of statistical averaging. The smooth curves Q(t), 
E(t) in figures 2, 4 and 6 below show that the statistics are good indeed. The obtained 
response amplitudes are illustrated in figure 2.

We have performed a fit of the found dependencies as γ= − ΩQ t C t t( ) exp[ ] cos , 
and found dispersion relations γΩ k k( ), ( ) presented in figure 3. One can see that the 
two models show different behaviors at small wave numbers: while in model B both 
the frequency Ω and the damping constant γ tend to finite values (i.e. the phonons are 
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‘optical’), for model A the frequency scales as Ω ∼k k( )  (‘acoustic’ phonons) while the 

damping constant scales as γ ∼k k( ) 5/3, as predicted by the theory developed in [24].

4. Second sound modes

In this section we proceed similarly to the investigation of sound modes above, but the spa-

tially periodic perturbation is performed not in the displacement variable q, but in the local 

momentum p, which is modulated according to ε π→ +p p kl(1 cos(2 ))l l
1/2. This models spa-

tially periodic modulation of the kinetic energy. Also the response E(k, t) is calculated accord-

ing to the corresponding mode of the local energy observable: ⟨ ⟩E π= ∑E k t kl( , ) cos 2l l , 

where El is the local energy term (that includes both kinetic and potential energy) in the 

Hamilton function (i.e. for model B E β κ κ= + + +−
−

−+ −
l

p
l
q

l
q q

l
q q

2 4

( )

8 1
( )

8
l l l l l l
2 4

1
4

1
4

 and similar 

for model A). The results are more complex than in the case of first sound modes, and 
we consider them separately for models A and B.

4.1. Model A

We present the results of the calculations of the response E(k, t) in figure 4. One can 
see that this function is not simply a decaying cos-function. To reveal the structure of 
the response, we performed a cos-Fourier transform ωF k( , ) of E(k, t) with respect to 
variable t; the results are also presented in figure 4. To each exponentially decaying 

Figure 1. Examples of chaotic fields in the lattices of type A (a) and type B (b).
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Figure 2. Evolution of the first sound mode amplitudes in models (A) and (B), for 
three different wave numbers.
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Figure 3. Dispersion properties of the first sound modes in models (A) (red circles) 
and (B) (blue squares). Top panel: Ω k( ), bottom panel: γ k( ).
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cos-function corresponds a Lorentzian peak in the spectrum, and one can see two such 
peaks in ωF k( , ), one at zero frequency and one at a non-zero one. This suggests the 

fit γ γ∼ − + − ΩE k t C t C t t( , ) exp[ ] exp[ ] cos0 0 1 1 1 . The obtained dependencies γ k( )1,2  and 

Ω k( )1  are shown in figure 5. One can see that the frequency spectrum nearly overlaps 
with that of the first sound mode for model A, while the damping constants show a 

slightly different behavior. Both of them appear to scale like γ ∼ k0,1
5/4.

4.2. Model B

Response functions for the second sound perturbations in model B, presented in fig-
ure 6 appear to be more complex than in model A. One can see in the frequency depen-
dence of the Fourier-transforms three peaks for large wave numbers, and two peaks 
for small wave numbers. Thus, we performed fitting according to the representation 

γ γ γ∼ − + − Ω + − ΩE k t C t C t t C t t( , ) exp[ ] exp[ ] cos exp[ ] cos0 0 1 1 1 2 2 2 , results of which are 
presented in figure 7. We plot here also the amplitudes of the modes C C C, ,0 1 2, to show 
that mode 2 exists for large wave numbers only �k 0.2. Remarkably, the frequency of 
mode 1 looks like an acoustic spectrum with Ω∼ k for small wave numbers, although 
the first sound mode for model B does not have this property (see figure 3). Another 
interesting feature is that the dependence of the zero-frequency mode damping constant 

is the same as in model A: γ ∼ k0
5/4, while for the first mode it is different: γ ∼ k1

4/5.

Figure 4. Time relaxation of the energy modes (left panel) and its cos-transform 
(right panel) for model (A) and two wave numbers.
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5. Conclusion

In this paper we reported on collective modes that are observed on top of a turbulent 
state of disordered, strongly nonlinear lattices. In fact, the most important property here 
is the turbulence: similar properties are observed for turbulent states in regular strongly 
nonlinear lattices as well; we expect also that usual nonlinear lattices will demonstrate 

Figure 5. Dispersion relations for the second sound modes in model (A). Right 
panel: Ω k( ), here also the frequency of the first sound mode is shown. Left panel: 

damping constants γ k( )0  and γ k( )1 , the dashed line has slope 5/4.
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similar features (at least for high energy densities, where strong chaos is observed), but 
this question deserves a separate study. Our approach is in the imposing of small spatially 
periodic perturbations of the underlying chaos, and in following the time evolution of 
the excited periodic response fields in time. It appears that the amplitude of the response 

fields can be represented as a sum of harmonic damping components  ∼ Ωγ− te cos( )t . The 

properties (and the number) of these components depend on the type of initial pertur-
bation (first versus second sound) and on the lattice model used. In model A (a lattice 
without on-site potential) two modes are observed: a purely acoustic spectrum if the 
perturbation is in the displacement of particles, and additionally a zero-frequency mode 
if the perturbation is in the modulation of the kinetic energy. In model B (a lattice with 
an on-site potential) a perturbation in the displacement of particles produces ‘optical 
phonons’, i.e. a mode, the frequency of which tends to a finite value at a vanishing wave 
number. A perturbation in the kinetic energy produces three modes, one with zero fre-
quency and another with an acoustic spectrum which exists for all wave numbers; an 
additional ‘optical’ mode exists for large enough wave numbers only.

Generally, the sound modes in a lattice could be studied in another setup, where 
not the wave number in an initial-value problem is imposed, but a frequency of a per-
turbation at a boundary is fixed by an external force. Studies of the first sound-type 
perturbation in such a model will be reported elsewhere. It is not clear, however, what 
type of boundary forcing corresponds to the second sound mode.

Recently, an important theoretical progress in the understanding of secondary 
modes in nonlinear lattices has been achieved in [25, 26], where it was shown that the 
Kardar–Parisi–Zhang universality holds for nonlinear lattices without local potential, 
like model A above, under some assumptions. The relation of the presented numerical 
findings to this theory should be explored in future studies.

Acknowledgments

The author thanks the Galileo Galilei Institute for Theoretical Physics, Florence, Italy, 
for their hospitality and the INFN for partial support during the completion of this 

Figure 7. Dispersion relations for the second sound modes in model (B). Left panel: 
frequencies Ω1 (red circles) and Ω2 (blue squares). Middle panel: Amplitudes of the 
modes (asterisks denote zero-frequency mode). Right panel: damping constants 
γ γ γ, ,0 1 2 (asterisks, circles, and squares, respectively). Dashed black and dotted 
magenta lines have slopes 4/5 and 5/4.

 0

 1

 2

 3

 4

 5

 0  0.1  0.2  0.3  0.4  0.5

fr
eq

ue
nc

ie
s

wave number

Ω1
Ω2

 0

 0.01

 0.02

 0.03

 0  0.1  0.2  0.3  0.4  0.5

am
pl

itu
de

wave number

C1
C2
C0

 0.01

 0.1

 1

 0.015625  0.0625  0.25

da
m

pi
ng

wave number

slope 4/5
slope 5/4

http://dx.doi.org/10.1088/1742-5468/2015/08/P08007


First and second sound in disordered strongly nonlinear lattices: numerical study

10doi:10.1088/1742-5468/2015/08/P08007

J. S
tat. M

ech. (2015) P
08007

work. The work was supported by the grant according to the agreement of August 27, 
2013 Nr 02.49.21.0003 between the Ministry of Education and Science of the Russian 
Federation and Lobachevsky State University of Nizhni Novgorod. Fruitful discus-
sions with S Lepri, H van Beijeren, M Bargheer, A Politi and Yu Starosvetsky are 
appreciated.

References

 [1] Campbell D K et al (ed) 2005 The ‘Fermi-Pasta-Ulam’ problem—the first 50 years: focus issue chaos 15 
015101

 [2] Pikovsky A and Politi A 2001 Dynamic localization of Lyapunov vectors in Hamiltonian lattices Phys. Rev. 
E 63 036207

 [3] Lepri S, Livi R and Politi A 2003 Thermal conduction in classical low-dimensional lattices Phys. Rep. 
377 1–80

 [4] Tsai D H and MacDonald R A 1976 Molecular-dynamical study of second sound in a solid excited by a 
strong heat pulse Phys. Rev. B 14 4714–23

 [5] Osman M A and Srivastava D 2005 Molecular dynamics simulation of heat pulse propagation in single-wall 
carbon nanotubes Phys. Rev. B 72 125413

 [6] Shiomi J and Maruyama S 2006 Non-fourier heat conduction in a single-walled carbon nanotube: classical 
molecular dynamics simulations Phys. Rev. B 73 205420

 [7] Piazza F and Lepri S 2009 Heat wave propagation in a nonlinear chain Phys. Rev. B 79 094306
 [8] Delfini L, Denisov S, Lepri S, Livi R, Mohanty P K and Politi A 2007 Energy diffusion in hard-point systems 

Eur. Phys. J. Spec. Top. 146 21–35
 [9] Pikovsky A S and Shepelyansky D L 2008 Destruction of Anderson localization by a weak nonlinearity Phys. 

Rev. Lett. 100 094101
 [10] Fishman S, Krivolapov Y and Soffer A 2012 The nonlinear Schrödinger equation with a random potential: 

results and puzzles Nonlinearity 25 R53–72
 [11] Laptyeva T V, Ivanchenko M V and Flach S 2014 Nonlinear lattice waves in heterogeneous media J. Phys. 

A: Math. Theor. 47 493001
 [12] Mulansky M, Ahnert K and Pikovsky A 2011 Scaling of energy spreading in strongly nonlinear disordered 

lattices Phys. Rev. E 83 026205
 [13] Mulansky M and Pikovsky A 2012 Scaling properties of energy spreading in nonlinear Hamiltonian two-

dimensional lattices Phys. Rev. E 86 056214
 [14] Mulansky M and Pikovsky A 2013 Energy spreading in strongly nonlinear disordered lattices New J. Phys. 

15 053015
 [15] Lepri S, Livi R and Politi A 2005 Studies of thermal conductivity in fermipastaulam-like lattices Chaos 

15 015118
 [16] Zhirov O V, Pikovsky A S and Shepelyansky D L 2011 Quantum vacuum of strongly nonlinear lattices Phys. 

Rev. E 83 016202
 [17] Gendelman O V and Savin A V 2010 Nonstationary heat conduction in one-dimensional chains with con-

served momentum Phys. Rev. E 81 020103
 [18] Gendelman O V, Shvartsman R, Madar B and Savin A V 2012 Nonstationary heat conduction in one-dimen-

sional models with substrate potential Phys. Rev. E 85 011105
 [19] Brüesch P 1987 Phonons: Theory and Experiments III. Phenomena Related to Phonons (Berlin: Springer)
 [20] Nesterenko V F 2001 Dynamics of Heterogeneous Materials (New York: Springer)
 [21] Ahnert K and Pikovsky A 2009 Compactons and chaos in strongly nonlinear lattices Phys. Rev. E 79 026209
 [22] Rosenau P and Hyman J M 1993 Compactons: solitons with finite wavelength Phys. Rev. Lett. 70 564–67
 [23] Rosenau P 1994 Nonlinear dispersion and compact structures Phys. Rev. Lett. 73 1737–41
 [24] Ernst M H 1991 Mode-coupling theory and tails in CA fluids Physica D 47 198–211
 [25] van Beijeren H 2012 Exact results for anomalous transport in one-dimensional hamiltonian systems Phys. 

Rev. Lett. 108 180601
 [26] Mendl C B and Spohn H 2013 Dynamic correlators of fermi-pasta-ulam chains and nonlinear fluctuating 

hydrodynamics Phys. Rev. Lett. 111 230601

http://dx.doi.org/10.1088/1742-5468/2015/08/P08007
http://dx.doi.org/10.1063/1.1889345
http://dx.doi.org/10.1063/1.1889345
http://dx.doi.org/10.1103/PhysRevE.63.036207
http://dx.doi.org/10.1103/PhysRevE.63.036207
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1103/PhysRevB.14.4714
http://dx.doi.org/10.1103/PhysRevB.14.4714
http://dx.doi.org/10.1103/PhysRevB.14.4714
http://dx.doi.org/10.1103/PhysRevB.72.125413
http://dx.doi.org/10.1103/PhysRevB.72.125413
http://dx.doi.org/10.1103/PhysRevB.73.205420
http://dx.doi.org/10.1103/PhysRevB.73.205420
http://dx.doi.org/10.1103/PhysRevB.79.094306
http://dx.doi.org/10.1103/PhysRevB.79.094306
http://dx.doi.org/10.1140/epjst/e2007-00166-y
http://dx.doi.org/10.1140/epjst/e2007-00166-y
http://dx.doi.org/10.1140/epjst/e2007-00166-y
http://dx.doi.org/10.1103/PhysRevLett.100.094101
http://dx.doi.org/10.1103/PhysRevLett.100.094101
http://dx.doi.org/10.1088/0951-7715/25/4/R53
http://dx.doi.org/10.1088/0951-7715/25/4/R53
http://dx.doi.org/10.1088/1751-8113/47/49/493001
http://dx.doi.org/10.1088/1751-8113/47/49/493001
http://dx.doi.org/10.1103/PhysRevE.83.026205
http://dx.doi.org/10.1103/PhysRevE.83.026205
http://dx.doi.org/10.1103/PhysRevE.86.056214
http://dx.doi.org/10.1103/PhysRevE.86.056214
http://dx.doi.org/10.1088/1367-2630/15/5/053015
http://dx.doi.org/10.1088/1367-2630/15/5/053015
http://dx.doi.org/10.1063/1.1854281
http://dx.doi.org/10.1063/1.1854281
http://dx.doi.org/10.1103/PhysRevE.83.016202
http://dx.doi.org/10.1103/PhysRevE.83.016202
http://dx.doi.org/10.1103/PhysRevE.81.020103
http://dx.doi.org/10.1103/PhysRevE.81.020103
http://dx.doi.org/10.1103/PhysRevE.85.011105
http://dx.doi.org/10.1103/PhysRevE.85.011105
http://dx.doi.org/10.1103/PhysRevE.79.026209
http://dx.doi.org/10.1103/PhysRevE.79.026209
http://dx.doi.org/10.1103/PhysRevLett.70.564
http://dx.doi.org/10.1103/PhysRevLett.70.564
http://dx.doi.org/10.1103/PhysRevLett.70.564
http://dx.doi.org/10.1103/PhysRevLett.73.1737
http://dx.doi.org/10.1103/PhysRevLett.73.1737
http://dx.doi.org/10.1103/PhysRevLett.73.1737
http://dx.doi.org/10.1016/0167-2789(91)90290-P
http://dx.doi.org/10.1016/0167-2789(91)90290-P
http://dx.doi.org/10.1016/0167-2789(91)90290-P
http://dx.doi.org/10.1103/PhysRevLett.108.180601
http://dx.doi.org/10.1103/PhysRevLett.108.180601
http://dx.doi.org/10.1103/PhysRevLett.111.230601
http://dx.doi.org/10.1103/PhysRevLett.111.230601



