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We analyze star-type networks of phase oscillators by virtue of two methods. For identical oscilla-

tors we adopt the Watanabe-Strogatz approach, which gives full analytical description of states,

rotating with constant frequency. For nonidentical oscillators, such states can be obtained by virtue

of the self-consistent approach in a parametric form. In this case stability analysis cannot be per-

formed, however with the help of direct numerical simulations we show which solutions are stable

and which not. We consider this system as a model for a drum orchestra, where we assume that the

drummers follow the signal of the leader without listening to each other and the coupling parame-

ters are determined by a geometrical organization of the orchestra. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4938400]

In the various studies of synchronization of globally

coupled ensembles of oscillators, usually, it is assumed

that global coupling is produced by mean fields that act

directly on each oscillator. However, in many natural sys-

tems (for example, arrays of Josephson junctions), the

global field is produced by a dynamical unit. In this paper

we consider the case when this unit is a limit cycle oscilla-

tor that can be described by a phase equation, similar to

that for the other oscillators in the ensemble. Such configu-

ration of oscillators is often called star-type network. In

the first part of the paper we study the case of identical

oscillators by virtue of the Watanabe-Strogatz approach

that gives full analytical analysis of steady solutions. In the

second part we examine inhomogeneous case, when the pa-

rameters of the coupling between each oscillator and the

central element are different. Such network can be consid-

ered as a model for Japanese drums orchestra, consisting

of a battery of drummers and a leader, where the

drummers only follow the signal from the leader. With the

help of the self-consistent approach, we find solutions

when the global field rotates uniformly. These solutions

are obtained semi-analytically in a parametric form. In

this work we analyze the case when the distribution of the

parameters is determined by the geometric organization

of the oscillators. However, this approach can be applied

for an arbitrary distribution of the parameters.

I. INTRODUCTION

Studies of synchronization in populations of coupled

oscillators attract high interest. First, there are many experi-

mental realizations of this effect, ranging from physical sys-

tems (lasers, Josephson junctions, spin-torque oscillators)

to biology (fireflies, genetically manipulated circuits) and

social activity of humans and animals (hand clapping, pe-

destrian footwalk on a bridge, egg-laying in bird colonies),

see reviews 1 and 2 for these and other examples. Second,

from the theoretical viewpoint, synchronization represents

an example of a nonequilibrium phase transition, and the

challenging task is to describe it as complete as possible in

terms of suitable order parameters (global variables). In the

simplest setup of weakly coupled oscillators interacting via

mean fields, the Kuramoto model of globally coupled phase

oscillators3,4 and its generalizations are widely used. Here,

three main approaches have been developed. The original

theory by Kuramoto is based on solving the self-consistent

equations for the mean fields. In a particular case of sine-

coupled identical phase oscillators, the Watanabe-Strogatz

theory5,6 allows one to derive a closed set of equations for

the order parameters. For non-identical sine-coupled oscil-

lators, an important class of dynamical equations for the

order parameters is obtained via the Ott-Antonsen ansatz.7

Typically, coupling in the ensemble is considered as a

force directly produced by mean fields (either in a linear or

nonlinear way). However, a more general setup includes equa-

tions for global variables, driven by mean fields and acting on

the oscillators. For example, for Josephson junctions and spin-

torque oscillators, the coupling is due to a common load,8,9

which may include inertial elements (like capacitors and

inductances) and therefore one gets an additional system of

equations (linear or nonlinear,10 depending on the properties

of the load) for global variables and mean fields. A special sit-

uation appears when the mediator of the coupling is not a lin-

ear damped oscillator (like an LCR load for Josephson

junctions), but an active, limit cycle oscillator. In this case the

latter may be described by a phase equation similar to that

describing one oscillator in the population. Such an ensemble,

where “peripheral” oscillators are coupled through one

“central” oscillator, corresponds to a star-type network of

interactions.11–13

One can make an analogy of such a network and a

Japanese drums orchestra. Such an orchestra consists of a
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battery of drummers and a leader, who sets the rhythm of the

music. In our model the battery corresponds to an ensemble

of oscillators coupled to a leader, who also is an oscillator.

Although in practice each drummer represents a pulse oscil-

lator (like a spiking neuron), we adopt here the phase

description like in the Kuramoto model. One should have in

mind that we do not aim in this paper to describe a real

Japanese drum orchestra operation, but rather use this anal-

ogy to make the interpretation of the results demonstrative.

In this paper we apply the methods for description of

global dynamics to such star-type networks with generic cou-

pling (see Ref. 14 for generic algebraic coupling), where inter-

actions of oscillators with the central element (i.e., their

coupling constants and phase shifts) are in general different

and are described by some joint distribution function. We

should stress that “generic” in this context means not includ-

ing coupling functions of arbitrary shape, but rather allowing

for arbitrary distribution of parameters (amplitudes and phase

shifts) of the Kuramoto-type sin-coupling terms. In the first

part of the paper we present full analytical analysis of the ho-

mogenous case (the intrinsic frequencies of all oscillators and

the coupling constants are the same for all oscillators) in the

framework of the Watanabe-Strogatz (WS) approach (see

Ref. 15 for the particular case of coupling coefficients). Due

to the fact that the WS method leads to a low-dimensional

system of equations that describes dynamics of a homogenous

ensemble of any size, it is possible to analyze also stability of

obtained solutions. We present solutions together with their

stability for different sets of parameters. In the second part we

perform the analysis of an inhomogeneous system with the

help of the self-consistent approach. After derivation of gen-

eral equations valid for an arbitrary distribution of coupling

parameters, we consider a particular example inspired by the

analogy to the drum orchestra: we assume that the phase shifts

and coupling strengths follow from a geometric configuration

of the “battery” and from the position of the “conductor.” In

this case, the stability analysis could not be performed, but we

compare obtained self-consistent solutions with the results of

direct numerical simulations.

II. THE MODEL

We consider a system of phase oscillators with a leader-

type coupling. Such a network structure (Fig. 1) is often

called star network, that is, the simplest small-world

network. In our setup, in the most general case each phase

oscillator uk has its own frequency xk and is forced by the

leader oscillator (phase /) with its own coupling strength Ak

and phase shift ak. At the same time, the leader / has its own

frequency x0 and is forced by every other oscillator uj with

coupling coefficient Bj and phase shift bj. The dynamical

equations thus read

_uk ¼ xk þ Ak sin /� uk � akð Þ; k ¼ 1…N;

_/ ¼ x0 þ
1

N

XN

j¼1

Bj sin uj � bj � /
� �

: (1)

The system (1) can be rewritten in terms of the mean field

_uk ¼ xk þ Im Akei /�uk�akð Þ
� �

;

_/ ¼ x0 þ Im ~G tð Þe�i/
� �

;

~G tð Þ ¼ 1

N

XN

j¼1

Bje
i uj�bjð Þ: (2)

It is convenient to perform a variable transformation to the

phase differences Duk between the oscillators uk and the

leader /, taking also into account the phase shift ak

Duk ¼ uk � /þ ak: (3)

Then, the equations for Duk and / are

dDuk

dt
¼ � d/

dt
þ xk þ Im Ake�iDuk

� �
;

d/
dt
¼ x0 þ Im G tð Þð Þ;

G tð Þ ¼ 1

N

XN

j¼1

Bje
i Duj�aj�bjð Þ: (4)

The expression for the leader dynamics can be directly

inserted into the equations for Duk, and thus we obtain the

effective mean-field-coupled closed system

dDuk

dt
¼ xk � x0 � Im G tð Þð Þ þ Im Ake�iDuk

� �
;

G tð Þ ¼ 1

N

XN

j¼1

Bje
i Duj�aj�bjð Þ: (5)

The system (5) is equivalent to the phase model (1) for the

leader-type (star) networks. This model in the form (5) is

similar to the models of Josephson junction arrays with the

star-like topology, which have been considered previously in

Refs. 16–18. Analytical analysis similar to that described

below has been performed for Josephson junction arrays in

Ref. 19. In Ref. 11, the model (1) for the systems with center

element (leader coupling) has been considered in the case of

identical coupling parameters and the distribution of natural

frequencies of the leaf oscillators.

In this work, we are going to study the cases of identical

and nonidentical oscillators separately. Below we present the

analytical analysis for these two cases together with numeri-

cal simulations for a particular example of nonidenticalFIG. 1. Configuration of the network, coupled through a leader.
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oscillators. In case of identical oscillators, we apply the

Watanabe-Strogatz approach. For the analysis of the case of

nonidentical units the self-consistent approach is used.

III. IDENTICAL OSCILLATORS

If all the parameters xk, Ak, Bj, bj, and aj are identical,

then the form of the phase equation (which is a particular

case of Eq. (5))

dDuk

dt
¼ x� x0 � Im G tð Þð Þ þ Im Ae�iDukð Þ;

G tð Þ ¼ Be�i aþbð Þ 1

N

XN

j¼1

eiDuj (6)

allows us to use the WS ansatz,5,6 which is applicable to any

system of identical phase equations of the general form

_uk ¼ f ðtÞ þ ImðFðtÞe�iukÞ; (7)

with arbitrary real function f(t) and complex function F(t). It

consists of the idea that after WS variable transformation (8),

the dynamics of the ensemble (7) is characterized by one

global complex variable z¼ z(t) and one real global variable

W¼W(t), and N constants of motion wk (of which only

N� 3 are independent). We use the formulation of the WS

theory presented in Ref. 20. WS transformation (8) is essen-

tially the M€obius transformation21 in the form

eiuk ¼ zþ ei wkþWð Þ

1þ z�ei wkþWð Þ ; (8)

with additional constraints
P

i eiwi ¼
P

i cos 2wi ¼ 0. Then

the global variables’ dynamics is determined by

_z ¼ if tð Þzþ F tð Þ
2
� F� tð Þ

2
z2;

_W ¼ f tð Þ þ Im z�F tð Þð Þ: (9)

Comparing the system (6) with (7) we see that in our

case f ðtÞ ¼ x� x0 � ImðGðtÞÞ and F(t)¼A. The next step

is to express the function G(t), that is essentially the order

parameter multiplied by a complex number, in the new

global variables. In general, such an expression is rather

complex (see Ref. 20 for details), but in the thermodynamic

limit N ! 1 and for a uniform distribution of constants of

motion w (the index has been dropped because constants

now have a continuous distribution) the order parameter is

equal to z (see Appendix A). The constants w, as well as the

WS variables z(0) and W(0), are determined by initial con-

ditions for the original phases Duð0Þ. In fact, any distribu-

tion of the constants is possible, and for each such

distribution the dynamics will be different. However, as has

been argued in Ref. 10, in presence of small perturbations,

initially non-uniform constants tend toward the uniform dis-

tribution, which also the one appearing in the Ott-Antonsen

ansatz.7 Due to these special relevance of the uniform dis-

tribution of the constants w, we consider only this case

below.

In this case, it follows from (9) that W does not enter the

equation for z, so we obtain a closed equation for z that

describes system (6)

_z ¼ i Dx� B Im ze�idð Þð Þz� A
z2 � 1

2
; (10)

where Dx¼x�x0 and d¼ aþb.

For a further analysis, it is appropriate to represent the

complex variable z ¼ qeiDU in polar form. Thus

dq
dt
¼ A

1� q2

2
cos DU;

dDU
dt
¼ Dxþ B sin dð Þq cos DU

� Aþ Aþ 2B cos dð Þq2

2q
sin DU: (11)

Note that Eqs. (11) are invariant under the following trans-

formation of variables and parameters: DU ! �DU, Dx !
�Dx and d!�d.

A. Steady states

We start the analysis of (11) with finding its steady

states. From the first equation in (11), it follows that there

are two types of steady states with _q ¼ 0: synchronous with

q¼ 1 and asynchronous with cos DU ¼ 0. The synchronous

steady state gives

q ¼ 1;

dDU
dt
¼ Dx�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ 2AB cos d

p
� sin DUþ arcsin

Aþ B cos dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ 2AB cos d
p � p

2

� �
:

(12)

From (12) it follows that the steady solution dDU
dt ¼ 0 exists

only if jDxj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ 2AB cos d
p

.

By rescaling time, we can reduce the number of parame-

ters. Eq. (12) suggests that the mostly convenient rescaling is

t0 ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ 2AB cos d

p
: (13)

This rescaling is quite general except for two special cases

when cos d ¼ �1 and B¼A (see Appendix B) or A¼B¼ 0,

the latter case is just one of uniformly rotating uncoupled

phase oscillators that does not present any interest. So in the

new parametrization, Eq. (12) has the form

q ¼ 1;

dDU
dt
¼ Dx� sin DUþ n� p

2

� �
; (14)

where

Dx ¼ Dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ 2AB cos d
p and

sin n ¼ Aþ B cos dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ 2AB cos d
p : (15)
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Thus, the steady solutions of Eq. (14) have the following

phases:

DUs1 ¼
p
2
þ arcsin Dx� n; DUs2 ¼ �

p
2
� arcsin Dx� n:

(16)

In the new parametrization, Eqs. (11) have the form

dq
dt
¼ g

1� q2

2
cos DU;

dDU
dt
¼ Dxþ cos nð Þq cos DU� gþ 2 sin n� gð Þq2

2q
sin DU;

(17)

where g ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þB2þ2AB cos d
p � 0. Note that similar to Eqs.

(11), Eqs. (17) are invariant to the following transformation

of variables and parameters DU! �DU; Dx! �Dx and

cos n! �cos n. Due to this symmetry, we can consider only

the case when cos n � 0.

The asynchronous steady states can be found from

DU ¼ 6p=2;

0 ¼ Dx7
gþ 2 sin n� gð Þq2

2q
: (18)

Eq. (18) gives two asynchronous steady solutions

za1;2 ¼ i
Dx6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 � g 2 sin n� gð Þ

p
2 sin n� g

: (19)

It is convenient to rewrite Eq. (19) as

za1;2 ¼ sign Dxð Þ i jDxj6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 � g 2 sin n� gð Þ

p
2 sin n� g

: (20)

Note that here the cases split depending on the value of

ð2 sin n� gÞ. If j2 sin n� gj > g, then, because q ¼ jzj � 1,

the solution za1 exists only if jDxj � j sin nj. If

j2 sin n� gj � g, then, also because q ¼ jzj � 1, the solution

za2 exists only if jDxj � sin n. If 2 sin n� g ¼ 0, then the

asynchronous steady solutions are

za1;2 ¼ 6sign Dxð Þ i g

2jDxj ; (21)

but the condition on jDxj � sin n ¼ g=2 is still the same.

Note that the expression 2 sin n� g is equal to
Aþ2B cos dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2þB2þ2AB cos d
p ; if cos d � 0 this expression is always positive,

so that g< 1 and sin n > g. If cos d < 0, then the sign of this

expression depends on the sign of Aþ 2B cos d, but sin n < g.

B. Stability analysis

In order to analyze stability of the asynchronous steady

solutions (20), we linearize the system around corresponding

fixed point. The linearized system reads

_a1;2 ¼ sign Dxð Þ � cos nð Þ jDxj6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 � g 2 sin n� gð Þ

p
2 sin n� g

a1;26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 � g 2 sin n� gð Þ

q
b1;2

 !
;

_b1;2 ¼ sign Dxð Þ jDxj � sin nð Þ jDxj6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 � g 2 sin n� gð Þ

p
2 sin n� g

 !
a1;2; (22)

where a1,2 and b1,2 are real and imaginary parts of the perturbation, respectively. Although it is difficult to find explicit expressions

for the eigenvalues of the linear system (22), compared to a straightforward calculation of eigenvalues for the synchronous fixed

points below, it is possible to find regions of parameters where they are positive or negative, what is sufficient for determining sta-

bility of asynchronous solutions (see Appendix C for detailed description of stability properties of the asynchronous states).

There is one truly remarkable case when cos n ¼ 0 or sin d ¼ 0. In this case, eigenvalues of the linear system (22) for za2

are purely imaginary, what opens a possibility for the fixed point za2 to be neutrally stable (see Subsection III C for details).

For two synchronous fixed points (16): zs1 ¼ eiDUs1 and zs2 ¼ eiDUs2 , the corresponding linearized system reads

_a1;2 ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dx2
p

þ ðsin n� gÞð�Dx cos n6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dx2
p

sin nÞ
h i

a1;2þ ðsin n� gÞð6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dx2
p

cos nþ Dx sin nÞ
h i

b1;2;

_b1;2 ¼ cos nð�Dx cos n6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dx2
p

sin nÞ
h i

a1;2þ �sin nð�Dx cos n6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dx2
p

sin nÞ
h i

b1;2; (23)

with the same meaning of linear perturbations a1,2, b1,2.

Linear system (23) has two eigenvalues

ks
1
1;2 ¼ gðDx cos n7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dx2
p

sin nÞ;

ks
2
1;2 ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dx2
p

: (24)

Their signs depend on the values of the parameters. We will

outline all possible steady solutions together with their

stability below (see Appendix C for a full description of sta-

bility properties of the steady solutions).

C. Reversible case when condition sin d50 holds

As has been shown by the stability analysis above, when

sin d ¼ 0, the steady state za2 is neutrally stable for any Dx.

The neutral stability can be proved by the fact that when

sin d ¼ 0 (and, as a consequence, cos n ¼ 0), Eq. (10) is
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invariant to the transformation ImðzÞ ! ImðzÞ; ReðzÞ
! �ReðzÞ, when the time direction is also changed: t !� t.
This transformation, which leaves the imaginary axis invari-

ant, is an involution. Thus, the dynamics is reversible:22 any

trajectory that crosses Im(z) axes twice is a neutrally stable

closed curve (Fig. 2). This set of quasi-Hamiltonian trajecto-

ries (surrounded by a homoclinic one) coexists with an attrac-

tor and a repeller, which are symmetric to each other (for

other examples of coexistence of conservative and dissipative

dynamics in reversible systems see, e.g., Ref. 23). In direct

numerical simulations, one observes, depending on initial

conditions, either a synchronous state or oscillations of the

order parameter z.

D. Synchronization scenarios

There are three main regions of parameters with three

different transitions from asynchronous steady solution to

synchronous one.

We present the diagram of different states in the param-

eter plane (d, Dx) in Fig. 3. There are three main domains:

the domain, where the synchronous solution (illustrated in

Fig. 4(a)) is stable; the domain where the asynchronous solu-

tion (illustrated in Fig. 4(b)) is stable; and the domain of bist-

ability. As parameters d and Dx describe two main properties

of the star-type coupling, namely, the phase shift in the cou-

pling and the frequency mismatch between the central and

peripheral elements, correspondingly, the interpretation of

these domains is straightforward. Phase shifts close to zero,

as well as small frequency mismatches facilitate synchrony;

bistability is observed when the mismatch is relatively large

while the phase shift d is close to the optimal one for syn-

chronization (zero).

We show the transitions in dependence on the relative

frequency mismatch Dx between the oscillator’s natural fre-

quency and the frequency of the leader. Stability of the sol-

utions depends on the sign of the frequency mismatch Dx.

A detailed description of the solutions we present in

Appendix C.

(a) In the first case (Fig. 5(a)), there is a hysteretic syn-

chronization transition. If Dx> 0, there is a stable asyn-

chronous steady solution that exists for large absolute

values of jDxj, and a stable synchronous steady solu-

tion that exists for small jDxj. These solutions coexist

for a bounded region of jDxj, thus forming hysteresis.

If the frequency mismatch is negative Dx< 0, the syn-

chronous steady solution is still stable, and also the

synchronous limit cycle solution becomes stable for

large jDxj, while the asynchronous steady solution

becomes unstable.

FIG. 2. The phase portrait for the reversible order parameter dynamics (case

sin n ¼ 1; Dx ¼ 0:85, and g¼ 0.4). Trajectories connecting the unstable syn-

chronous fixed point (denoted as the empty square) and the stable one (filled

square) are shown in blue. Trajectories oscillating around neutrally stable

fixed point (x-cross) are shown in red. Stable and unstable manifolds of the

saddle (denoted as the plus marker) are shown in green.

FIG. 3. Different regimes in the parameter plane (d, Dx) for A¼ 1 and B¼ 3.

The area, where the synchronous steady solution is stable, is denoted with s,

the areas, where asynchronous steady solution is stable, are denoted with

a, the area of the hysteresis is denoted with h. Solid red line is stability line

of the asynchronous state, solid blue line is stability line of the synchronous

state. Dashed green line denotes the area of existence of unstable asynchro-

nous solution and dashed blue line - the area of existence of unstable syn-

chronous solution. Horizontal dashed gray lines are cuts of the diagram

illustrated in Fig. 5 ((a) corresponds to the bottom line, (b) to the middle

line, and (c) to the top line).

FIG. 4. Snapshots of the oscillators for synchronous ((a) Dx¼ 0.3) and

asynchronous ((b) Dx¼ 0.7) cases. The parameters are the same as for

Fig. 5(a).
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(b) In the second case (Fig. 5(b)), there is no hysteresis. In

this case there is only one asynchronous steady solution

existing for large values of jDxj that is stable if Dx> 0

and unstable if Dx< 0. If Dx> 0, the synchronous solu-

tion is stable for small values of jDxj, while if Dx< 0

both synchronous (steady and limit cycle) solutions are

stable for all jDxj.

(c) In the third case (Fig. 5(c)), the transition is not hys-

teretic. For Dx> 0 there is only one stable steady so-

lution that is the asynchronous one. And for Dx< 0,

for small jDxj there is stable asynchronous steady so-

lution that transforms to synchronous steady solution

for larger jDxj, which with further increase of jDxj
becomes a stable synchronous limit cycle.

E. Star-like and mean field coupling

The analytical approach described above can be par-

tially applied for the system of identical oscillators

coupled not only through interactions with a leader but

also via a Kuramoto-Sakaguchi mean field. Adding such a

mean-field means that we add additional all-to-all cou-

pling between the leaf oscillators, thus the original system

(1) reads

_uk ¼ xþ A sin /� uk � að Þ

þ 1

N

XN

j¼1

C sin uj � uk � cð Þ; k ¼ 1…N;

_/ ¼ x0 þ
1

N

XN

j¼1

B sin uj � b� /
� �

: (25)

Parameter C here describes relative strength of the direct

mean-field coupling compared to that via the leader. In the

context of drum orchestra, this corresponds to a situation,

where the drummers follow not only the leader, but react on

the other drummers. In a more general context, Eqs. (25)

describe coupling via two mean field channels: one direct

(Kuramoto-Sakaguchi term) and another mediated by the

leader.

The system (25) can be similarly rewritten to the form

of the system (6) with additional mean field H(t)

dDuk

dt
¼x�x0� Im G tð Þð Þþ Im Ae�iDukð Þþ Im H tð Þe�iDuk

� �
;

G tð Þ¼Be�i aþbð Þ 1

N

XN

j¼1

eiDuj ;

H tð Þ¼Ce�ic 1

N

XN

j¼1

eiDuj : (26)

The WS approach can be also applied to the new system

(26), so that according to (9) we obtain the following equa-

tion for the order parameter:

_z ¼ i Dx� B Im ze�idð Þð Þz� A
z2 � 1

2
þ C

2
e�ic � eicjzj2
� �

z:

(27)

Then we perform a similar analysis, which involves the

same rescaling of time (13) and reparameterization (15) as

in the previous case. In the rescaled time Eq. (27) for the

magnitude and the argument of the order parameter reads

FIG. 5. The dependence of the order parameter jzj on the relative frequency

mismatch Dx, for the case sin n > g � 0 (a), for the case g � sin n � 0 (b)

and for the case sin n < 0 (c). The red curve denotes stable asynchronous

steady solution, the green curve denotes unstable asynchronous steady solu-

tion, and solid blue line denotes synchronous steady solution, while dashed

blue line denotes unstable synchronous steady solution.
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dq
dt
¼ 1� q2

2
g cos DUþ q cos c qð Þ;

dDU
dt
¼ Dx� q

1þ q2

2
sin cþ cos nq cos DU

� gþ 2 sin n� gð Þq2

2q
sin DU; (28)

where q ¼ Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2þA2þ2BA cos d
p � 0. Note that similar to Eqs.

(11), Eqs. (28) are invariant to the following transformation

of variables and parameters: DU! �DU; Dx! �Dx and

cos n! �cos n; c! �c. Thus, as above, we will consider

only the case when cos n � 0.

The synchronous steady solutions with q ¼ jzj ¼ 1 of

Eq. (28) are

DUs1 ¼
p
2
þ arcsin Dx� q sin cð Þ � n;

DUs2 ¼ �
p
2
� arcsin Dx� q sin cð Þ � n:

(29)

The incoherent steady solutions should be found from the

following equations:

cos DU ¼ � q cos c q
g

;

0 ¼ Dx� q
1þ q2

2
sin c� cos nð Þq q cos c q

g

7
gþ 2 sin n� gð Þq2

2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q cos c q

g

� �2
s

: (30)

The system of equations (30) for q and DU is rather

complex for an analytical analysis, but it is clear that there

are two main limiting cases. The first is the case with large C
(which corresponds to the parameter q), this means that the

dynamics of the system is mostly influenced by the

Kuramoto mean field. This case qualitatively coincides with

the well studied case when B¼A¼ 0 with two synchronous

fixed points (one stable and another unstable with jzj ¼ 1)

and one asynchronous fixed point (stability of which depends

on the coupling parameters and frequency mismatch). The

second case is when the influence of the mean field is rela-

tively small, what happens if the coupling strength C (or q)

is small. The qualitative picture for this case coincides with

the limit C¼ q¼ 0 considered in the main part of this sec-

tion. The quantitative results can be obtained by solving sys-

tem (30) numerically. Note that our approach is still useful

here because the numerical analysis of the reduced system

(28) is much simpler then the original one.

IV. NONIDENTICAL OSCILLATORS

Let us return to the original formulation of the problem

with a generic distribution of the coupling constants and

phase shifts (5)

dDuk

dt
¼ xk � x0 � Im G tð Þð Þ þ Im Ake�iDuk

� �
;

G tð Þ ¼ 1

N

XN

j¼1

Bje
i Duj�aj�bjð Þ; (31)

where dynamics of the leader

_/ ¼ x0 þ ImðGðtÞÞ (32)

does not enter in the equations for the phase differences.

A. Self-consistent approach

We analyze the solutions of (31) in the thermodynamic

limit N ! 1, where in this case the parameters x, A, B, a,

and b have a joint distribution density wðpÞ¼wðx;A;B;a;bÞ,
where p is a general vector of parameters. Introducing the con-

ditional probability density function for the distribution of the

phases at a given set p: WðDu;tjpÞ, we can rewrite system

(31) as

dDu
dt
¼ x�x0�Q sinDH�A sinDu;

G tð Þ ¼ QeiDH ¼
ð

w pð ÞBe�i aþbð Þ
ð2p

0

W Du; t jpð Þ eiDudDudp;

(33)

where WðDu; t j pÞ should be calculated from the Liouville

equation

@W

@t
þ @

@Du
x� x0 � Q sin DH� A sin Duð Þ½ �Wð Þ ¼ 0:

(34)

Then, we look for a stationary solution for the distribu-

tion of the phase difference Du

@

@t
W Du; t j pð Þ ¼ 0: (35)

Stationarity of the distribution of Du means that we are look-

ing for the solutions of the original system (1), for which

phases u rotate with a constant frequency X, where X
denotes the frequency of the leader (resulting from (32))

X ¼ _/ ¼ x0 þ Q sin DH: (36)

Then, it is convenient to treat the unknowns Q, DH and the

parameter x0 as functions of X.

The stationary solution of the stationary Liouville equa-

tion (34) is either a delta-function or a continuous

distribution

W ¼ d Du�Du
� �

; sin Du A;xð Þ
� �

¼x�X
A

; A� jx�Xj;

W ¼ C A;xð Þ
jx�X�A sin Duð Þj ; A< jx�Xj: (37)

The first equation in (37) has two solutions, we take the

microscopically stable one

eiDu A;xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x� X

A

� �2
s

þ i
x� X

A
: (38)

Also we need to calculate the following integrals, yield-

ing the contribution from the desynchronized oscillators:
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C A;xð Þ ¼
ð2p

0

dDu
jx� X� A sin Duð Þj

 !�1

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� xð Þ2 � A2

q
2p

;

ð2p

0

eiDu dDu
jx� X� A sin Duð Þj ¼

2pi

A

X� x
jX� xj �

X� xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� xð Þ2 � A2

q
0
@

1
A : (39)

Since in the integrals there is no dependence on Q, it is more

convenient to denote

QeiDH ¼ FðXÞ; (40)

where

F Xð Þ¼
ð
jAj�jX�xj

w pð ÞBe�i bþað Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X�xð Þ2

A2

s
dp

�i

ð
w pð ÞBe�i bþað Þ X�x

A
dp

þi

ð
jAj<jX�xj

w pð ÞBe�i bþað Þ X�x
jX�xj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X�xð Þ2

A2
�1

s
dp :

(41)

Thus, using relations (40) and (36) we obtain the parametric

solution of the problem

Q ¼ jFðXÞj; DH ¼ argðFðXÞÞ; x0 ¼ X� ImðFðXÞÞ:
(42)

In the case of the Kuramoto-type model with generic

coupling described in Ref. 14, where a similar self-consistent

approach has been applied, the mean field has been charac-

terized by two unknown variables, the frequency X and the

amplitude Q. The integral in the function F¼F(X, Q) was

dependent on these variables; therefore, two non-distributed

parameters were needed in order to express them through the

unknown variables. In contradistinction, here for the leader-

type coupling, only the frequency X enters the integral.

Thus, the solution here is parametrized by the frequency of

the leader X only, and thereby we have only one non-

distributed parameter of the original system that is expressed

via the complementary parameter X, namely, the natural fre-

quency of the leader x0. So hereinafter we will represent the

solutions in the form of the dependence of Q and X on the

parameter x0. Also the phase DH is not indicative, so we

will not show it in the examples below.

In this model, the amplitude of the global field Q that

determines the forcing acting on the oscillators is not nor-

malized and can be larger than unity. Moreover, it does not

vanish for the asynchronous regime. Thus, it is not conven-

ient to use it as an order parameter. As an order parameter it

is more suitable to use the relative number of locked oscilla-

tors, or, in the thermodynamic limit, the parameter R defined

according to the following equation:

R ¼
ð
jAj�jX�xj

wðpÞdp: (43)

B. Drums with a leader

Here, as an example of the application of this method,

we will consider system (31) as a model for the drum or-

chestra or any other ensemble of oscillators with a spatial

two-dimensional organization. We assume that the drum or-

chestra is a set of oscillators uniformly distributed on a unit

square located at the origin (Fig. 6). As in Ref. 14, where an

example of a geometric organization of oscillators has been

treated, we assume that the phase shifts bj and ai are propor-

tional to the distances between the oscillator and the leader,

thus

bi ¼ ai ¼
xs

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xlð Þ2 þ yi � ylð Þ2

q
; (44)

where xs is the central frequency of the original signal

(around which the phase approximation was made) and c is

the speed of signal propagation. Coupling strengths Bj and Ai

are assumed to be inversely proportional to the square distan-

ces between each oscillator and the leader

Bj ¼
WB

xj � xlð Þ2 þ yj � ylð Þ2
; Ai ¼

WA

xi � xlð Þ2 þ yi � ylð Þ2
;

(45)

here additional initial intensities of the signals WA and WB

were added in order to have coupling coefficients of the

order 1 for any distant position of the leader.

Then in the thermodynamic limit the distribution of the

coupling parameters can be written as w(A, B, a, b)¼w(x, y),

where all the parameters are the functions (44, 45) of the coor-

dinates (x, y) of the 2D plane, except for, perhaps, natural fre-

quencies x, that can be independently distributed. In our

numerical simulations we neglected this, assuming that all

oscillators have identical frequencies. The self-consistent

approach gives solutions for any given position of the leader

outside of the manifold of the oscillators, and for any given

value of its own natural frequency. As a measure of syn-

chrony, we will use the order parameter R introduced above

in Eq. (43) (if R is close to unity, the regime is synchronous,

FIG. 6. The scheme of the organization of the drum orchestra.
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and if R is small we call this regime asynchronous). The terms

“synchronous” and “asynchronous” are used here in order to

show the resemblance between the solutions of homogenous

and non-homogenous systems. For the latter case, however,

the usage of these terms is not entirely correct as can be seen

in Fig. 7, where it is impossible to distinguish between the

partial synchrony and asynchrony because there is no abrupt

transitions, and, except for a small region when all the phases

are locked (R¼ 1), there is a fraction of locked phases and

rotating phases with stationary distribution, which can be

named both as partial synchrony and as asynchrony in this

case.

Spatial patterns of the average frequencies of the oscilla-

tors are shown in Fig. 8 for positive and negative frequencies

of the global field X. In both cases, there is an area of locked

phases, where _u ¼ _/ ¼ X, and an area of rotating phases

with h _ui ¼ signðXÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX� xÞ2 � A2

q
.

This model contains many parameters, varying each one

can obtain various regimes. Therefore, exhaustive descrip-

tion does not seem possible. While other complex states can-

not be a priori excluded, next we will present the solutions

that qualitatively coincide with the solutions of the homoge-

nous system.

Fig. 7 shows the dependence of the amplitude Q, the fre-

quency X of the global field, and the order parameter R on

the frequency mismatch Dx¼x�x0 obtained self-

consistently, for the case when transitions between synchro-

nous and asynchronous regimes are smooth. For relatively

large absolute values jDxj, the order parameter R is small,

but the value of the amplitude Q of the global field is signifi-

cantly larger than zero. For small negative Dx, the order pa-

rameter R is equal to unity, meaning that all the phases are

locked, what leads to even larger values of Q. The interesting

feature is that the maximum value of Q is achieved when R

is smaller than unity. The fully asynchronous regime with

R¼ 0 is not shown in Fig. 7, however it exists for sufficiently

large absolute values of the frequency mismatch jDxj.
In the second regime, we illustrate the situation when

there are two stable steady states (one asynchronous and one

synchronous) with a hysteretic transition between them. The

dependences of the amplitude Q and the frequency X of the

global field on the frequency mismatch Dx¼x�x0 for this

case together with the order parameter R are shown in Fig. 9.

In these figures, we depict both the results obtained by the

self-consistent method and by direct numerical simulations.

These two are very close (slight differences are due to the

finite-size effects and the fact that we stop calculations at a

finite time) everywhere except for the area of the hysteresis

that can be observed in the neighbourhood of the maximum

amplitude of the global field, and when the values of the

order parameter R are close to unity. For the large absolute

values of the frequency mismatch jDxj, the order parameter

R is small and goes to zero with further increase of jDxj,

FIG. 7. The dependences of the amplitude Q (black curve) and the frequency

X (violet curve) of the global field together with the order parameter R (red

curve) on the frequency mismatch Dx¼x�x0, obtained self-consistently

for the following values of the parameters xl¼�0.1, yl¼�0.1, and

WA¼WB, xs/c¼ 1. Horizontal dashed lines represent 1 and 0 on the y-axis.

Vertical lines represent the parameters for Fig. 8.

FIG. 8. Distributions of the average frequencies of the oscillators for two

cases (a) X¼ 3 and (b) X¼�2.5. For the locked phases _u ¼ _/ ¼ X while

for the rotating phases h _ui ¼ signðXÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX�xÞ2 � A2

q
. The parameters are

the same as for Fig. 7.
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what means that the number of locked phases is low and

goes to zero with further increasing of jDxj.
Another regime represents the case when there is one

stable synchronous fixed point and one unstable asynchro-

nous fixed point. The results of numerical simulations and

the self-consistent method for this case are shown in Fig. 10.

For negative and small positive values of Dx, there is a

steady solution. Being asynchronous for large negative Dx,

it gradually becomes partly synchronous for small negative

Dx, and transforms to a synchronous solution (R¼ 1) for

small positive Dx. As can be seen with the help of numerical

simulations, with further increasing of Dx the steady

solution becomes unstable and we observe the oscillating re-

gime (these limit cycle oscillations are illustrated in Fig. 11).

In connection with the interpretation of the model as a

“drum orchestra,” the global field represents the signal col-

lected from all the drummers and filtered at the main fre-

quency. This frequency is equal to the frequency of the

global field X and the intensity of this filtered collected sig-

nal is equal to the amplitude of the global field Q. The order

parameter R represents the relative amount of drummers

FIG. 9. (a) The dependences of the amplitude Q of the global field (black

curve represents self-consistent solution, blue and green curves—numeric)

and the order parameter R (red curve obtained from self-consistent method)

as functions of the frequency mismatch Dx¼x�x0, for the case xl¼�0.1,

yl¼�0.1, and WA¼ 0.25WB, xs/c¼ 1. (b) The dependences of the fre-

quency X of the global field (black curve from self-consistent approach is

mostly hidden but can be seen in the area of hysteresis, blue and green

curves from numerics) as functions of the frequency mismatch

Dx¼x�x0, for the case xl¼�0.1, yl¼�0.1, and WA¼ 0.25WB, xs/c¼ 1.

Horizontal dashed line represents 1 on the y-axis. Vertical dashed lines

show the area of hysteresis.

FIG. 10. The dependences of the amplitude Q (black curve is obtained self-

consistently, blue curve is an average value on the limit cycle obtained

numerically, and brown curves are minimum and maximum values on the

limit cycle) and the frequency X (violet curve—self-consistent solution,

light green curve is numerical average over the limit cycle, dark green

curves are the minimum and the maximum on the limit cycle) of the global

field on the frequency mismatch Dx¼x�x0 together with the order pa-

rameter R (red curve obtained from self-consistent method). The following

values of the parameters were used xl¼�1, yl¼�1 and WA¼WB, xs/c¼ 1.

Horizontal dashed lines represent 1 and 0 on the y-axis. Vertical dashed lines

show the area of hysteresis.

FIG. 11. Numerical simulations for the amplitude Q (black curve) and the

frequency X (red curve) of the global field as functions of time for

Dx¼x�x0¼ 3, for the same values of the parameters as in Fig. 10.
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oscillating with the same main frequency of the collected

signal X. Our calculations show that perfect synchrony of

the orchestra is not achieved when the intensity of the fil-

tered collected signal is maximum; therefore, it is not appro-

priate to use it as a measure for synchrony of the orchestra.

V. CONCLUSIONS

In this paper, we have performed the analysis of homo-

geneous and inhomogeneous ensembles of oscillators

coupled through a leader by virtue of two methods: the

Watanabe-Strogatz approach for identical oscillators and the

self-consistent theory for nonidentical oscillators. While the

former method yields also stability of the solutions, in the

second approach the stability properties are indicated with

the help of direct numerical simulations.

In the homogenous case, the WS approach gives a possi-

bility for a full analytical analysis of the system. The main

result is the existence of a hysteretic transition from asyn-

chrony to synchrony for some set of the parameters, while

for other sets the transition is not hysteretic. Another distinc-

tion from classical Kuramoto-type systems is that the asyn-

chronous solution has a non-zero order parameter.

In the inhomogeneous case, solutions rotating with a

constant frequency have been found self-consistently. As an

example, we consider the case when coupling parameters are

determined by the spatial distribution of the oscillators. In

this situation the solutions similar to that of the homogene-

ous system can be found. In this case the stability analysis

cannot be performed, but with the help of direct numerical

simulations we are able to show which solutions are

expected to be stable and which not.

Although our interpretation of the star-type network as a

“drum orchestra” is sketchy and of course cannot be applied

to real musical performances, the very field of acoustically

coupled elements is, in our opinion, one where potential geo-

metric effects on synchronization due to delay in signal prop-

agation could be visible. Indeed, for a rhythm with a 1/2

second period, propagation in air at distance of about 80 m

would give a phase shift close to p, and such distances are

not unusual for large drumming sections.

The star-type network considered in this paper is just one

example where the coupling can be expressed through a mean

field. More generally, there can be a set of global variables

(generalized mean fields) that act on oscillators. There are two

main types of coupling: (i) the mean field is algebraically

expressed through the states of the oscillators, this is the case

of the standard Kuramoto model and its generalization to

more complex coupling functions; (ii) the global variables are

dynamical ones, i.e., there are dynamical equations for the

mean fields. To this second class belong situations where the

global variables obey linear or nonlinear passive equations

(e.g., for Huygens clocks on a common support, the latter can

be described as a linear passive oscillator; similarly the com-

mon load for an array of Josephson junctions is a passive lin-

ear or nonlinear LCR circuit). The star-coupled network

above is one where the global field is itself active, i.e., a self-

sustained oscillator. We studied only a situation where this

central oscillator is of the same type as those in the battery, in

particular, it is described by a similar phase equation. It would

be interesting to study more general setups, where the leader

is, e.g., a weakly nonlinear self-sustained oscillator described

by the Stuart-Landau equations. Another possible generaliza-

tion is a system with several global fields. Partially we have

touched it, when both leader-mediated and direct Kuramoto-

Sakaguchi-type coupling terms have been included. Here of

potential interest would be setups with two or more competing

leaders, we expect that the analytical approaches developed in

this paper could be extended to studies of such problems.
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APPENDIX A: REPRESENTING THE ORDER
PARAMETER IN TERMS OF WATANABE-STROGATZ
(WS) GLOBAL VARIABLES

In order to represent the order parameter

Z ¼ 1

N

XN

j¼1

eiuj (A1)

through the WS variables one should substitute the original

phases included as eiuk with the WS transformation (8) (see

Ref. 20 for details), such that

Z ¼ 1

N

XN

j¼1

eiuj ¼ 1

N

XN

j¼1

zþ ei wjþWð Þ

1þ z�ei wjþWð Þ : (A2)

The expression (A2) is rather complex and not applicable for

analytical analysis. But there is a special case when this

expression becomes extremely simple. First let us use an

identity

ð1þ z�eiðwjþWÞÞ�1 ¼
X1
l¼0

ð�z�ÞleilðwjþWÞ: (A3)

Using the identity (A3) we rewrite the expression (A2) for Z

Z ¼ 1

N

XN

j¼1

zþ ei wjþWð Þ
� �X1

l¼0

�z�ð Þleil wjþWð Þ; (A4)

or

Z ¼ z 1þ 1� jzj�2
� �X1

l¼1

�z�ð Þl 1

N

XN

j¼1

eil wjþWð Þ
2
4

3
5: (A5)

Then, in the thermodynamic limit (the number of oscil-

lators goes to infinity), there is one special configuration of

constants w (the index has been dropped because constants
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now have continuous distribution) when this expression is

simple. Such a configuration is a uniform distribution of con-

stants w. In this case the order parameter Z is equal to the

global variable z (due to the fact that the sums over j in (A5)

become integrals over the distribution and in the case of the

uniform distribution these integrals vanish). Note that the

requirement of the uniform distribution of constants w is a

restriction on initial conditions, but it does not mean that the

initial conditions should be also uniformly distributed

(because z(0) not necessary should be equal to zero).

APPENDIX B: SPECIAL CASE WHEN cos d521 AND
B 5 A

If cos d ¼ �1 and B¼A then Eqs. (11) transform to

_q ¼ A
1� q2

2
Re eiDUð Þ;

DU
:

¼ Dx� A
1� q2

2q
Im eiDUð Þ: (B1)

Thus, in this special case, there are no synchronous steady

states, only limit cycle with q¼ 1 and DU(t)¼Dxt. The

asynchronous steady states could be found from the equa-

tions analogous to Eqs. (18), they read

DU ¼ 6p=2;

0 ¼ Dx7A
1� q2

2q
: (B2)

Then, the steady asynchronous solutions are

za1;2 ¼ sign Dxð Þ i�jDxj7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ A2
p

A
: (B3)

From (B3) follows that jza1j > 1 and jza2j < 1 if Dx 6¼ 0.

And thus there is only one asynchronous steady solution za2.

After linearization around za2, the following linear system is

obtained:

_a ¼ �signðDxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ A2

p
b;

_b ¼ signðDxÞ jDxja; (B4)

where a¼Re(z) and b ¼ ImðzÞ � Imðza2Þ. Linear system

(B4) has two eigenvalues

ka
1;2
2 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jDxj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ A2

pq
; (B5)

what means that za2 is neutrally stable as in the general case

when sin d ¼ 0.

APPENDIX C: THE PRESENTATION OF THE
SOLUTIONS FOR ALL VALUES OF THE PARAMETERS

Here, we present a detailed description of the solution

for all three cases. Since we consider only the case when

cos n > 0 (for cos n ¼ 0 see separate section) and thus

sin n 6¼ 1, the solution with stability for Dx> 0 [Dx< 0] is

(i) (Fig. 5(a)) ð2 sin n� gÞ > g, note that 1 > sin n >
g � 0 and

jDxj � sin nð Þ jDxj6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 � g 2 sin n� gð Þ

p
2 sin n� g

 !
> 0:

(C1)

zs1 � sinkðstableÞnode ½sinkðstableÞnode� and

zs2 � sourceðunstableÞnode ½sourceðunstableÞnode�;
if jDxj <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð2 sin n� gÞ

p
;

za1 � saddle ½saddle�; za2 � stable ½unstable� and

zs1 � sinkðstableÞnode ½sinkðstableÞnode� and

zs2 � sourceðunstableÞnode ½sourceðunstableÞnode�;
if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð2 sin n� gÞ

p
� jDxj � sin n;

za2 � stable ½unstable� and

zs1 � saddle ½sinkðstableÞnode� and

zs2 � sourceðunstableÞnode ½saddle�;
if sin n < jDxj � 1;

za2 � stable ½unstable�; and

jzj ¼ 1; argðzÞ ¼ DUðtÞ; unstable ½stable� limit cycle

if 1 < jDxj:
(C2)

(ii) (Fig. 5(b)) �g � ð2 sin n� gÞ � g, so g � sin n � 0

and

jDxj � sin nð Þ jDxj6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 � g 2 sin n� gð Þ

p
2 sin n� g

 !
> 0;

(C3)

zs1 � sinkðstableÞnode ½sinkðstableÞnode� and

zs2 � sourceðunstableÞnode ½sourceðunstableÞnode�;
if jDxj < sin n;

za2 � stable ½unstable� and

zs1 � saddle ½sinkðstableÞnode� and

zs2 � sourceðunstableÞnode ½saddle�;
if sin n � jDxj � 1; (C4)

za2 � stable ½unstable�; and

jzj ¼ 1; argðzÞ ¼ DUðtÞ; unstable ½stable� limit cycle

if 1 < jDxj:

(iii) (Fig. 5(c)) ð2 sin n� gÞ < �g, thus sin n < 0 and

jDxj � sin nð Þ jDxj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 � g 2 sin n� gð Þ

p
2 sin n� g

 !
< 0;

jDxj � sin nð Þ jDxj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 � g 2 sin n� gð Þ

p
2 sin n� g

 !
> 0;

(C5)
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za1 � unstable ½stable�; za2 � stable ½unstable� and

zs1 � saddle ½saddle� and

zs2 � saddle ½saddle�; if jDxj � j sin nj;

za2 � stable ½unstable� and

zs1 � saddle ½sinkðstableÞnode� and

zs2 � sourceðunstableÞnode ½saddle�;
if j sin nj < jDxj � 1; (C6)

za2 � stable ½unstable�; and

jzj ¼ 1; argðzÞ ¼ DUðtÞ; unstable ½stable� limit cycle

if 1 < jDxj;

where

zs1 ¼ ei p
2
þarcsinDx�nð Þ;

zs2 ¼ ei �p
2
�arcsinDx�nð Þ; (C7)

and if 2 sin n� g 6¼ 0

za1 ¼ sign Dxð Þ i jDxj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 � g 2 sin n� gð Þ

p
2 sin n� g

;

za2 ¼ sign Dxð Þ i jDxj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 � g 2 sin n� gð Þ

p
2 sin n� g

;

(C8)

or if 2 sin n� g ¼ 0

za1 ¼ sign Dxð Þ i g

2jDxj ;

za2 ¼ �sign Dxð Þ i g

2jDxj :
(C9)
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