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In this paper, we discuss recent progress in research of ensembles of mean field coupled oscillators.

Without an ambition to present a comprehensive review, we outline most interesting from our

viewpoint results and surprises, as well as interrelations between different approaches. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922971]

Studies of large systems of interacting oscillatory ele-

ments are a popular and extensively developing branch

of nonlinear science. The number of publications on the

subject grows rapidly, with many crucial contributions

published in the Chaos journal. In addition to purely aca-

demic interest, this research finds promising applications

in various fields. Representative examples are under-

standing of pedestrian synchrony on footbridges and of

other social phenomena, development of efficient high-

frequency power sources, modeling and control of neuro-

nal rhythms, etc. In this paper, we present our view of

the recent development of this highly interesting field.

I. INTRODUCTION

In the second half of the 17th century, Kaempfer, Dutch

physician, made a journey to South-East Asia and later pub-

lished a book, describing his trip.1 In particular, in his mem-

oir, he gives an account of a spectacular show, which

happens if a swarm of fireflies occupies a tree: the insects

“hide their Lights all at once, and a moment after make it

appear again with the utmost regularity and exactness.” This

phenomenon of self-synchronization in a large population of
interacting oscillatory objects not only remains an appealing

entertainment—be it an excursion on a night river in

Thailand to observe fireflies or cycling in a large group of

people, equipped with electronic “bikeflies,” as a part of a

festival in Chicago2—but it stays in the focus of scientific in-

terest within many decades. Studies of various aspects of the

collective dynamics in large oscillatory networks attract

attention of physicists and applied mathematicians, and find

applications ranging from electrochemistry to quantum elec-

tronics, and from bridge engineering to social sciences.

A particularly popular and expanding field of applica-

tions is neuroscience. For the first time, the link between syn-

chronous flashing of the fireflies and origin of the brain

rhythms was established, on a qualitative level, by the fa-

mous mathematician Wiener in his monograph on

Cybernetics,3 in the chapter entitled “Brain waves and self-

organizing systems,” see also Ref. 4. Putting forward the hy-

pothesis that the brain waves emerge due to “phenomenon of

the pulling together of frequencies,” he questioned, whether

the same nonlinear mechanism takes place in case of fire-

flies, crickets, and other species exhibiting collective

oscillatory behavior, and suggested that experiments on fire-

flies and on electronic systems can shed light on the brain

wave dynamics.

Since that many experiments have been reported,

including those with electrochemical5,6 and electronic oscil-

lators,7 metronomes,8 Josephson junctions,9 laser arrays,10

yeast cells,11 and gene-manipulated clocks in bacteria.12

They are complemented by observations of many social phe-

nomena like pedestrian synchrony on footbridges,13 synchro-

nous hand clapping in opera houses,14 egg-laying in bird

colonies,15 and menstrual synchrony16 (the latter effect

remains controversial17). This research was also accompa-

nied by an essential progress in the theoretical description,

which we outline below, along with open questions.

II. SOLVABLE MODELS

A few years after publication of the Wiener’s book,

Winfree presented a first mathematical description of collec-

tive synchrony in a large population of biological oscilla-

tors.18 Reducing the dynamics of each oscillator to that of

only one variable, the phase u (we will discuss conditions

for this reduction below), he proposed the mean-field model

_uk ¼ xk þ
e
N

C ukð Þ
XN

j¼1

I ujð Þ ; (1)

where N � 1 is the number of units, xk are their natural fre-

quencies, and e quantifies the strength of the interaction. The

function CðukÞ describes the phase sensitivity of the oscilla-

tor to an infinitesimal perturbation and is typically called the

phase response curve, PRC. Notice that the PRC can be

experimentally obtained by repeated stimulation of an iso-

lated system.19 Finally, the forcing function IðujÞ describes

the effect of the jth unit on the unit k. In this setup, the cou-

pling is assumed to be global, i.e., of the all-to-all type, and

functions C, I are assumed to be identical for all interactions.

Thus, the inhomogeneity of the system is due to a distribu-

tion of frequencies xk only. Although the model is quite

complicated for the analysis, Winfree has shown that it

exhibits a transition to a macroscopic synchronized state,

characterized by non-zero mean field N�1
P

j IðujÞ. He dis-

covered that the collective synchrony is a threshold phenom-

enon: the transition occurs if the coupling strength e is large
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enough or the inhomogeneity, i.e., the width of the distribu-

tion of xk, is sufficiently small. For recent studies on the

Winfree model, see Refs. 20 and 21, it has been shown that

it can be treated analytically at least if function C contains

only one Fourier harmonic.

The next pioneering step has been done by Kuramoto in

his seminal publication 40 years ago.22 The model he sug-

gested can be considered as the weak-coupling limit of Eq.

(1). Indeed, if e� x, then each Eq. (1) can be averaged over

the oscillation period; then each term CðukÞIðujÞ yields a

function of the phase difference, gðuj � ukÞ, so that the aver-

aged model reads

_uk ¼ xk þ
e
N

XN

j¼1

g uj � ukð Þ : (2)

A general case of an arbitrary 2p-periodic function g is dis-

cussed later below, while the simplest case gð�Þ ¼ sinð�Þ cor-

responds to the famous Kuramoto model (notice that the

choice of the sine function is not a result of some approxima-

tion but just the simplest solvable case)

_uk ¼ xk þ
e
N

XN

j¼1

sin uj � ukð Þ ¼ xk þ eR sin H� ukð Þ :

(3)

Here, ReiH ¼ N�1
P

je
iuj is the complex mean field, R and

H are its amplitude and phase, respectively. Kuramoto

solved the problem in the thermodynamic limit N !1,

using a self-consistent approach: assuming a harmonic

mean field with unknown amplitude and frequency, he

obtained closed integral equations for these two quantities.

The celebrated result is the existence of the critical cou-

pling, ec, proportional to the width of the frequency distri-

bution. For sub-threshold coupling, the mean field is

exactly zero, while for e > ec, a nontrivial solution with

non-zero mean field appears; the amplitude of the field

grows as
ffiffiffiffiffiffiffiffiffiffiffiffi
e� ec
p

and its frequency equals the central fre-

quency of the distribution of xk (which is assumed to be

symmetric and unimodal). Thus, appearance of the collec-

tive mode can be treated as a second-order nonequilibrium

phase transition. As has been shown in Ref. 23, the

Kuramoto model with the uniform frequency distribution

exhibits a jump of the order parameter.

III. COLLECTIVE DYNAMICS OF THE KURAMOTO
MODEL

The results of Kuramoto gave an enormous impact on

the development of the field, with still an increasing number

of publications on the subject. The model (3) and its exten-

sion due to Sakaguchi and Kuramoto,24 who accounted for a

possible phase shift in coupling,

_uk ¼ xk þ eR sinðH� uk þ bÞ ; (4)

became a paradigmatic model for the analysis of large oscil-

lator ensembles.

A. Watanabe-Strogatz theory

We now briefly discuss an interesting and important

mathematical property of the Kuramoto-Sakaguchi model

(4), namely, its partial integrability. We start this discussion

by consideration of the simplest case of identical units,

xk ¼ x. As has been shown in the seminal publications by

Watanabe and Strogatz25 (WS), the dynamics of this system

can be described by three global variables q, U, a and N – 3

constants of motion wk. Here, the variable 0 � q � 1 is

roughly similar to the mean field amplitude R; U and a are

angular variables; often it is convenient to combine two vari-

ables as z ¼ qeiU, see also Ref. 26. The main idea of the

powerful WS theory is as follows. Consider N> 3 identical

oscillators governed by

_uk ¼ xðtÞ þ Im½HðtÞe�iuk � ; (5)

where H(t) is an arbitrary common forcing. Obviously, Eq.

(4) is a particular case of Eq. (5). The latter can be re-written

as

d

dt
eiukð Þ ¼ ix tð Þeiuk þ 1

2
H tð Þ � ei2uk

2
H� tð Þ : (6)

Next, we transform N variables uk to complex z, jzj < 1, and

N real nk, according to

eiuk ¼ zþ eink

1þ z�eink
: (7)

This transformation, found by WS and written in this form in

Refs. 26 and 27, is known as the M€obius transformation.

Since the system is under-determined, one requires

N�1
XN

k¼1

eink ¼ heinki ¼ 0 : (8)

Substituting Eq. (7) into Eq. (6) we obtain, after straightfor-

ward manipulations

_zþ _zz� � z _z� þ i _nk 1� jzj2
� �� �

eink

¼ ixzþ H

2
�H�

2
z2 þ ix 1þ jzj2

� �
þ z�H � zH�ð Þ

� �
eink

þ _z� þ ixz� þ H

2
z�2 � H�

2

� �
e2ink : (9)

Averaging these equations over k, using Eq. (8) and

h _nkeinki ¼ 0, we obtain

_z � ixz� H

2
þ H�

2
z2 ¼ _z� þ ixz� � H�

2
þ H

2
z�2

� �
he2inki;

and this equation is obviously satisfied, if

_z ¼ ixzþ H

2
� H�

2
z2 : (10)

Substitution of Eq. (10) and its complex conjugate into Eq.

(9) yields
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i _nk 1� jzj2
� �

¼ ixþ z�H � zH�

2

� �
1� jzj2
� �

:

Excluding the fully synchronous case jzj ¼ 1, we obtain
_nk ¼ xþ Imðz�HÞ. Since the right hand side is independent

of k, variables nk differ only by constants. Hence, introduc-

ing nk ¼ aþ wk, where all wk ¼ const, we finally obtain

_a ¼ xþ Imðz�HÞ : (11)

Expressions (10) and (11) represent the Watanabe-Strogatz

equations, which completely describe the evolution of an en-

semble of identical oscillators.

Extension of the WS theory for the case of non-identical

units depends on the structure of the ensemble. Consider first

the case of a hierarchical population, which consists of M
groups of identical units, so that units in each group are sub-

ject to the same field.26 In this case, the dynamics of the en-

semble obeys the system of M coupled WS equations (10)

and (11). Another practically important case is a large popu-

lation, N !1, which can be characterized by a distribution

of frequencies gðxÞ. This system is described by WS varia-

bles zðx; tÞ; aðx; tÞ, and the equations for @tz; @ta are similar

to (10) and (11), see Ref. 26.

B. From WS to Ott-Antonsen theory

There exists a particular case, when the WS equations

can be essentially simplified. As has been shown in Ref. 26,

for large N and for the uniform distribution of constants of

motion wk, the WS variable z coincides with the local
Kuramoto mean field

Zðx; tÞ ¼
ð2p

0

wðu; tjxÞeiudu ; (12)

(where wðu; tjxÞ is the distribution density of oscillators’

phases at frequency x;
Ð

du wðu; tjxÞ ¼ 1) to be distin-

guished from the global mean field

YðtÞ ¼
ð1
�1

gðxÞZðx; tÞdx : (13)

Substituting z¼ Z into Eqs. (10) and (11), one obtains closed

equations for Z

@Z x; tð Þ
@t

¼ ixZ þ H x; tð Þ
2
� H� x; tð Þ

2
Z2 ; (14)

@a x; tð Þ
@t

¼ xþ Im Z�H x; tð Þ
� �

: (15)

In the most common case of the mean field coupling

H ¼ eeibY, the forcing H is independent on a and Eq. (15)

becomes irrelevant. Hence, we are left with Eq. (14) which

also appears in the recent theory by Ott and Antonsen

(OA),28,29 briefly introduced below.

Consider the thermodynamic limit of the model

_uk ¼ xk þ Im½HðtÞe�iuk � (16)

and the corresponding continuity equation for the distribu-

tion of phases

@w

@t
þ @

@u
w _uð Þ ¼ 0 : (17)

Next, let us introduce Fourier components of the density (the

generalized local Daido order parameters)

Zmðx; tÞ ¼
ð2p

0

wðx;u; tÞeimudu ; (18)

cf. Eq. (12). Computing

@Z x; tð Þ
@t

¼
ð2p

0

@w

@t
eimudu ¼ �

ð2p

0

@ w _uð Þ
@u

eimudu ;

integrating by parts and using Eq. (16), one obtains an

infinite-dimensional system of ordinary differential equations

@Z x; tð Þ
@t

¼ imxZm þ
m

2
HZm�1 � H�Zmþ1ð Þ : (19)

A particular case Zm ¼ Zm
1 ¼ Zm, called the OA manifold,

reduces all the equations (19) to a single Eq. (14). Thus, the

OA manifold corresponds to the special solution of the WS

theory, with the uniform distribution of constants of motion

w. Furthermore, OA argued that for a continuous frequency

distribution gðxÞ the OA manifold is the only attractor29

(although relaxation to it may be rather slow30). A particular

case of the Lorentzian distribution gðxÞ ¼ ½pðx2 þ 1Þ��1

admits a further essential simplification. Under assumption

that ZðxÞ is analytic in the upper half-plane, one computes

the integral in Eq. (13) by virtue of residues and obtains

Y ¼ ZðiÞ. Substituting this along with x ¼ i into Eq. (14),

one obtains the OA equation

_Y ¼ eeib

2
� 1

	 

Y � ee�ib

2
Y2Y� (20)

for the evolution of the mean field in the Kuramoto-

Sakaguchi model. Looking for a stationary synchronous so-

lution, we set Y ¼ R0ei�t and obtain the amplitude R0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2=e cos b

p
and frequency � ¼ ðe cos b� 1Þ tan b of the

mean field.

For an illustration of the WS and OA theories, we con-

sider the model of two interacting populations by Abrams

et al.31 Both populations consist of the same number of iden-

tical oscillators, but the coupling strength within the group

differs from that between the groups. The dynamics can be

fully described by two coupled systems of WS equations and

is therefore six-dimensional.26 In the particular case of uni-

formly distributed constants w, i.e., on the OA manifold, the

dimension reduces to four. The latter case, studied in Ref.

31, reveals, for certain parameters, an interesting solution,

when one population synchronizes while the other stays

between complete synchrony and full asynchrony, i.e.,

R1 ¼ 1 and 0 < R2 < 1, where R1;2 are the order parameters

of the first and second population, respectively. This

symmetry-breaking state is called chimera. (Notice that
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originally chimera states have been introduced for nonlocally

coupled oscillator chains.32) The order parameter R2 can be

time-periodic. Analysis of the full six-dimensional systems

exhibits additional solutions with the quasiperiodic chimera

states.26 Theoretical predictions have been confirmed in

recent experiments with two groups of metronomes, placed

on platforms which were coupled via springs.8

C. Generalizations of the Kuramoto model

There are many studies of different generalizations of

the Kuramoto model. Here, we briefly mention those where

the coupling function is purely harmonic like in Eq. (4), but

the overall setup is more complex:

(a) Multi-modal frequency distribution and several inter-
acting populations. We have seen that an ensemble

with a Lorentzian distribution of frequencies is

described by the OA Eq. (20). A multi-modal distribu-

tion of frequencies can be modeled as a superposition

of Lorentzians and, hence, described by a system of

coupled OA Eq. (20), see, e.g., Ref. 33. Moreover, this

approach can be generalized to a set of populations

with frequencies, distributed around completely differ-

ent central values, whereas the latter can be either in

resonance34 or not.35

(b) Nontrivial transitions for unimodal distributions. For a

long time, it has been assumed that in the Kuramoto-

Sakaguchi model (4) with different unimodal distribu-

tions of frequencies the dynamics of the mean field is

qualitatively the same as for the Lorentzian distribution

(Eq. (20)). Rather surprisingly, Omelchenko and

Wolfrum36 have demonstrated rather complex transi-

tion scenarios, including first-order transitions and bist-

ability, for some unimodal distributions.

(c) Complex coupling schemes. The Kuramoto-Sakaguchi

model describes a “direct” coupling scheme: the mean

field, calculated algebraically from the states of all

oscillators, enters the equations for the phases. The

coupling scheme can be, however, more complex: the

mean field may act on some macroscopic variables that

obey a set of generally nonlinear differential equations,

and the acting force is a function of these variables.

For example, in a description of pedestrian synchrony

on a footbridge,37 one describes each pedestrian by an

individual phase variable, but one needs also equations

for the swinging mode of the bridge. The latter is

driven by the field created by all pedestrians and, in its

turn, affects their gaits. Similarly, electronic7 or elec-

trochemical5,6 oscillators can be coupled through the

common macroscopic current or voltage, which obeys

macroscopic equations describing the coupling circuit.

In this way, one also describes synchronization of

Josephson junctions38 or spin-torque39 oscillators.

(d) Nonhomogeneous populations. There is another gener-

alization of the standard Kuramoto-Sakaguchi cou-

pling. The latter assumes that all the oscillators make

the same contribution to the mean field and that the

mean field acts on all oscillators in an equal way.

References 40 and 41 generalized this to the situation,

where the global field still can be introduced, but oscil-

lators contribute to it differently, i.e., with different

amplitudes and phase shifts, and the field also acts dif-

ferently on different oscillators. For a physical imple-

mentation, one can consider a receiver which collects

signals emitted from the oscillators (where the attenua-

tion and the phase shift are due to signal propagation

properties), and the governing signal is then transmit-

ted to the oscillators, being also subject to attenuation

and phase shift depending on the positions of the

units.41 One variant of an inhomogeneity of the popula-

tion is when it consists of two groups with different

reaction to the mean-field forcing:42 some are

“conformists” (they follow the force) and some are

“contrarians.” (They tend to be in anti-phase with the

forcing.) An alternative classification, quite common

for neural ensembles, refers not only to the reaction to

the mean-field forcing but also to the way the units

contribute to it: some oscillators are inhibitors (they

contribute negatively to the mean field, thus trying to

desynchronize others), while others exert an excitatory

action, contributing positively and thus attempting to

synchronize the ensemble.43,44

(e) Effects of noise. Independent noisy forces acting on

oscillators of a population counteract synchronization.

In this sense, noise is a source of disorder, similar to

the distribution of natural frequencies. Due to noise,

synchronization is a threshold phenomenon already for

identical oscillators and the transition occurs at a criti-

cal coupling which is proportional to the noise inten-

sity. In the thermodynamic limit such a system is

described analytically by a nonlinear Fokker-Planck

equation which differs from the continuity equation

(17) by a term 	r2 @2w
@u2, where r is the amplitude of the

noise. Completely opposite is the action of a common

noise: it tends to synchronize the population of oscilla-

tors, and for identical units this effect can be described

within the WS framework.45

(f) Finite-size fluctuations. Kuramoto and OA theories

have been developed in the thermodynamic limit of

infinitely large populations; WS theory applies to any

population size, but for identical populations only. In

finite populations with different natural frequencies of

units, one expects to observe fluctuations, both prior

and beyond the synchronization transition, which is

defined ambiguously in this case. In Ref. 46, the

Kuramoto model with a uniform distribution of fre-

quencies and a relatively small number of oscillators

have been shown to be chaotic prior to synchronization

transition, the maximal Lyapunov exponent however

decreases with the system size as k 	 N�1. Above syn-

chronization transition, only regular dynamics have

been observed. However, for N � 1 and close to the

synchronization transitions, the regime is complex: if it

is not chaotic, then it is quasiperiodic with a large num-

ber of incommensurate frequencies; here, statistical

approaches based on finite-size scaling have been

applied to find the scaling form of N-dependence of the

order parameters.47,48
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(g) Kuramoto model on networks. Kuramoto model has

been initially formulated for the ensemble of globally

coupled oscillators. Recently, it has been extensively

studied for other coupling configurations, i.e., for net-

works of different complexity, including small-world

networks,49 multidimensional hypercubic lattices,48

networks with a modular structure,50 and an ensemble

with an extra leading element (hub).51 Dynamical

properties of the transition to synchronization depend

on the network topology.52 One of the popular applica-

tions here is study of synchronization of power grids.53

(h) External forcing and collective phase resetting. As one

can see from Eq. (20), the macroscopic order parameter

obeys an equation for a self-sustained oscillator. Thus,

the collective mode has the same properties as such an

oscillator. In particular, if the ensemble is forced by a

periodic force, the latter can entrain the frequency of

the mean field oscillations.28,54 If the force is repre-

sented by a pulse train, then each pulse shifts the

phases of all oscillators and, hence, the phase of the

collective mode as well; then, in analogy to the case of

an isolated oscillator, one defines the phase response

curve for the collective mode as a dependence of the

phase shift of the mode on the phase when the pulse

stimulation occurred.55

(i) Mathematical results. The Kuramoto model has been

extensively studied on the physical and computational

level, but rigorous mathematical results for the thermo-

dynamic limit are sparse. They mainly refer to the sta-

bility analysis of the desynchronized state;30,56 for a

description of the synchronization transition as a bifur-

cation problem see Ref. 57.

IV. GENERAL COUPLING FUNCTIONS

Now we come back to Eq. (2). For a general coupling

function g, this equation represents the Daido model.58,59

Expanding g into Fourier series, gðgÞ ¼
P

ngneing, and intro-

ducing generalized order parameters

Zn ¼ N�1
XN

j¼1

einuj ; (21)

one can re-write the model as

_uk ¼ xk þ e
X

n

gnZne�inuj : (22)

One can see that generally all order parameters should be

determined self-consistently, so that a complete analysis at

general coupling is still missing. We mention here several

interesting regimes appearing due to high harmonics in cou-

pling function.

(j) Clustering. Even for identical oscillators, the WS theory

does not apply, and a population can build several clus-

ters,60 each of them consisting of fully synchronized

units.

(k) Heteroclinic cycles. In Ref. 61, nontrivial regimes of

clustering and switching between different cluster states

have been found in a population of identical oscillators

with a function g containing the first and the second har-

monics. This complex dynamics is due to a heteroclinic

cycle in the phase space, well understood for small

networks.62

(l) Multi-branch entrainment. Already for two harmonic

components in the coupling function g, the r.h.s. of Eq.

(22) as a function of u can have two stable branches.

This is a new situation compared to the standard

Kuramoto model: now for a given mean field entrain-

ment at two different microscopic phases is possible.

This leads to an enormous multiplicity of microscopic

states and to a complex structure of macroscopic

regimes.59,63,64

V. NON-PHASE MODELS

We started our discussion of collective ensemble dy-

namics from phase models. This approach relies on the

well-known idea that motion along the limit cycle of an au-

tonomous system can be parameterized by a single variable,

the phase. Moreover, if the interaction of the oscillator with

the environment is weak so that one can neglect the devia-

tion of the trajectory from the cycle of the autonomous sys-

tem, then the low-dimensional phase description remains

valid. Generally, for strong coupling, one has to analyze full

dynamical models which is a complicated problem that can

hardly be treated analytically.

Numerical studies reveal that transition to collective

synchrony is a quite general property, observed for various

periodic, noisy, and even chaotic oscillators,5,65 including,

e.g., spiking and bursting model neurons. The picture is,

however, non-universal. The most transparent and studied

model is an ensemble of coupled Stuart-Landau oscillators66

(this oscillator is the simplest prototype of a limit-cycle os-

cillator, with a perfect separation of amplitude and phase

variables, see Eq. (24) below), and essentially new effects

are the oscillation quenching, when too strong coupling

effectively introduces additional damping to ensemble ele-

ments, and collective chaos in a system of units that exhibit

periodic oscillation in the absence of coupling.

On the other hand, non-identical chaotic phase-coherent

R€ossler oscillators adjust their frequencies and phases (this

effect is known as phase synchronization of chaos67) and

produce a nearly periodic mean field. The oscillators them-

selves remain chaotic, but irregular fluctuations of the ampli-

tudes turn to be averaged out in the mean field; the small

fluctuations of the latter are presumably due to the finite-size

effect.65 Experimental studies on chaotic electrochemical

oscillators5 confirm theoretical predictions.

Another important class is rotators: these systems are

described by an angle-like variable, which is very similar to

the phase, and do not have amplitudes. (Recall that true

phase grows uniformly in time, while the time derivative of

the angle variable depends on the variable itself.) If an equa-

tion governing the rotator’s angle is one-dimensional, the dy-

namics can be reduced to a Kuramoto-type phase model,
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what has been extensively discussed in the context of

Josephson junctions.38 Quite often the inertia of rotators

cannot be neglected, and hence, they are described by a

second-order equation for the angle variable. In this case, the

dynamics can strongly deviate from that of the Kuramoto

model, e.g., transition to synchrony may exhibit hysteresis,

similarly to a first-order phase transition.68 A particular sub-

class is constituted by globally coupled rotators without

damping: this conservative system yields the so-called

Hamiltonian Mean Field (HMF) model;69 see Ref. 70 for a

review of recent results and relation to the Kuramoto model.

VI. COMPLEX COLLECTIVE DYNAMICS AROUND
SYNCHRONY

We have discussed in detail the main effect observed in

globally coupled systems, namely, emergence of the collec-

tive mode, which is well-understood in the simplest case,

when many units synchronize and therefore their outputs

sum up coherently, contributing to this mode. We have also

mentioned that the mode itself can exhibit chaotic dynamics.

Now we discuss other, less explored, situations, when the

collective dynamics of an ensemble is complex.

A. Partial synchrony

In case of the Kuramoto model of identical oscillators,

only two situations are possible: full synchrony for attractive

coupling (order parameter equal to one) and fully asynchro-

nous state (zero order parameter) for repulsive coupling.

However, this situation is not general and we can face a

case, when both fully synchronous and fully asynchronous

states are unstable, so that the system settles somewhere in

between, at a state which is often called partial synchrony.

The simplest and well-known example of partial synchrony

is clustering; below we discuss several other situations where

oscillators are not organized in clusters.

We exemplify partial synchrony with N � 1 mean field

coupled oscillators:71

_xk ¼ yk � x3
k þ 3x2

k � zk þ 5þ eðX � xkÞ ;
_yk ¼ 1� 5x2

k � yk ;

_zk ¼ 0:006½4ðxk þ 1:56Þ � zk� ; (23)

where k ¼ 1;…;N and X ¼ N�1
PN

j¼1 xj. Here, individual

units represent a popular Hindmarsh-Rose neuronal model.72

The quite standard parameter values used here correspond to

a limit-cycle solution for the uncoupled neurons, or, in neu-

roscience language, to a state of periodic spiking. Fully syn-

chronous state, x1 ¼ x2 ¼ � � � ¼ xN , y1 ¼ y2 ¼ � � � ¼ yN; z1

¼ z2 ¼ � � � ¼ zN is obviously a solution of the system.

However, stability of this state depends on the coupling

strength e, as can be checked numerically by virtue of com-

putation of evaporation multipliers l, related to the transver-

sal Lyapunov exponents k as jlj ¼ ekT , where T is the

oscillation period.73,74

This analysis, confirmed by direct simulation, demon-

strates that there exists a critical coupling value ec, at which

the synchronous solution loses its stability via a Hopf-like

bifurcation, i.e., two complex multipliers cross the unit circle,

giving birth to a new frequency. (Notice that the stability of

the synchronous solution is re-gained for very large e.) Beyond

the synchrony breaking, the states of oscillators in the phase

space form a thin stripe, stretched along the limit cycle; the

points within this stripe slowly interchange their position, with

a characteristic time of tens of periods. Roughly speaking, the

average frequency of all oscillators and of the mean field is

the same, but the phase shift of the oscillators with respect to

the field is slowly modulated. As a result, the dynamics looks

quite complicated and is possibly weakly chaotic.71

For another example, we consider a popular model of a

series array of resistively shunted Josephson junctions. The

junctions are coupled by virtue of a parallel RLC-load.38 As

has been shown in Ref. 38, for a weak coupling and linear

load, the system is equivalent to the Kuramoto model.

Consider now a nonlinear coupling; namely, let the induct-

ance in the RLC-circuit be nonlinear so that the magnetic

flux depends on the current _Q through the RLC-load as

U ¼ L0
_Q þ L1

_Q
3
. Numerical study74 reveals a synchrony-

breaking transition: at e ¼ ec the synchronous state becomes

unstable; at this critical coupling value real evaporation mul-

tiplier l becomes larger than one (in contradistinction to

example (23) where the multipliers are complex). For e > ec,

the systems are in a state of partial synchrony, with the order

parameter being a smooth decreasing function of e.
Furthermore, the dynamics becomes quasiperiodic: the fre-

quency of the mean field is larger than the frequency of indi-

vidual junctions and these frequencies are generally

incommensurate, so that the junctions are not locked to the

field. The frequency difference grows with e� ec.

A general theory of partially synchronous states which

appear after the synchrony breaking is still missing and

requires further investigations. Below we present an analyti-

cally tractable and relatively transparent example.

B. Self-organized quasiperiodic dynamics

Now we analyze the system of N � 1 Stuart-Landau

oscillators

_ak ¼ ½1þ iðxþ jÞ�ak � ð1þ ijÞjakj2ak

þ ðn1 þ in2ÞA�ðg1 þ ig2ÞjAj2A ; (24)

where A ¼ N�1
PN

j¼1 aj and n1;2; g1;2 are coupling parame-

ters. This model differs from that of Ref. 66 due to the nonli-

nearity in coupling. In the weak coupling approximation, the

model with purely linear coupling66 (i.e., with g1 ¼ g2 ¼ 0)

yields the Kuramoto-Sakaguchi Eq. (4), while the nonlinear

Eq. (24) reduces to a particular case of the following phase

model:75

_u ¼ xþ eaðe;RÞ sin½H� uk þ bðe;RÞ�: (25)

Equation (25) can be considered as an extension of the

Kuramoto-Sakaguchi model. Here, R is the mean field ampli-

tude and the bifurcation parameter e corresponds to a combi-

nation of the parameters n1;2; g1;2 and aðe;RÞ; bðe;RÞ are

some functions. Notice that Eq. (25) appears also in a model
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of Stuart-Landau oscillators coupled via a common nonlinear

medium,74,75 similarly to the Josephson junction model.

Let us consider the effect of these functions separately,

starting with the case when b ¼ const; jbj < p=2, i.e., the

coupling is attractive, cf. Refs. 76 and 21. Suppose that a is

a decreasing function of e, e.g., aðe;RÞ ¼ ð1� eR2ÞR: (This

function indeed appears for a certain combination of param-

eters in Eq. (24).) For e < ec ¼ 1, this function is positive

for fully synchronous case R¼ 1 and, hence, this state is

stable. For e > ec, we have aðe; 1Þ < 0, i.e., the coupling

becomes repulsive. As a result, the system stays at the bor-

der between attraction and repulsion, determined by the

condition eR2 ¼ 1, forming a self-organized bunch state.75

In this state, for general initial conditions, the oscillator

phases spread around the unit circle so that R ¼ 1=
ffiffi
e
p

; this

bunch is stationary in the coordinate frame, rotating with

the frequency x.

Now we analyze a more interesting case when a ¼ R

and bðe;RÞ ¼ b0 þ b1e
2R2; jb0j < p=2; b1 > 0. It is easy to

see that synchrony (R¼ 1) is stable if b0 þ b1e
2 < p=2 and

becomes unstable when e exceeds the critical value

ec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=2� b0Þ=b1

p
. Again, the system settles at the bor-

der of stability, so that the condition b0 þ b1e
2R2 ¼ p=2 is

fulfilled. However, in this case, the dynamics exhibits a pe-

culiar feature, also possessed by the Josephson junction

model discussed above: the frequency of the mean field dif-

fers from the frequency of the individual units. Thus, the

state can be characterized by two generally irrationally

related frequencies, and therefore, is denoted as self-

organized quasiperiodicity (SOQ). Qualitatively, the emer-

gence of quasiperiodic motion can be explained as follows.

For e > ec, the system is partially synchronous, i.e., R< 1

and all oscillators have different phases. (Notice that for gen-

eral initial conditions without clusters the phases must be dif-

ferent according to Eq. (7).) Hence, the instantaneous

frequencies of oscillators differ, and therefore, a stationary

(in a rotating coordinate frame) distribution is not a solution.

Quantitative analysis of SOQ dynamics with computation of

the frequencies of the collective mode and of the oscillators

can be found in Refs. 74 and 75. SOQ states in real-world

systems have been demonstrated in experiments with elec-

tronic circuits with global nonlinear coupling.7

To complete the discussion of this issue, we mention

that similar complex states with a nonzero collective mode

can appear also without desynchronization transition. For

some systems, the fully synchronous and the completely

asynchronous states are unstable already for infinitely small

coupling. A well-studied example is the van Vreeswijk

model of globally coupled leaky integrate-and-fire neurons.77

Another example is the emergence of dephasing and bursting

in a system of Morris-Lecar neuronal models;78 computation

of the evaporation multipliers for this system shows that the

synchronous state is unstable for the positive coupling range,

where the effect is observed.

C. Chimera-like states in globally coupled systems

We have already mentioned a symmetry-breaking chi-

mera state in a system of two interacting Kuramoto

populations. Now we discuss emergence of a chimera-like

state in a single homogeneous population. At first glance,

such regimes do not seem to be allowed, because identical

units subject to a common force should exhibit the same dy-

namics (i.e., to be either all synchronized or all desynchron-

ized). On the other hand, there is a number of numerical

observations of the mixed states, where only a fraction of the

population merges to one or several clusters, while other ele-

ments remain scattered,79 see also recent studies of chimera

states in linearly and nonlinearly coupled Stuart-Landau

oscillators.80 The conditions for emergence of such mixed

states are not yet fully clear. Nevertheless, we can outline

one mechanism which results in splitting of the population

into coherent and incoherent groups.

Identical elements subject to the same force can behave

differently if they are bistable (multistable), i.e., possess at

least two nontrivial attractors. Another requirement is that for

the units on one attractor the mean field coupling shall be

attracting so that this group synchronizes, while for the ele-

ments on the other attractor the coupling is repulsive, so that

these elements form an incoherent group. Taking into account

that this partially coherent and partially incoherent state shall

be maintained self-consistently, we conclude that this condi-

tion is not trivial. To illustrate this mechanism, we first con-

sider a rather artificial but transparent example,81 where the

oscillators are the modified Stuart-Landau systems with the

amplitude-dependent oscillation frequency. The modification

refers to the nonlinearity: in addition to the 3rd order term

jakj2ak, we add also the terms 	jakj4ak; 	 jakj6ak, cf. Eq.

(24). As a result, the systems possess two stable limit cycles

with different frequencies, X2 > X1. The global coupling has

its own dynamics, cf. Refs. 38 and 82, so that the mean field

forces a harmonic oscillator, €u þ c _u þ g2u ¼ N�1
PN

j ReðajÞ,
and its output _u acts on the Stuart-Landau systems. Suppose

now that parameters are chosen in such a way that

X1 < g < X2. Since the phase shift introduced by the har-

monic oscillator in the last equation is frequency-dependent,

the coupling synchronizes the large amplitude limit-cycle

oscillations but prevents synchronization of the low-amplitude

ones.

Much less trivial is emergence of coherent-incoherent

states in an ensemble of globally coupled oscillators with in-

ternal delayed feedback loop. Such oscillators naturally

appear, e.g., in laser optics83 as well as in numerous biologi-

cal applications.84 In the simplest case, the autonomous dy-

namics of an oscillator with a delayed feedback loop can be

described by a phase model, _u ¼ xþ a sinðus � uÞ, where

us 
 uðt� sÞ, s is the delay, and a quantifies the feedback

strength.83,85 Assuming the global coupling in the ensemble

of such oscillators to be of the Kuramoto-Sakaguchi type,

one writes the model as81

_uk ¼ xþ a sinðus;k � ukÞ þ eR sinðH� uk þ bÞ : (26)

Stability analysis of the fully synchronous one-cluster state

yields that it is unstable for b > p=2. However, numerical

simulation shows that for b � p=2 the asynchronous state

with zero mean field, R¼ 0, is also unstable (see Ref. 81 for

other parameter values). Thus, the system “chooses” a state
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between full coherence and full incoherence, and in a range

of parameters, this state is reminiscent of a chimera: there is

one big cluster (about 70% of the population size) and a

cloud of asynchronous oscillators. The frequency of the clus-

ter is larger than the frequency of the cloud oscillators.

Noteworthy, these states appear in the case when autono-

mous oscillators are monostable, though close to the bista-

bility domain (for sufficiently strong feedback, as > 1,

autonomous time-delayed unit admits multiple periodic solu-

tions). It means that the systems become bistable due to

coupling and, thus, the chimera-like state emerges due to the

dynamically sustained bistability.

VII. AN IMPORTANT APPLICATION: NEUROSCIENCE

Within fifty years since Wiener hypothesized the role of

the collective synchrony in the brain dynamics, importance

of this phenomenon for neuroscience became highly recog-

nized. It is now well-accepted that macroscopic neural

rhythms appear due to coordination of firing and/or bursting

of interconnected neuronal network and the Kuramoto

model, in spite of its simplicity, became a paradigmatic and

widely used setup in this field, see Ref. 86 for a review.

Noteworthy, the neuroscience applications turned out to be

very fruitful for the theoretical development, posing quite

interesting, from the viewpoint of nonlinear dynamics, prob-

lems. In particular, in the context of complex dynamical

states which are of general interest, we have several times

mentioned neuronal models, e.g., the Hindmarsh-Rose one.

Below, without an ambition to provide a comprehensive

review, we outline several relevant issues.

For neuronal models, synchronization in a fully con-

nected network was observed for map-based and continuous

time models, both for the regimes of periodic spiking and

bursting, see, e.g., Ref. 87. A bit more detailed models con-

sist of excitatory and inhibitory neuronal subpopulations.88

Another issue is a detailed description of synaptic cou-

pling,89 also with account of plasticity.90

Fully connected network is certainly a rather crude

approximation for a neuronal population. However, in some

cases it is quite reasonable, as indicated by a numerical study

of randomly coupled networks of map-based neurons:88 if

every unit is connected only to 0.5% of elements in the en-

semble, then synchronization properties are practically indis-

tinguishable from the fully connected case. For many

problems, the assumption of random connectivity is not

appropriate; in this case, one has to use physiologically moti-

vated connectivity structure. An interesting approach has

been recently suggested to treat large random networks of

coupled oscillators.91 To adequately perform the thermody-

namic limit and preserve disorder due to randomness of con-

nections, a heterogeneous mean-field approach has been

developed in which disorder remains the same while the size

of the system grows. This approach yields a description of

both microscopic and global features of neuronal synchrony

in the model.91 Another interesting observation relates to

diluted random networks of spike-coupled neurons:92 while

for weak coupling synchrony establishes quite quickly, for

large coupling a very long (in fact, exponential in the

network size) transient disordered state is observed, charac-

terized by a negative largest Lyapunov exponent (so-called

“stable chaos”).

A. Control of collective synchrony

As an example of a particular application of the dis-

cussed theoretical ideas, we address the problem of suppres-

sion of the collective synchrony. This problem is relevant for

a medical technique, called deep brain stimulation (DBS).

This technique is exploited to treat the Parkinson’s disease if

it cannot be cured by medication. The DBS implies electrical

stimulation of deep brain structures through the implanted

micro-electrodes. The modern devices use the constant fre-

quency (ca. 100� 120 Hz) pulse stimulation, which is typi-

cally applied around the clock. Although the exact

mechanisms of DBS are not yet quite understood, it is widely

used to reduce the limb tremor.

Analysis of electrical or magnetic brain activity shows

that Parkinsonian tremor is associated with the pronounced

spectral power at 10–12 Hz.93 Hence, it is reasonable to

hypothesize that this pathological rhythm emerges due to

synchronization in a neuronal population and to consider the

DBS as a desynchronization problem.94 The main idea is

then to develop efficient techniques that reliably suppress the

unwanted activity with minimal stimulation. There are sev-

eral directions in these studies. The first one implies open-

loop stimulation with specially organized pulses95 through

several closely spaced sites; the main assumption is that

these pulses cause formation of several clusters shifted in

phase with respect to each other, so that summation of their

oscillations results in a vanishing mean field.

Another direction in control of collective oscillation,

based on the closed-loop feedback, was suggested in Refs.

96 and 87 and verified in experiments with electrochemical

oscillators in Ref. 6. The idea is quite transparent. Consider a

globally coupled system: all elements are forced by the col-

lective mode and synchronize due to this forcing. Suppose

we measure the collective oscillation and feed it back, shift-

ing its phase and properly amplifying it so that the feedback

signal exactly compensates the mean field. In this case, the

oscillators become unforced and naturally desynchronize due

to frequencies mismatch, internal noise, etc. Since the units

desynchronize, the mean field tends to a constant, and so

does the feedback signal. The constant component of the

feedback signal can be easily eliminated; in this way, one

performs a vanishing stimulation control. It means that stim-

ulation tends to zero as soon as the undesired oscillation is

suppressed; this property is extremely important for medical

applications. The vanishing stimulation control can be imple-

mented via a delayed feedback87,88 (see Ref. 97 for a variant

with nonlinear delayed feedback which is however not van-

ishing) or via a phase shifting passive system without

delay.98 Moreover, an adaptive strategy can be imple-

mented,99 so that the desired state can be achieved in spite of

unknown parameters of the system to be controlled. Notice

that adjusting the phase shift introduced by the feedback

loop one can, depending on the goal, suppress or enhance the

collective synchrony.
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VIII. SURPRISES AND OUTLOOK

In the first years after development of ideas of synchro-

nization in large ensembles, especially after Y. Kuramoto

constructed his self-consistent theory, it looked like the very

phenomenon of synchronization transition is rather simple

and universal. In this paper, we tried to show how in fact

nontrivial is even the simplest setup: features like partial

integrability, existence of an exact low-dimensional mani-

fold, nontrivial transition scenarios even for unimodal distri-

butions of frequencies, chimera states, self-organized

quasiperiodicity occur already in the simplest case of sine-

coupled phase oscillators. For generalizations of this model,

one observes a plethora of dynamical phenomena which is

still far from being exhausted. Furthermore, addition of com-

plexity to the basic model, e.g., by consideration of coupled

oscillators on networks, results in further growth of the di-

versity of possible regimes.

It seems to us that in the nearest future we will experi-

ence spreading of the synchronization theory far beyond its

initial scope of nonlinear dissipative dynamical systems,

e.g., to cover quantum objects.100 On the experimental level,

advanced methods of oscillators’ control and of data analysis

will possibly reveal microscopic details of nontrivial syn-

chronization patterns. On the other hand, growing interest of

mathematicians to these problems indicates that the field

may become a part of mathematical physics as well.
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(2012); Y. Susuki and I. Mezić, “Nonlinear koopman modes and coher-

ency identification of coupled swing dynamics,” IEEE Trans. Power Syst.

26, 1894 (2011); S. Lozano, L. Buzna, and A. D�ıaz-Guilera, “Role of net-

work topology in the synchronization of power systems,” Eur. Phys. J. B

85, 472 (2012); F. D€orfler, M. Chertkov, and F. Bullo, “Synchronization

in complex oscillator networks and smart grids,” Proc. Natl. Acad. Sci.

U. S. A. 110, 2005 (2013); A. E. Motter, S. A. Myers, M. Anghel, and T.

Nishikawa, “Spontaneous synchrony in power-grid networks,” Nat. Phys.

9, 191 (2013); P. H. J. Nardelli, N. Rubido, C. Wang, M. S. Baptista, C.

Pomalaza-Raez, P. Cardieri, and M. Latva-Aho, “Models for the modern

power grid,” Eur. Phys. J. 223, 2423 (2014); A. Gajduk, M. Todorovski,

and L. Kocarev, “Stability of power grids: an overview,” Eur. Phys. J.

223, 2387 (2014); P. Menck, J. Heitzig, J. Kurths, and H. Schellnhuber,

“How dead ends undermine power grid stability,” Nat. Commun. 5, 3969

(2014).
54H. Sakaguchi “Cooperative phenomena in coupled oscillator systems

under external fields,” Prog. Theor. Phys. 79, 39–46 (1988); L. M. Childs

and S. H. Strogatz, “Stability diagram for the forced Kuramoto model,”

Chaos 18, 043128 (2008); Y. Baibolatov, M. Rosenblum, Z. Z.

Zhanabaev, M. Kyzgarina, and A. Pikovsky, “Periodically forced ensem-

ble of nonlinearly coupled oscillators: from partial to full synchrony,”

Phys. Rev. E 80, 046211 (2009).
55Y. Kawamura, H. Nakao, K. Arai, H. Kori, and Y. Kuramoto, “Collective

phase sensitivity,” Phys. Rev. Lett. 101, 024101 (2008); T.-W. Ko and G.

B. Ermentrout, “Phase-response curves of coupled oscillators,” Phys.

Rev. E 79, 016211 (2009); Z. Levnajić and A. Pikovsky, “Phase resetting
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