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Abstract
We describe synchronization transitions in an ensemble of globally coupled
phase oscillators with a bi-harmonic coupling function, and two sources of
disorder—diversity of the intrinsic oscillators’ frequencies, and external
independent noise forces. Based on the self-consistent formulation, we derive
analytic solutions for different synchronous states. We report on various non-
trivial transitions from incoherence to synchrony, with the following possible
scenarios: simple supercritical transition (similar to classical Kuramoto
model); subcritical transition with large area of bistability of incoherent and
synchronous solutions; appearance of a symmetric two-cluster solution which
can coexist with the regular synchronous state. We show that the interplay
between relatively small white noise and finite-size fluctuations can lead to
metastability of the asynchronous solution.
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(Some figures may appear in colour only in the online journal)

1. Introduction

In the theory of synchronization, the Kuramoto model of globally coupled phase oscillators
[1–3] is one of the most popular setups for describing synchronization phenomena. The case
of a harmonic sin-coupling function is well studied in literature [2, 4, 5]. However, when
reducing complex nonlinear oscillatory dynamics to relatively simple phase models, one often
has to deal with multi-harmonic coupling functions [2]. In this paper we concentrate on the
particular case of the Kuramoto model of globally coupled phase oscillators with a bi-
harmonic interaction function. Such a type of interaction between oscillators arises in several

Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 48 (2015) 105101 (16pp) doi:10.1088/1751-8113/48/10/105101

1751-8113/15/105101+16$33.00 © 2015 IOP Publishing Ltd Printed in the UK 1

mailto:mrvoov@gmail.com (V Vlasov)
http://dx.doi.org/10.1088/1751-8113/48/10/105101
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8113/48/10/105101&domain=pdf&date_stamp=2015-02-12
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8113/48/10/105101&domain=pdf&date_stamp=2015-02-12


realistic physical setups, including: (i) classical Huygens’ setup with pendulum clocks sus-
pended on a common beam with both vertical and horizontal displacements [6, 7]; (ii)
recently experimentally observed φ-Josephson junctions, where the dynamics of a single
junction in the array is governed by a double-well energy potential [8]; (iii) globally coupled
electrochemical oscillators [9, 10], where the second harmonics has been identified from the
experimental data.

In our work we take into account two main sources of disorder that hinder synchroni-
zation, namely diversity of oscillators’ frequencies, and white additive noise acting on the
phases. Recent theoretical studies indicate that in the noise-free case the Kuramoto model
with bi-harmonic coupling function is characterized by a variety of multi-branch entrainment
modes [11–13]. This variety manifests itself as a multiplicity (multistability) of different
synchronous states, with distinct redistributions of oscillators between two stable branches of
microscopic dynamics [7, 14]. In this work we show that the action of white noise removes
the multiplicity; however, the overall picture of transitions from incoherence to synchrony is
non-trivial and can be quite complex in comparison to the standard Kuramoto model.

The paper is organized as follows. First, we formulate the problem and perform a special,
suitable for the analysis, parametrization of the system. Then, we present a self-consistent
approach allowing us to find order parameters as a function of the coupling constants and the
disorder in an analytic form. Wherever possible, we perform the stability analysis. And at last,
we discuss the limiting case of small noise intensity and its relation to the noiseless situation.
In conclusion, we summarize and collect all the findings together.

2. Basic model

In this paper we study an ensemble of phase oscillators (phase variables ϕk), subject to a
mean-field bi-harmonic coupling and noise (in this formulation we use ‘primed’ variables,
which will be in short transformed to dimensionless ones):

∑ ∑ϕ
ω Δ ε ϕ ϕ γ ϕ ϕ ξ

′
= ′ + − + − + ′ ′

= =
( ) ( )t N N

D t
d

d
sin sin 2 2 ( ). (1)k
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j k
j

N

j k k
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Here ωk are normalized natural frequencies of oscillators that are assumed to have a
symmetrical unimodal distribution ωg ( ) with unit width and zero mean value (the latter
condition is not a restriction, as it can be always achieved by transforming to a properly
rotating reference frame). Parameter Δ′ measures the spread of the distribution of natural
frequencies. Gaussian white noise is defined according to ξ ξ δ δ〈 ′ ′ 〉 = ′ − ′t t t t( ) ( ) 2 ( )k j kj1 2 1 2 .
Parameters ε and γ define the strength of the coupling on the first and the second harmonics,
respectively.

Equation (1) can be rewritten as

ϕ
ω Δ ε Θ ϕ γ Θ ϕ ξ

′
= ′ + − + − + ′ ′( ) ( )

t
R R D t

d

d
sin sin 2 ( ), (2)k

k k k k1 1 2 2

where = ∑Θ ϕ−R Ne em j
mi 1 im j, m = 1, 2, are the two relevant order parameters [15].

Equation (2) has four parameters, all of them of dimension ′t1 : Δ ε γ′ ′D, , , . By rescaling
time, one parameter can be set to one. We choose to set the overall coupling ε γ+ to unity.
Thus, we introduce ε γ= + ′t t( ) and get

ϕ ω Δ Θ ϕ Θ ϕ ξ= + − + − − +( ) ( )qR q R D t˙ sin (1 ) sin 2 ( ), (3)k k k k k1 1 2 2
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where Δ Δ ε γ= ′ +( ), ε ε γ= +q ( ) and ε γ= ′ +D D ( ). Parameter q describes the relation
between coupling coefficients ε and γ , such that the case q = 0 corresponds to a pure second
harmonic coupling with ε = 0, while q = 1 corresponds to a pure Kuramoto-type first
harmonic coupling with γ = 0. In this new normalization, increasing or decreasing of
coupling strength is equivalent to decreasing or increasing of the disorder parameters Δ
(spread of frequencies) and D (noise), while keeping a constant relation Δ D between them.
This suggests to introduce new parameters T s, in such a way that Δ = − s T(1 ) , D = sT.
Therefore, parameter T measures the overall disorder (noise plus spread of frequencies),
normalized by the overall coupling strength ε γ+ . Parameter s measures the relation between
parameters Δ (width of frequency distribution) and D (noise): for s = 0 the system is purely
deterministic, while for s = 1 it describes an ensemble of identical noisy oscillators.
Summarizing, equation (3) with new parameters q T s, , becomes

ϕ ω Θ ϕ Θ ϕ ξ= − + − + − − +( ) ( )s T qR q R sT t˙ (1 ) sin (1 ) sin 2 ( ). (4)k k k k k1 1 2 2

We consider the thermodynamic limit → ∞N , then the order parameters are just
ensemble averages = 〈 〉Θ ϕR e em

mi im and can be represented through the conditional prob-
ability density function of the phases ρ φ ω∣t( , ), as

∫ ∫ ω ρ φ ω φ ω= =Θ φ φR g te e ( ) ( , )e d d . (5)m
m mi i im

In the thermodynamic-limit formulation we use the variable φ to describe the phase and
skip all indices; therefore, according to (4) the equation for the phase variable φ at given ω
reads

φ ω Θ φ Θ φ ξ= − + − + − − +( ) ( )
t

s T qR q R sT t
d

d
(1 ) sin (1 ) sin 2 ( ). (6)1 1 2 2

The Fokker–Planck equation for ρ φ ω∣t( , ) follows from equation (6):

ρ
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( )( ) ( )
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2
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The limiting noise-free case when s = 0 has been described in detail in [7, 14]. In this
paper we will present a general analysis for systems with noise and a finite distribution of
frequencies. We will treat the limit ≪s 1, which appears to be singular, separately. The other
limiting case s = 1 is the case of the identical natural frequencies, in terms of the analysis
presented below it is not special. However, for s = 1 an additional stability analysis can be
performed, thus this case will be also considered in detail separately.

3. Stationary solutions: self-consistent approach

A disordered state with a uniform distribution of phases ρ π= −(2 ) 1 and vanishing order
parameters = =R R 01 2 is always a solution of the system (5), (7). Additionally, we expect
nontrivial synchronized states of two types: (i) all order parameters are non-zero, and (ii) a
symmetric two-cluster distribution where all odd order parameters vanish =+R 0m2 1 and

≠R 0m2 , ∈ m 0.

3.1. Solution in a parametric form

Due to the symmetry of the coupling function and of the distribution of natural frequencies
ωg ( ), the nontrivial solutions are stationary states (which means that the frequency of the
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mean fields is exactly the average oscillator frequency), which can be obtained by setting
Θ Θ= = 01 2 (in fact, one of the phases of the order parameters is arbitrary, the condition
above means that the phase shift between the two order parameters is zero). We discuss this
setting in full detail in appendix A, where we also show how to describe asymmetric regimes
with non-trivial frequency of the mean field and asymmetric coupling functions and fre-
quency distribution. As in this paper we focus on the analysis of the symmetric setup, below
we follow the derivation for this case.

In the symmetric setting, the stationary conditional probability density function ρ φ ω∣( )
satisfies the stationary Fokker–Planck equation

φ
ω φ φ ρ ρ

φ
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∂
− − −

−
= ∂

∂
s
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⎤
⎦⎥

where because of symmetry

∫ ∫ ω ρ φ ω φ φ ω=R g m( ) ( ) cos ( )d d . (9)m

To find the solutions of this self-consistent system explicitly, it is convenient to introduce
two new auxiliary variables R and α (together with definitions u, v, and x) according to

α

α

ω

= + −

= =

= =
−

=

( ) ( )R qR T q R T

u
qR

TR

v
q R

TR

x
R

(1 ) ,

cos ,

sin
(1 )

,

. (10)

1
2

2
2

1

2

Then the stationary Fokker–Planck equation (8) for the stationary distribution density
ρ φ ∣ x( ) (which depends on αR s, , as parameters) reads

φ
φ φ ρ ρ

φ
∂

∂
− − − = ∂

∂
R x s u v s[ ( (1 ) sin ( ) sin (2 )) ] . (11)

2

2

An explicit solution of (11) can be written as double integrals, but practically it is more
convenient to solve it in the Fourier modes representation

∫∑ρ φ
π
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Substituting (12) in equation (11) we obtain
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Thus, from (13) we obtain a system of linear algebraic equations for the mode amplitudes:

− + + − + − =+ − + −( ) ( )x s ks R C u C C v C C2(i (1 ) ) 0, (14)k k k k k1 1 2 2

which can be solved by standard methods after a proper truncation to a finite number of
Fourier modes (which controls accuracy of the solution) is performed. After finding
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αC R s x( , , , )1,2 , we have to calculate integrals

∫α α=F R s g Rx C R s x x( , , ) ( ) Re ( , , , ) d . (15)1,2 1,2
⎡⎣ ⎤⎦

This allows us to represent the order parameters as

∫α α α= =R R s R g Rx C R s x x RF R s( , , ) ( ) Re ( , , , ) d ( , , ). (16)1,2 1,2 1,2
⎡⎣ ⎤⎦

Substituting this in equation (10), we obtain our parameters T q, as functions of the auxiliary
variables

α α
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α α
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+

=
+

=
+

T

F F
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F F
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1
cos sin

,

cos

cos sin
1

1 tan
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1 2

1

1 2

1

2

Summarizing, we have obtained the explicit solution of the self-consistent problem: for each
fixed s, by varying α π∈ [0, 2] and ∈ ∞R [0, ), we obtain the solution in a parametric form:

α=R R R( , )1,2 1,2 according to (16), α=T T R( , ) and α=q q R( , ) according to (17).
The case of purely two-cluster state with =R 01 corresponds to α π= 2, it is singular in

(16), (17). Here the solution is represented as

= = −R RF T q F, (1 ) . (18)2 2 2

Thus, by the method presented above, it is possible to find stationary solutions of
equation (7) for any given q T, and s. In the general case of <s 1, equation (7) is integro-
differential equation and the analysis of the stability of all solutions is quite difficult, except
for the simplest incoherent solution ρ π= −(2 ) 1. However, in the limiting case of identical
natural frequencies s = 1, density ρ is ω-independent, and integration in (9) over the fre-
quencies gives always 1. This means that Fourier modes (12) are in fact the order parameters:

= [ ]R q T C q T( , , 1) Re ( , , 1, 0)m m . The same is valid also for the full time-dependent pro-
blem: it can be written as a system of nonlinear ordinary differential equations for time-
dependent Fourier modes of the density, which can be analyzed for stability after a proper
truncation. Thus, we start with this particular case.

3.2. Limiting case of identical oscillators

Here we describe the case of identical natural frequencies, which means that
Δ = − =s T(1 ) 0 or s = 1. As discussed above, in this case also a stability analysis is
possible, which we outline below. First, let us represent equation (7) in terms of Fourier
modes Cm which are related to the complex order parameters = ΘC R em m

* i m (the procedure is
the same as in obtaining (13)):

= − +
−

+ −
−− + − +C

t
k TC kq

C C C C
k q

C C C Cd

d 2
(1 )

2
. (19)k

k
k k k k2 1 1 1

* 1 2 2 2
* 2

We are interested in stability of a stationary solution, obtained according to (16), (17) or (18).
For the linear stability analysis, a small perturbation around stationary solution C̃k should

be added, thus we set = +C C c˜k k k in equation (19), and in the first order in ck obtain
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= − + − + −
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Equation (20) is an infinite system, but because the amplitudes of modes with large k tend to
zero, it is possible to truncate it at some large K, and to write a finite system of equations (20),
with k varying from 1 to K, where K is large enough. By finding a maximum eigenvalue of the
corresponding matrix for the values of q and T of interest, it is possible to find stability
properties of the solution C̃k and to build the boundary =q q T( ), where the solution C̃k

changes its stability. This can be done both for general solutions (16), (17) and for the two-
cluster states (18).

We present the diagram of synchronous states in the parameter plane (q, T), for the case
of identical oscillators s = 1 in figure 1. Here also the stability lines of the disordered state
ρ π= −(2 ) 1 are shown with dashed lines (see appendix B for details of calculation). Three
major states can be observed: a disordered one, one with all non-zero order parameters, and a
two-cluster one where all odd order parameters vanish. For small and large values of para-
meter q, i.e. where one of the coupling modes dominates (the first harmonics coupling for q
close to one or the second harmonics coupling for q close to zero), the transitions are
supercritical. We illustrate them in figure 2 (panels (a), (d)), showing dependencies of the
order parameters on T. In the middle part of the phase diagram (between the points marked p1,
p2 in figure 1), for q close to 0.3, the transitions are subcritical, so that a bistability occurs.
These regimes are illustrated in figure 2 (panels (b), (c)). The transition from the disordered to
the two-cluster state is always supercritical (see dashed red line in panels (c), (d) of figure 2).

Figure 1. (a) Different regimes in the parameter plane (q T, ) are shown for s = 1. Area
A: asynchronous solution. Area B: coherent regime with ≠R 01,2 . Area C: two-cluster
coherent regime with only order parameter ≠R 02 , =R 01 . Area D: region of
bistability of incoherent and synchronous solutions. Area E: bistability of the two-
cluster state and a state with ≠R 01,2 . Dashed blue lines are stability lines of the
disordered state, obtained from (B11) and (B12). Between the points p1 and p2 the
transition is hysteretic; dashed red line is the stability line of area C, obtained from (20),
it coincides with the line where on the branch existing for small T the first order
parameter tends to zero. (b) Enlarged central region of panel (a). Vertical dashed lines
are cuts of the diagram illustrated in figure 2.
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3.3. General phase diagram

In this section we present the phase diagram for the unimodal symmetric distribution of
natural frequencies (in calculations the Gaussian distribution ω π ω= −−g ( ) (2 ) exp ( 2)1 2 was
adopted). The lines of stability of the disordered state (bold dashed lines) are obtained
according to stability analysis presented in appendix B, equations (B11), (B12). The phase
diagrams on the plane of basic parameters (q, T) for general values of s are qualitatively the
same as figure 1. We show two cases s = 0.1 (relatively weak noise, wide distribution of
frequencies) and s = 0.5 in figure 3. All these diagrams are qualitatively similar, and we
expect also that stability properties of different solutions are like in figure 2.

Remarkably, in the case of weak noise (figure 3(a)) the region of the first-order transition
is significantly larger in parameter q, which governs the relation between two harmonics in
the coupling function. On the contrary, for strong noise and narrow distribution of frequencies
(figures 1, 3(b)), first-order transitions are observed only in a small region of values of q, close
to ≈q 0.5.

Figure 2. Dependencies of order parameters R12 on the disorder parameter T, for s = 1
and different values of q: (a) q = 0.6, (b) q = 0.36, (c) q = 0.29, (d) q = 0.2. Solid blue
line: branch of general solution ≠R 01 ; dashed red line: branch of the two-cluster state
with =R 01 , ≠R 02 . Thin curves depict unstable solutions, whereas the bold curves
depict stable ones. Insets in the panels (a) and (d) present logarithmic plots indicating
square-root dependencies of the order parameter R1 on the criticality −T T0 (T0 is a
bifurcation point). Here markers denote solution of the self-consistent equations, the
dashed line has a slope 1 2.
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4. Limiting case of small noise

In this section we describe the limit of small noise →s 0, which corresponds to the noise-free
case of the bi-harmonic Kuramoto model studied in [7, 11, 12, 14, 16, 17]. This is the mostly
challenging part, both numerically and theoretically. Numerically, there is a problem in
finding a stationary probability density from (11), because this density becomes close to a
delta-function, i.e. first a large number of Fourier modes is needed, and second the methods of
solving an algebraic system for these modes converge very slowly. Theoretically, it is known
that for a noise-free case, there is a multiplicity of solutions coexisting with a neutrally stable
disordered state [14], this degeneracy is lifted by adding an arbitrary small noise. The reason
for this singular limit is that the Fokker–Planck equation behaves singularly in the limit of
small noise: while for any noise the stationary distribution is unique, in the noise-free case the
order of equation is reduced and there are multiple solutions of the resulting Liouville
equation.

Figure 3. The same as figure 1, but for s = 0.1 (a) and s = 0.5 (b). Region E is not
denoted because it is very tiny on these plots.

Figure 4. (a) The dependencies of order parameters R1,2 on the overall disorder T for
q = 0.5 and different values of s. The numbers on the upper panel depict values of s:
from the left curve to the right one s changes from 0.5 to zero. The dashed curve
corresponds to the special case of s = 0.0. (b) The same as in (a) but now curves are
plotted near the points of transition from incoherent to synchronous solutions ( →R 0).
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In order to shed light on the limit →s 0, we fixed q = 0.5, and calculated dependencies
R T( )1,2 for s = 0 using the approach described in [7] for the noise-free case, and the approach
above for different values of parameter s. The results presented in figure 4 show how the
noise-free curve (dashed red curve in figure 4(a)) is approached as →s 0 (solid curves in
figure 4). Here a special discussion of how the noise-free solution has been obtained is
needed. Indeed, the purely deterministic case s = 0 is a singular limit of the Fokker–Planck
equation, as in this limit the second derivative term vanishes. While the Fokker–Planck
equation has a unique solution, there are multiple synchronous solutions which are char-
acterized by different redistributions of locked oscillators between the stable branches in the
noise-free case [7]. To select one of them that corresponds to the limit →s 0, we use the
following approach. Nontrivial multiple solutions of the noise-free problem occur if the
effective potential for the motion of the phase has two minima on the interval π(0, 2 ). For
small noise, the probability density thus tends to a composition of two delta-functions at these
minima. As for ω ≠ 0 (the case ω = 0 is less nontrivial as there the flux vanishes and the
distribution density can be directly written as the exponent of the effective potential) the
phase on average rotates, the amplitudes of these delta-functions are proportional to the
lifetimes at the corresponding minima, or inversely proportional to the excitation rates for
transitions from one minimum to another one. Thus, according to Kramers’ formula for the
excitation rates, one has to compare corresponding potential barriers, the steady state with the
largest escape barrier will dominate in the limit of small noise. Thus, in the limit of small
noise one gets rid of the multiplicity of states, by choosing ‘the most stable’ (in the sense of
the largest excitation time) steady state. For the parameters of figure 4, this state is one which
yields positive values of order parameter R1 (σ = 0 in terms of the notations used in [7]); it
has been used in calculations of the dashed red curve in figure 4(a).

One can see that there is a jump in the values of T at which the curves touch the line
=R 01,2 . For the case of noisy oscillators, these points are those where the disordered state

loses its stability. For the noise-free case, it is another point, not related to a stability
exchange. This jump is responsible for a formation of a ‘boundary layer’ (depicted in more
details in figure 4(b)) where the noisy curves rapidly escape the vicinity of the curve s = 0 as
R1,2 go to zero. It appears that the solution of the limiting case s = 0 always differs sig-
nificantly from the noisy solutions ≠s 0 at →R 0, regardless of the noise strength repre-
sented by the parameter s.

In other words, the limit →s 0 for the noisy case does not coincide with the noise-free
solution s = 0 near the bifurcation point R = 0. This effect was also discussed in the papers
[7, 14]. In the limiting noise-free case s = 0, the stationary solutions for distribution function
ρ φ ω( , ) are always singular: they contain a combination of delta-functions for any small R1,2

(see [7] for detail). In contradistinction, the presence of the noise always regularizes solutions
causing smooth and non-singular stationary distribution functions ρ φ ω( , ). It is important to
notice that the effective noise appears as a combination s R in the algebraic equations for
stationary modes (14). Therefore, for any ≠s 0 we always have the limit of effectively ‘large
noise’ at the bifurcation point →R 0. The latter causes a qualitative difference near the
transition point →R 0 between noisy ( ≠s 0) and noise-free (s = 0) cases even for very small
noise strength. With decrease of s, the ‘boundary layer’ shrinks (the smaller is parameter s, the
smaller values R we need for effective noise to be large) as one can see from figure 4.

Remarkably, the incoherent state which is linearly stable in the thermodynamic limit can
become metastable for finite-size ensembles in the region of bistability of asynchronous and
synchronous solutions. As one can see from figures 4(a), (b), the lower branch of synchronous
solutions (the unstable one) is relatively close to the incoherent state =R 01,2 in the region

≲ ≲T0.33 0.5. Therefore, due to the random finite-size fluctuations, there is always a
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probability for the system to escape the small basin of attraction of the disordered state, and to
make a transition to the synchronous state which has a much larger basin. Figure 5 shows
statistics of the lifetimes τ of the incoherent solution (linearly stable in thermodynamical
limit) for relatively small noise strength s = 0.01, and T = 0.47. For each value of N we
performed many runs, at each of them the transition time τ was measured as the first time at
which the order parameter R1 exceeded value 0.5 (initially this parameter is close to zero).
From these runs the mean value τ〈 〉log and the standard deviation of τlog have been
calculated (so that the error bars in figure 5 are not due to insufficient averaging, but represent
the variability of the times τ).

The averaged time of transition increases as the number of oscillators in the system
grows. Remarkably, one can see in figure 5(a) a crossover from a regime of a power-law
dependence of the lifetime on the system size (for ≲N 4000 a relation τ ∼ N 0.71 holds) to a
more rapid increase of the lifetime for ≳N 8000. We have to compare this with the noise-free
case, where according to [7] the lifetime scales as ∼N 0.72. One can see that for small system
size, i.e. for large finite-size fluctuations, the noise-free situation is reproduced. We explain
this as follows: small noise makes the asynchronous state only weakly stable, compared to
neutral stability of the noise-free case, and for large finite-size fluctuations this weak stability
is not seen. For smaller fluctuations (larger systems), the system starts to see the ‘potential
barrier’ it needs to overcome to go into the stable state with a large order parameter. Now the
lifetime is the activation time to escape from the stable state, which can be expected to follow
an exponential Kramers’ law for very small fluctuations (regime not accessible for moderate
values of N that we are able to study numerically). This explains the crossover observed in
figure 5.

5. Conclusion

The paper is devoted to the investigation of the Kuramoto model of globally coupled
oscillators with bi-harmonic coupling function. In particular, here we concentrated on the
effects caused by the action of the independent additive white noise forces on the oscillators.
In the first part of the paper we have formulated the self-consistent theory that allows one to

Figure 5. Statistics of the transition time from the incoherent state (linearly stable in
thermodynamic limit) to synchronous mode for the finite size ensemble. Straight red
line shows linear fit of the first five data points and has a slope ∼0.71. Parameters:
q = 0.5, T = 0.47, s = 0.01.
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find stationary solutions for the system in the thermodynamic limit (when number of oscil-
lators goes to infinity) in the presence of noise and an arbitrary distribution of frequencies. As
a result of the developed theory, we calculated a general bifurcation diagram and described all
possible stationary regimes of the model, for different values of noise strength, spread of
frequencies distribution, and coupling constants.

In the noise-free case, as has been shown in [7, 14], there exists a multiplicity (multi-
stability) of the coherent states due to the presence of the second harmonics in the coupling. In
this work we have shown that the action of white noise withdraws the multiplicity, however
the noise causes several additional complications to the bifurcation diagram.

First of all, due to the noise, the model contains a large area of parameters with so-called
‘nematic phase’, which represents a synchronous two-cluster state with zero first order
parameter ( =R 01 , ≠R 02 ). Depending on the parameter values, the transitions to synchrony
can be complicated, where possible scenarios include:

• a simple supercritical (second-order) transition to synchrony, where the first order
parameter scales as a square root of supercriticality. This case is similar to the standard
Kuramoto model with pure sinusoidal coupling and occurs when the second harmonics
coupling is relatively small (figure 2(a));

• a subcritical (first-order) transition to synchrony, with a large area of bistability of
coherent and asynchronous solutions. This type of transition becomes dominating as
noise strength goes to zero and the second harmonics in the coupling function remains
relatively strong (figure 2(b));

• first a two-cluster state appears via a supercritical (second-order) transition. This state is
characterized by a zero first order parameter and a square-root scaling of the second order
parameter. As disorder decreases, a general synchronous state appears via a next
subcritical (first-order) transition. This happens in the case of relatively weak first
harmonic in the coupling function (figure 2(c));

• first a two-cluster state appears via a supercritical (second-order) transition. As disorder
decreases, a general synchronous state appears via a supercritical (second-order)
transition, at which the amplitude of the first order parameter grows continuously. This
happens in the case of very small first harmonics term in the coupling function
(figure 2(d)).

We also report on the finite-size-induced transitions to synchrony for finite ensembles. As
was mentioned before, in the thermodynamic limit the transition to synchrony can be hys-
teretic with a large area of bistability of synchronous and asynchronous solutions when the
second harmonic is relatively large. In the latter case, noise causes a transition from inco-
herent state (linearly stable in the thermodynamic limit) to synchronous solution for finite-size
ensembles.

Additionally, we would like to mention an analogy of our model of coupled oscillators
with bi-harmonic coupling to an XY-model of globally coupled spins with ferromagnetic and
nematic coupling that is popular in statistical mechanics [18, 19]. In the latter context the
desynchronized state is a disordered one, while one-cluster and two-cluster states are ferro-
magnetic and nematic ones. Two main differences are: (i) in the context of statistical
mechanics, stability of solutions is established via minimization of the free energy in the
canonical description or maximization of the entropy in the microcanonical one, while in the
dynamical formulation above, stability properties are defined locally; (ii) diversity of oscil-
lators’ frequencies is a non-equilibrium feature not appearing in the equilibrium formulation
of the XY-model (see [20] for a comparison of the Kuramoto model with corresponding
models from statistical physics).
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Finally, we would like to mention that in this paper we consider bi-harmonic coupling
functions only. In general, a coupling function contains all harmonics, and one can ask
whether addition of further harmonics changes the regimes described above. While such a
study goes beyond the scope of this paper, we would like to mention that for narrow dis-
tributions of natural frequencies we expect a relatively small effect of higher harmonics. This
expectation is based on the observation that for identical noisy oscillators the effect of the
second harmonics term becomes significant for ≈q 0.5 only (see figure 1), where − q1 is the
relative strength of the second harmonics term. Contrary to this, for a wide distribution of
frequencies and relatively weak noise, the effect of the second harmonics is pronounced
already for ≈q 0.9 (figure 3(a)). A detailed study of many-harmonics coupling will be
presented elsewhere.
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Appendix A. General and symmetric solutions of the self-consistent equations

We formulate here a more general problem, with coupling functions containing arbitrary
phase shifts β β,1 2 in coupling terms, compared to equation (6):

φ ω Θ φ β Θ φ β

ξ

= − + − − + − − −

+

( ) ( )
t

s T qR q R

sT t

d

d
(1 ) sin (1 ) sin 2

( ). (A1)

1 1 1 2 2 2

Equations for the order parameters are the same as equations (5):

∫ ∫ ω ρ φ ω φ ω= =Θ φ φR g te e ( ) ( , )e d d . (A2)m
m mi i im

We look for solutions where the order parameters are stationary in the reference frame
rotating with frequency Ω (yet unknown, to be defined in course of solution). Thus we
introduce

Θ Ω θ Θ Ω θ φ ψ Θ β= + = + = + −t t, 2 ,1 1 2 2 1 1

to obtain

ψ Ω ω ψ θ θ ψ β β

ξ

= + − + − + − − − − +

+

( )
t

s T qR q R

sT t

d

d
(1 ) sin ( ) (1 ) sin 2 2 2

( ),

1 2 2 1 2 1
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and

∫ ∫
∫ ∫

ω ρ φ ω φ ω

ω ρ φ ω φ ω

=

=

β ψ

θ θ β ψ− +( )

R g t

R g t

e ( ) ( , )e d d ,

e ( ) ( , )e d d .

1
i i

2
i 2 2 i2

1

2 1 1

Let us denote δ θ θ β β= − + −2 22 1 1 2. Then we have a system

ψ Ω ω ψ δ ψ ξ= + − + − + − − +
t

s T qR q R sT t
d

d
(1 ) sin ( ) (1 ) sin ( 2 ) ( ),1 2

and

∫ ∫
∫ ∫

ω ρ ψ ω φ ω

ω ρ ψ ω φ ω

=

=

β ψ

δ β ψ+( )

R g t

R g t

e ( ) ( , )e d d ,

e ( ) ( , )e d d . (A3)

1
i i

2
i i2

1

2

The Fokker–Planck equation for ψ reads

ρ
ψ

Ω ω ψ δ ψ ρ ρ
ψ

∂
∂

+ ∂
∂

+ − + − + − − = ∂
∂

( )
t

s T qR q R sT(1 ) sin ( ) (1 ) sin ( 2 ) , (A4)1 2

2

2
⎡⎣ ⎤⎦

and we are looking for stationary solutions (which are periodic with frequency Ω in the
original reference frame). To find the solution of this self-consistent system explicitly, it is
convenient to introduce two new auxiliary variables R and α (together with definitions u, v, x,
and y) according to

α

α

ω

Ω

= + −

= =

= =
−

=

=

( ) ( )R qR T q R T

u
qR

TR

v
q R

TR

x
R

y
TR

(1 ) ,

cos ,

sin
(1 )

,

,

. (A5)

1
2

2
2

1

2

Then the stationary Fokker–Planck equation (A4) for the stationary distribution density
ρ ψ ∣ x( ) (which depends on α δR s y, , , , as parameters) reads

ψ
ψ ψ δ ρ ρ

ψ
∂

∂
+ − − − − = ∂

∂
R y x s u v s[ ( (1 ) sin ( ) sin (2 )) ] . (A6)

2

2

We are interested in the harmonics

∫α δ ρ ψ=
π

ψ−C R s x y( , , , , , ) e dn
n

0

2
i
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which allow to calculate the integrals in

∫ ∫ ∫
∫ ∫ ∫

ω ρ ψ ω φ ω α δ α δ

ω ρ ψ ω φ ω α δ α δ

= =

= =

ψ

ψ

g t R xg Rx C R s x y RF R s y

g t R xg Rx C R s x y RF R s y

( ) ( , )e d d d ( ) ( , , , , , ) ( , , , , ),

( ) ( , )e d d d ( ) ( , , , , , ) ( , , , , )

i
1
* 1

i2
2
* 2

and to find order parameters and parameters β1,2, T, q as functions of introduced quantities

α δ

α δ

α α

α

α α
α

Ω

=

=

=
+

=
+

=
+

=

β

δ β+( )
R RF R s y

R RF R s y

T
R

R

R

R

q

R

R
R

R

R

R

R

R
yTR

e ( , , , , ),

e ( , , , , ),
1

cos sin
,

cos

cos sin
1

1 tan
,

.

1
i

1

2
i

2

1 2

1

1 2

1

2

1

2

We see that all the static parameters of the problem and the order parameters are explicit
function of the four introduced auxiliary parameters α δR y, , , . However, the corresponding
analysis of the many-parameter space is rather tedious, therefore we restrict ourselves in the
bulk of the paper to the simplest case where β β= = 01 2 and symmetric distribution ωg ( ).
One can see from the expressions above that such solutions can be obtained by setting

δ= =y 0. Indeed, in this case − =C x C x( ) ( )1,2 1,2
* (see (14)) and quantities F1,2 are real, so

that indeed the conditions β β= = 01 2 are satisfied and the frequency of the collective
dynamics is the middle frequency of the distribution Ω = 0. We cannot exclude that there
might be other asymmetric solutions with non-zero δy, , but we expect these to be non-
generic, as the conditions = =δ−F FIm ( ) Im ( e ) 01 2

i can be fulfilled only occasionally.

Appendix B. Stability analysis of the incoherent solution

The detailed stability analysis of the incoherent solution of the system of phase equations with
multi-harmonic coupling function has been performed in [21, 22]. Here we will present the
analysis in the particular case of a bi-harmonic coupling function in the new parameter plane
q T s( , , ).

Consider the following Fokker–Planck equation (7) for conditional probability density
function ρ φ ω∣t( , )

ρ
φ

ω ρ ρ
φ

∂
∂

+ ∂
∂

− + + − = ∂
∂

φ φ− −( )( ) ( )
t

s T q Z q Z sT(1 ) Im e (1 ) Im e , (B1)1
i

2
2i

2

2

⎡⎣ ⎤⎦
where

∫ ∫ ω ρ φ ω φ ω= φZ t g t( ) ( ) ( , )e d d (B2)m
mi
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are the order parameters [15]. Then in the Fourier modes representation

∫∑ρ φ ω
π

ω ω ρ φ ω= = =φ
π

φ−t C t C t C t( , )
1

2
( , )e , ( , ) e d , ( , ) 1 (B3)

n

n
n

n
ni

0

2
i

0

we obtain

∫ φ
ω ρ

ρ
φ

φ ω

= − ∂
∂

− + + −

+ ∂
∂

= − − −

+
−

+ −
−

π
φ φ

φ

− −

−

− + − +

( )( ) ( )

( )

C

t
s T q Z q Z

sT k s T k sT C

kq
Z C Z C

k q
Z C Z C

d

d
(1 ) Im e (1 ) Im e

e d i (1 )

i
2i

i (1 )()
2i

. (B4)

k

k
k

k k k k

0

2

1
i

2
2i

2

2
i 2

1
* 1 1 1 2

* 2 2 2

⎡
⎣⎢

⎡⎣ ⎤⎦
⎤
⎦⎥

Thus we obtain the following system for Ck

ω= − − + +
−

+ −
−

− +

− +

C

t
k C q

Z C Z C

q
Z C Z C

d

d
(i (1 s)T ksT)

2

(1 )
2

, (B5)

k
k

k k

k k

1
* 1 1 1

2
* 2 2 2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

where

∫ ω ω ω=Z t g C t( ) ( ) ( , ) d . (B6)1,2 1,2
*

Small perturbation to incoherent solution ρ φ ω π∣ = −t( , ) (2 ) 1 means that <<C 1k for
≠k 0 and thus ≪Z 1m , so in order to linearize the system (B5) we can neglect all the terms

such as C Cm n and Z Cm n and higher. Then for >k 0

ω

ω

ω

= − − + +

= − − + + −

= − − + = …

C

t
T s s C q

Z

C

t
T s s C q Z

dC

dt
kT s ks C k

d

d
(i (1 ) )

2
,

d

d
2 (i (1 ) 2 ) (1 ) ,

(i (1 ) ) , for 3, 4, (B7)k
k

1
1

1
*

2
2 2

*

and complex conjugate equations for <k 0 because =−C Ck k
*. Introduction to (B7) of the

expressions (B6) for Z1,2 gives integro-differential equations for C1,2

∫
∫

ω ω ω

ω ω ω

ω

= − − + +

= − − + + −

= − − + = …

C

t
T s s C q g C

C

t
T s s C q g C

C

t
kT s ks C k

d

d
(i (1 ) )

1

2
( ) d ,

d

d
2 (i (1 ) 2 ) (1 ) ( ) d ,

d

d
(i (1 ) ) , for 3, 4, . (B8)k

k

1
1 1

2
2 2

From (B8) it follows that the equations for the harmonics split and because ⩾T 0 and
⩽ ⩽s0 1 all the high harmonics with ⩾k 3 and their complex conjugates are stable, whereas

instability appears in first and second harmonics independently, depending on q T, .
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Since the equations for modes (B8) are decoupled, in order to find boundary conditions
when the first and second harmonics become unstable one should put in (B8) =C td d 01 and

=C td d 02 , and self-consistently obtain two conditions on the parameters q T, . Then, by
using expression (B6) we obtain

ω

ω

− + =

− + = −

T s s C q Z

T s s C q Z

(i (1 ) )
1

2
,

2 (i (1 ) 2 ) (1 ) . (B9)

1 1
*

2 2
*

Introducing (B9) to (B6)

∫

∫

ω
ω

ω

ω
ω

ω

=
− +

= −
− +

Z
q

T

g Z

s s

Z
q

T

g Z

s s

2

( )

i (1 )
d ,

1

2

( )

i (1 ) 2
d , (B10)

1
* 1

*

2
* 2

*

we obtain two lines on the (q, T) parameter plane for any given s:

∫ ω
ω

ω=
− +

T q
g s

s s

1

2

( )

(1 )
d , (B11)

2 2 2

and

∫ ω
ω

ω= −
− +

T q
g s

s s
(1 )

( )

(1 ) 4
d , (B12)

2 2 2

where the line (B11) on the (q, T) plane corresponds to the linear stability boundary for
=R 01 and another line (B12) corresponds to the linear stability boundary for =R 02 .
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