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We study the Deserter Hubs Model: a Kuramoto-like model of coupled identical phase oscillators

on a network, where attractive and repulsive couplings are balanced dynamically due to nonlinear-

ity of interactions. Under weak force, an oscillator tends to follow the phase of its neighbors, but if

an oscillator is compelled to follow its peers by a sufficient large number of cohesive neighbors,

then it actually starts to act in the opposite manner, i.e., in anti-phase with the majority. Analytic

results yield that if the repulsion parameter is small enough in comparison with the degree of the

maximum hub, then the full synchronization state is locally stable. Numerical experiments are per-

formed to explore the model beyond this threshold, where the overall cohesion is lost. We report in

detail partially synchronous dynamical regimes, like stationary phase-locking, multistability, peri-

odic and chaotic states. Via statistical analysis of different network organizations like tree, scale-

free, and random ones, we found a measure allowing one to predict relative abundance of partially

synchronous stationary states in comparison to time-dependent ones. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4919246]

Regarding large populations of coupled oscillators,

phase-synchronization may emerge due to attractive cou-

pling, while repulsive coupling favors desynchronized

states. However, the nature of coupling may depend on

the strength of the local forcing: if the force on the oscil-

lator from a sufficiently large number of neighbors

becomes too strong, it can desert switch from a

“conformist” to a “contrarian” behavior. We study such

a population on a network. Here, the oscillators con-

nected to many others become contrarians first, so that

synchrony breaks. This is why our approach can be fairly

understood as Deserter Hubs Model. We show that the

partial synchrony regimes can be rather complex, with a

large degree of multistability. Besides, we suggest a net-

work measure which allows predicting relative abun-

dance of static and dynamic regimes.

I. INTRODUCTION

In a seminal work,14 aiming to understand synchroniza-

tion phenomena, Kuramoto proposed a mathematical model

of non-identical, nonlinear phase-oscillators, mutually

coupled via common mean field. Studying this system, he

identified a synchronization transition to an oscillating global

mode when the coupling strength is larger than a critical

value, which is proportional to the range of the distribution

of the natural frequencies. Over the time, subsequent out-

comes based on Kuramoto propositions have shown that his

approach can be used as a framework to several natural and

technological systems where an ordered behavior (synchro-

nization) emerges from the interactions of many dynamical

agents.1,25 Furthermore, works have shown that the

Kuramoto model can be exploited as a building block to de-

velop highly efficient strategies to process information.7,30

Recently, generalizations of the Kuramoto model toward

interconnections between the elements more complex than

the mean field one, have received considerable attention.

Indeed, in many real-world problems, each dynamical agent

interacts with a subset of the whole ensemble,5,15,24 which

can be better described using networks. A myriad of studies

have analyzed the onset of the synchronization regime in this

context. For a general class of linearly coupled identical

oscillators, the Master Stability Function, originally pro-

posed by Pecora and Carroll,19 allows one to determine an

interval of coupling strength values that yields complete syn-

chronization, as a function of the eigenvalues of Laplacian

matrix of the coupling graph. For networks of oscillators

with non-identical natural frequencies, Jadbabaie et al.13

were able to give similar bounds for the coupling strength of

the Kuramoto model without the assumption of infinitely

many phase-oscillators. Among related works, Ref. 8 deals

with a model whose natural frequency oscillators change

with time, even when they are isolated. Reference 18

explores the effects of delay in the communication between

oscillators. Besides, Ref. 20 builds a bridge between graph

symmetry and cluster synchronization.

Taking into consideration all of these previous results,

one can roughly state that the Kuramoto transition to syn-

chronization happens if the coupling between oscillators is

attractive; while this synchronization state is absent when it
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changes to repulsiveness.28,29 However, the structure of the

coupling can non-trivially depend on the level of synchrony

itself. Such a dependence, called nonlinear coupling scheme,

has been explored in recent theoretical3,6,21,23 and experi-

mental26,27 studies dealing with setup of global coupling.

The main effect here is the partial synchrony, which estab-

lishes at moderate coupling strengths, where the coupling is

balanced between the attractive and repulsive one.

Here, we consider the effects of the non-linear coupling

on a network: a set of identical oscillators, which communi-

cate via a connected simple coupling graph. Each element is

forced by a (local) mean field, which encompasses the oscil-

lators that are connected to it. The coupling function is tai-

lored so that its influence is attractive, if the local acting field

is small, or repulsive, otherwise. This coupling strategy

implies that only nodes with a large enough number of con-

nections may become repulsive. Thus, the hubs play a key

role for the ensemble dynamics. A non-linear coupling pa-

rameter in the system tunes the critical quantity of connec-

tions and how cohesive this mean field must be in order to

allow this transition. So, our Deserter Hubs Model (DHM)
can be considered as a dynamical generalization of the inho-

mogeneous populations of oscillators consisting of conform-
ists and contrarians.12 Nevertheless, the kind of behavior

depends on the force acting on it.

One of real-world situations where such a nonlinear cou-

pling on a network may be relevant is the deep brain stimula-

tion of neural synchronous oscillations at Parkinson decease

by a nonlinear feedback.22 While in Ref. 22 nonlinear cou-

pling has been treated in the framework of global field

approximation, a setup where different parts of the neural

network are subject to different nonlinear actions, leading to

deserter hubs, appears to be more realistic.

Overall dynamics in the model can be qualitatively

understood as follows: Let us assume initially that all the

mean fields are small. Then, there are only attractive interac-

tions (conformists) in the system. So, in a first moment, they

start to mutually adjust their phases. Above a threshold, the

most connected oscillators start to feel a repulsive effect that

drives them away from the synchronous state. In other

words, if an oscillator has a sufficiently large number of

neighbors and if it suffers enough cohesive pressure from

them, instead of attractiveness, it becomes a contrarian,

wishing to be in anti-phase with the force. Then, due to the

repulsiveness of some nodes, other mean fields may also

become smaller. Finally, this tendency can shift nodes to

attractiveness again. As a consequence, an intermediate con-

figuration may emerge due to the balance these conflicting

tendencies in the system.

Depending on the non-linear coupling parameter, we

report a variety of qualitative dynamic behaviors. In general,

for small values of the non-linear coupling parameter, we

observed full synchronization and phase-locked states. When

this parameter is increased, multistability, periodic and cha-

otic dynamics take place.

The paper is organized as follows. Initially, we discuss

the basic details of the model in Sec. II. In Sec. III, the ana-

lytical result about the stability of full synchronization is pre-

sented. Numerical experiments in Sec. IV illustrate different

possible regimes that the present model can display. In Sec.

IV C, we perform a numerical exploration to address the cor-

relation of stationary phase locking states with partial syn-

chronization with the network parameters, by exploring

different network topologies and sizes.

II. MODEL OF OSCILLATOR NETWORK WITH
NONLINEAR COUPLING: THE DESERTER HUBS
MODEL (DCM)

Mainly inspired by ideas from Ref. 21, the DHM is a

Kuramoto-like model whose dynamic explicitly depends on a

local cohesion quantifier. Let us consider a system of N identi-

cal phase-oscillators represented by ðh1;…; hNÞ 2 ½0; 2pÞN
coupled through a simple and connected undirected graph A.

The dynamics for the i-th oscillator in the DHM, with i¼ 1,…,

N, is given by the following ordinary differential equation

_hi ¼ ð1� eZ2
i Þ
X
j2N i

sin ðhj � hiÞ; (1)

where N i denotes the set of neighbors of i in the coupling

graph A. Equations (1) are formulated in the reference frame

rotating with the common frequency of the oscillators, so

that the latter one does not appear in the equations. The time

is normalized by the linear coupling strength.

The main feature of the DHM (1) is the non-negative16

nonlinear coupling parameter e, which modifies the coupling

at each node. If e¼ 0, the standard setup of the Kuramoto

model with constant unitary coupling strength on a network

is recovered.13

We denote by di the degree of the i-th vertex, that is, the

number of incoming or outgoing connection, since the graph

is undirected. Also, we make use of the local mean field (or

local order parameter)

Zie
i�h i :¼

X
j2N i

eihj ; (2)

where Zi is the norm of the local i-th order parameter which

measures the magnitude of the force acting on oscillator with

index i. In addition, �hi can also be expressed as

ðdiÞ�1P
j2N i

hj, which corresponds to the direction pointed
by the i-th local mean field. Note that for the standard

Kuramoto model, we have that

_hi ¼ diZi sin ð�hi � hiÞ: (3)

Thus, unless �hi � hi ¼ p mod 2p, the state of the of the

i-th oscillator will get closer to �hi, which is precisely what

we mean by “attractive coupling”. If the opposite happens,

for instance, if we change the sign of the r.h.s. of Eq. (3), we

say that the coupling is repulsive.

On the other hand, we represent the (global) order pa-
rameter by

Reiw ¼ 1

N

XN

i¼1

eihi ; (4)

where R � [0, 1] is its norm and w � (0, 2p] is its phase.
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We stress that Zi is not normalized (in the sense that

there is no division by the number of the terms in the sum-

mation, like in R), as it measures the total action of the

neighbors on the i-th oscillator, which is called local mean
field. Simple calculations show that Z2

i 2 ½0; d2
i �. Thus, a nec-

essary condition for a node to suffer repulsive coupling, i.e.,

1� eZ2
i < 0, is that e > d�2

i .

Notice also that instead of attenuating local coherent,

we wanted to enhance its effect over the dynamics, this is

why we opt not to normalize the r.h.s of Eq. (1) by the asso-

ciated in-degree di.

The introduced order parameters R and Zi,…,Zn are

maximal in the case of full synchronization h1¼…¼ hN,

while they decrease when oscillators begin to move apart

from each other.

If eZ2
max < 1, where Z2

max :¼ maxfZ2
1;…; Z2

Ng, then all

oscillator will attract each other so that the full synchroniza-

tion is established. Next, if Z2
max becomes larger than e�1, the

corresponding oscillator begins to be repulsive related to its

local mean field, and the full synchronization breaks. As a

result, Z2
max may decrease and switch again the node to be

attractive. Depending on the coupling graph A, on the initial

condition ðh0
1;…; hN

1 Þ, and on the intensity of the nonlinear

coupling parameter e, numerical simulation reveals that

model (1) can exhibit different qualitative behaviors.

If the largest degree in the coupling graph satisfies

e < d�2
max, with dmax :¼ maxfd1;…; dNg, then no node can be

repulsive. We demonstrate in Sec. III via the Lyapunov anal-

yses, that in fact this condition guarantees that the full

synchronized state is stable.

III. STABILITY OF FULL SYNCHRONIZATION

The basic procedure to obtain the results in this section

follows.13 We begin presenting some preliminary concepts,

including elements of the graph theory needed, and a gener-

alized norm of the order parameter to define our Lyapunov

function.

Let B be the directed incidence matrix of a graph A.

Thus, B is a matrix with N rows and E columns, where E is

the number of directed edges of the matrix. The number of

undirected edges, i.e., ignoring the direction, equals is E/2.

The columns of B represent the edges of the graph: if the k-

th arrow (directed edge) of the graph goes from i to j, then

the k-th column of B is zero, except at positions i and j,
where Bik¼ 1 and Bjk¼�1. Regarding the dynamics of the

system, an arrow from node i to node j in the graph means

that node i influences node j. Although the directed incidence

matrix is generally defined for directed graphs, it must be

emphasized that only undirected graphs are considered here.

We abuse terminology and identify a graph A with its adja-
cency matrix, which is an N�N matrix where Aii¼ 0;

Aij¼Aji¼ 1, if there is an edge between nodes i, j; and

Aij¼Aji¼ 0, otherwise. So, E ¼
PN

i;j¼1 Aij. Another common

characterization of a graph is its Laplacian matrix,

L:¼ diag(d1,…,dN)�A. One can check that L¼ 1/2BB>. A

simple illustration of these concepts is given at Fig. 1.

The usage of the directed incidence matrix allows us to

rewrite model (1) in a vector form:

_h ¼ � 1

2
diag 1N � eZ2

� �
B sin B>hð Þ; (5)

where Z2 :¼ ðZ2
1;…; Z2

NÞ; 1N :¼ ð1;…; 1Þ 2 RN and diag(.)

stands for the matrix with the elements of a vector on the

leading diagonal, and 0 elsewhere.

The square of the global order parameter can be

expressed as

R2 ¼ 1

N2
N þ 2

X
j<k

cos hj � hk

� �� �
:

However, to build our Lyapunov function, we define a gen-
eralized norm of order r as

r2 :¼ 1� E� 1>E cos B>hð Þ
N2

: (6)

Note that R2 requires the sum of all cos ðhj � hkÞ with

j< k (for j, k¼ 1,…,N), but its generalization r2 takes into

account the sum (1>E cos ðB>hÞ) only through the edges of

the graph. In the case of full coupling graph, direct substitu-

tion yields that both global and generalized norm of the order

parameter have the same expression.

For any connected symmetrical coupling graph, one can

check that the maximum of r2 is the unit, and that R2¼ 1 if

and only if this value is achieved.17

Let

UðhÞ ¼ 1� r2 (7)

be a candidate Lyapunov function. It is clear that the mini-

mum value of U(h)¼ 0 corresponds to the maximum value

of r2¼ 1, which is equivalent to the fully synchronized state.

In fact, algebraic manipulations reveal that

U hð Þ ¼ 2

N2
sin

B>h
2

� �����
����

2

; (8)

and that the differential of U is given by

DU ¼ 1

N2
B sin B>hð Þð Þ>: (9)

As a result, we synthesize in the next theorem the previ-

ously suggested argument that if e is small enough, then full

synchronization is a robust phenomenon related to small per-

turbations over initial conditions.

Theorem 1. In Model (1), if e is smaller than a critical
value ec :¼ 1=d2

max, then the synchronized stated (R¼ 1) is
Lyapunov stable.

FIG. 1. Example of graph with N¼ 3 and E¼ 4, its directed incidence ma-

trix B1 and its Laplacian matrix L1.
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Proof. Consider the potential field U(h) defined in Eq.

(7). So, using the vector form of the model (5) and the

expression of the differential DU from Eq. (9), we have that
d
dt U h tð Þð Þ equals to

� 1

2N2
sin B>hð Þð Þ>B>diag 1N � eZ2

� �
B sin B>hð Þ: (10)

If we set x :¼ B sin ðB>hÞ, then we have that x>diagð1N �
eZ2Þx is larger or equal than ð1� ed2

maxÞkxk
2
. Moreover, we can

also define a lower bound for kxk2
, since kxk2¼ sin ðB>hÞ>

B>BsinðB>hÞ�k2ðB>BÞksinðB>hÞk2 ¼2k2ðLÞksinðB>hÞk2
;

where k2(L) is the algebraic connectivity of the graph. In the last

inequality, we used that 1
2BB>¼L and that both matrices BB> and

B>B have the same non-trivial eigenvalues 0�k2ðLÞ<…

<kNðLÞ, where k2(L) is strictly larger than zero because the cou-

pling graph A is connected.9 Therefore,

d

dt
U h tð Þð Þ � � 1

N2
k2 Lð Þ 1� ed2

max

� �
k sin B>hð Þk2:

As a result, e < ec :¼ 1=d2
max implies that d

dt U hðtÞð Þ � 0,

then the fully synchronized state R¼ 1 is stable. �

IV. DYNAMICS OF PARTIALLY SYNCHRONOUS
STATES

In this section, numerical simulations are performed to

illustrate the rich repertoire of behaviors that model (1) may

exhibit, specially beyond the threshold e> ec, where

Theorem 1 cannot be applied.

A. Quantification of dynamical regimes

The numerical integration scheme applied is a fourth

order Adams-Bashforth-Moulton Method (see Ref. 4) with

discretization time step h¼ 0.01. We calculate the partial
synchronization metrics from Ref. 11, which, for every two

oscillators i, j in the network, takes values sij(I) � [0, 1],

indicating how much the mean phase difference between hi

and hj varies in the time interval I:¼ [t1, t2], with t1< t2.

This metric is defined as

sij Ið Þ¼: 1

t2 � t1

ðt2

t1

ei hi tð Þ�hj tð Þð Þ dt

����
����:

One can check that if hi(t)� hj (t)þ g for some constant g,

then the exponent in the previous integral is constant and

sij(I)¼ 1. Nevertheless, if hiðtÞ � hjðtÞmod 2p assumes every

possible value over the unit circumference with not clear

trend, then sij(I) is close to zero. Now, we average contribu-

tions of all neighbor oscillators i, j under a graph A with N
nodes to write

s Ið Þ¼: 1

E

XN

i;j¼1

Aijsij Ið Þ;

where E is the quantity of undirected edges in the graph.

To exclude transients and to detect the statistically sta-

tionary state, we adopted the following procedure. For all

experiments the time interval [0, 2.103] is always considered

as transient time. Then, the numerical integration is performed

in the subsequent intervals Ik :¼ ½ðk � 1Þ; k�103, with k� 3,

until the first ~k ¼ k such that jsðI~k�1Þ � sðI~kÞj < 0:01, or ~k
¼ 10 is achieved. Only such a time interval I~k is regarded as

non-transient. For the subsequent analysis, we use values of

the phases h(t) in the stationary time interval regime I~k (whose

beginning is shifted to t¼ 0 without loss of generality) at

points t 2 ~I :¼ fih; i 2 f0; 1;…; 105 � 1; 105gg.

B. Examples of complex behaviors

As it was claimed before, in dependence on the network

structure, very different types of the dynamics are possible. In

order to give impression on it, we present simulations of

model (1) with two different coupling graphs displayed as

inserts in Fig. 2. Both networks have N¼ 10 nodes and they

differ only by the rewiring of a single edge. We performed

simulations for 10 random initial conditions chosen with uni-

form distribution over [0, 2p] for each experiment. For all

these initial conditions l¼ 1,…,10, the norm of the order

parameter Rl(t), according to Eq. (4), is computed from the

time series. As explained the last paragraph of subsection, in

these calculations a transient time is eliminated and that a stat-

istically stationary regime ~I of 103 units of time and #~I :¼
105 þ 1 points is considered. Then, also for each distinct ini-

tial condition, the maximum, average and minimum values of

the associated norm of the order parameter are computed,

respectively, denoted by Rl
max :¼ maxt2~I RlðtÞ; hRli :¼ ð#~IÞ�1P

t2~I RlðtÞ; and Rl
min :¼ mint2~I R

lðtÞ. Of course, Rl(t) con-

verges to a constant if and only if Rl
max ¼ hRli ¼ Rl

min. Now,

having different simulations for a fixed coupling graph, we

evaluated the maximum, average and minimum value of the

average value of the norm of the order parameters over

this ensemble, respectively, denoted by maxfhRig :¼

FIG. 2. Numerical results for Model (1) as a function of e, for the coupling

graphs despited as insect, including 10 random initial conditions. A black

line corresponds to meanfhRig, while the interval between minfhRig and

maxfhRig is shown as a gray strip. The gap between minfRming and

maxfRmaxg is shown as an orange strip. Since the orange strip is by con-

struction larger or equal than the gray one, the first one is not displayed in

the figure when they coincide. Left vertical axes show values related to

norm of the order parameter, while the right ones represents the maximum

Lyapunov exponent kmax, shown as a red dashed line. Letters in green verti-

cal lines from the upper experiment correspond to the inset in Fig. 3.
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maxl¼1;…;10hRli; meanfhRig :¼ ð10Þ�1P
l¼1;…;10hRli; and

minfhRig :¼ minl¼1;…;10hRli. So, if the norm of the order pa-

rameter converges to the same value for all initial conditions

simulated, then maxfhRig ¼ meanfhRig ¼ minfhRig. For

the cases where the norm of the order parameter does

not converge over all initial conditions, it will be useful to

examine the overall maximum and overall minimum values of

the norm of the order parameter, respectively denoted by

maxfRmaxg :¼maxl¼1;…;10Rl
max; and minfRming :¼minl¼1;…;10

Rl
min. Thus, if there is no fixed phase synchronization for all

the initial conditions simulated, but the norm of the order pa-

rameter presents only small deviations around a common

value, then the gap between maxfRmaxg and minfRming is

also small. Also notice that minfRming�minfhRig�mean

fhRig�maxfhRig�maxfRmaxg, since Rl
min�hRli�Rl

max for

all initial conditions. Finally, the maximum Lyapunov expo-

nent kl
max for each initial condition is also computed, accord-

ing to the algorithm in Ref. 2. The maximum Lyapunov

exponent over all the chosen initial conditions kl
max

:¼maxl¼1;…;10k
l
max is also analyzed.

We now describe different regimes observed in the net-

works, using also Fig. 3, where we depict time series of

R(h(t)) for some particular choices of e, indicated as green

letters in the upper panel from Fig. 2 (this is the case we

choose for illustrating different regimes). Notice that dmax

¼ 4 in both cases, so Theorem 1 guarantees that for

e< ec¼ 1/42¼ 0.0625 the full synchronization state, R ! 1,

is locally stable as illustrated in Fig. 3(a) (with e¼ 0.04).

Panel (a) in Fig. 3 illustrates full synchronization in the

network for e< ec. For e slightly bigger than ec, simulations

suggest that a stationary regime of partial phase synchroniza-

tion, where R! c< 1, is locally stable as shown in Fig. 3(b)

(e¼ 0.08). Details of this state are clear from Fig. 4. There

we show that the synchronization between the individual

oscillators is complete if measured by quantity sij, and all the

oscillators have the same frequency. However, the oscillators

are split into two groups with a constant phase shift between

them; this division originates in the edge which connects the

two largest hubs in the network (vertexes 1, 8).

For larger values of e, the regimes are still static but

with multistability. For instance, at e¼ 0.15 (see Fig. 3(c)),

two stable configurations emerge with R! c, with c� 0.471

(black) or c� 0.511 (blue), depending on the initial condi-

tion. Fig. 5, which is analogous to Fig. 4, shows the existence

of three subgroups, whose members may vary according to

the initial condition.

Other types of multistabilities appear, for instance, at

e¼ 0.28 and e¼ 0.35, as illustrate in Figs. 3(d) and 3(e). For

e¼ 0.28 (panel d) some initial conditions do no converge to

a fixed phase synchronization, but to a regime where the

order parameter R is periodic in time. For e¼ 0.35 (panel c),

the norm of the order parameter of all trajectories simulated

becomes periodic. Fig. 6 provides an illustration of this

regime.

FIG. 3. Evolution of R(t) for different values of e indicated in green at the

upper experiment from Fig. 2. Every color represents a different initial con-

dition, while pairs of solid/dashed lines with the same color correspond to

solutions whose initial conditions differ not more than 10–4 at each coordi-

nate. (a) e¼ 0.04: full synchronization; (b) e¼ 0.08: fixed phase synchroni-

zation; (c), (d), (e) e¼ 0.15, 0.28, 0.35 respect.: examples of multi stability;

(f) e¼ 0.70: example with kmax > 0.

FIG. 4. Example of group formation: details of one of the trajectories from

Fig. 3(b) e¼ 0.08. On the left side, the coupling graph with s(i, j) in its edges

is shown. On the right side, a histogram of hi – w in permanent regime is pre-

sented with color code representing the normalized frequency. Precisely, we

divided the interval [0, 2p) into 10 bins with the same size. So, the normal-

ized frequency of the i-th oscillator corresponds to the ratio of points (after

the transient time) that the numerical evaluation of hi – w placed at each bin.

FIG. 5. Example multi-stability with group formation. Details of two trajec-

tories from Fig. 3(c) e¼ 0.15 are provided. The left picture corresponds to

the solid black line and the right one to the solid blue. Histograms of hi – w
are like the one in Fig. 4.
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For e¼ 0.70 (Fig. 3(f)), one observes a chaotic state

with kmax > 0, the distribution of phases and frequencies is

illustrated in Fig. 7. The emergence of chaos in the DHM

can be seen as the result of irregular contractions and expan-

sions of the oscillator’s state.2 Contraction tendencies occur

when a node act as conformist (attractiveness), while expan-

sion takes place when it “deserts” due to local mean field

cohesion (repulsiveness). When no balance is achieved

between these two tendencies, one can observe sensitiveness

to initial conditions.

If e � [1, 1.5], we also obtained multistability, with the

coexistence of solutions converging to phase-lock and irreg-

ular order parameter after the transient, similar to Fig. 3(d).

Now, we compare the results for two slightly different

networks depicted in panels (a) and (b) in Fig. 2. The interval

of values of e with fixed phase synchronization for all initial

conditions simulated is very similar for both networks,

namely, ec< e � 0.25; also multistability of static partial

synchronous regimes have been observed in both cases.

When e � [1, 1.5], contrary to case (a), we observed

that the solution for all initial conditions converged to the

same phase-lock regime, similar to Fig. 3(b).

In the conclusion of this section, Fig. 8 shows simulation

results for two other networks. Panel (a) shows a random net-

work with N¼ 10 nodes and 20 undirected edges. Here pre-

dominantly static regimes are observed, only in small ranges

of coupling constant chaos with a positive Lyapunov expo-

nent appears. Static regimes, however, demonstrate a large

degree of multistability. In panel (b), we show a scale-free

network with N¼ 50 nodes and 100 undirected edges. Here

static states are rare, typically irregular regimes with low val-

ues of the order parameter are observed.

C. Dependence of partial synchronization regimes on
network structure

We have seen that partially synchronous states can be

rather different even for similar networks. It is therefore diffi-

cult to make general predictions for a relation between the net-

work properties and the dynamical behaviors. Here, we attempt

such a description, focusing on the property of abundance of

static regimes in comparison to time-dependent ones. For this

purpose, we define the convergence index Ic as the ratio of val-

ues of e � [0, 1.5] such that R converges to a constant value,

considering all the 10 random initial conditions. So, both

FIG. 6. Example of periodic norm of

the order parameter: details of one of

the trajectories from Fig. 3(d) e¼ 0.28.

On the left side, the coupling graph

with s(i,j) in its edges is shown. A histo-

gram of hi – w are like the one in Fig. 4

in the middle figure. We denote by w(t)
the argument of the order parameter.

The picture on the right shows that

the curve ðsin ðh1ðtÞ � wðtÞÞ; sin ðh9ðtÞ
�wðtÞÞÞ is closed.

FIG. 7. Example of trajectory with

kmax > 0: details of one of the trajecto-

ries from Fig. 3(f) e¼ 0.70. On the left

side, the coupling graph with s(i, j) in

its edges is shown. On the right side,

there is a histogram of hi – w are like

the one in Fig. 4.

FIG. 8. Numerical results for Model (1) as a function of e, for the coupling

graphs depicted as insect, including 10 random initial conditions. The legend

of the pictures is the same as in Fig. 2.
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networks in Fig. 2 have close values of this index: Ic� 0.530 in

case (a) while Ic� 0.549 in case (b). In contradistinction, net-

work shown in Fig. 8(a) has very large value of the index

Ic� 0.946, while that in Fig. 8(b) a rather low value Ic� 0.064.

In order to explore which features of the coupling graph

are related with Ic, we performed numerical experiments

with three sets of graphs, with N¼ 10, 50, 100 nodes. Each

set consists in three common types of networks, each one

with 10 members, generated as: (i) random (Erd€os-R�enyi)

graphs with 2N edges; (ii) scale-free graphs, also with 2N;

and (iii) tree graphs (N edges). The Barab�asi-Albert algo-

rithm is applied for the last two types of networks (ii), (iii),

with an initial clique of m0 nodes and with other nodes been

connected to m existing ones. For the 2N-edges scale-free

graphs, we fixed m0¼ 5 and m¼ 2; while for the tree graphs

(N edges scale-free graphs), m0¼m¼ 1. We point out that

all graphs created are connected and symmetrical.

Additionally, three sets of 10 initial conditions h0 2 RN ,

with uniform distribution over [0, 2p] and N¼ 10, 50, 100,

have been explored. So, for each of the 90 coupling graphs

we computed its correspondent Ic values by numerical inte-

gration of model (1) for e¼ 0, 0.01,…,1.49, 1.50.

In Table I, we report the mean value and the standard

deviation of Ic for each topology and size of coupling graph.

From these data, we see that the mean value of Ic increases if

we go from tree to scale-free and to random graphs, respec-

tively. However, this difference becomes less noticeable for

larger values of N. Both the mean value and the standard

deviation of Ic decrease with larger networks.

We have explored different networks metrics, searching

for one mostly correlated with the convergence index Ic. Let

0¼ c1< c2�…cN denote the Laplacian eigenvalues of the

coupling graph.10 Recall that this graph is assumed to be

simple and connected. We stress that these eigenvalues

express fundamental characteristics of the graph. For

instance, c2 is related with graph diameter and cN with its

largest degree size.

We found that the quantity c*, defined as the ratio

between the maximum eigenvalue and the average of the

non-trivial eigenvalues of the Laplacian matrix of the graph,

is rather suitable for this purpose. Formally, it is defined as

c	 :¼ cN

1

N � 1

XN�1

k¼2

ck

 !�1

:

In Fig. 9, a correlation plot between Ic and measure c*

for the correspondent graph is presented. From there, we

observe a clear trend indicating that the greater the value of

c* is, the smaller is the value of Ic. Independently of the net-

work type and size, static regimes of partial synchronization,

full synchronization and phase-lock, are typical for values of

c*� 3, like in the experiments from Fig. 2. On the other

hand, graphs with larger values of this measure yields more

irregular dynamics, like time-dependent periodic and chaotic

regimes, as the ones from Fig. 8.

V. CONCLUSION

In this work, we introduced and studied the DHM, as a

Kuramoto-like model of identical oscillators with non-linear

coupling. Our main parameter was e, which governs the cou-

pling nonlinearity strength. It is clear that the most influence

of nonlinearity in the coupling is on the hubs which experi-

ence strong forcing from many connected oscillators, while

less connected nodes may still operate in a linear-coupling

regime.

We proved that if this parameter is smaller than the

inverse of the square of the maximum vertex degree in the

network, then the full synchronized state is stable. Via nu-

merical experiments, we showed that our model can display

a variety of other qualitative behaviors of partial synchroni-

zation, like stationary phase locking, multistability, periodic

order parameter variations, and chaotic regimes. We

explored the relative abundance of stationary phase locking

regimes under different network topologies. Our statistical

analysis with 90 graphs, comprising a variety of network

sizes and topologies and vertex sizes, suggests that tree

graphs are much less likely to exhibit stationary phase lock-

ing in comparison with scale-free or random networks. In

addition, this type of behavior becomes rarer if we increase

network sizes, irrespective to the network topology. Finally,

we also found a good correlation between the ration between

the maximum eigenvalue and the average of the non-trivial

eigenvalues of the Laplacian matrix of the graph, and the

proportion of the repulsion parameter values which yield sta-

tionary phase locking. Our simulations show evidence that

the greater this measure is, the smaller tend to be presence of

stationary phase locking states in the system.

As a future research, we plan to investigate analytical

conditions and correlations involving other graph measures

related to other forms of synchronization in the model.
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