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• The Kuramoto model with a bi-harmonic coupling function was investigated.
• We develop a method for an analytic solution of self-consistent equations.
• We observed a multi-branch locking with a multiplicity of coherent states.
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• We show that the asynchronous state has a finite life time for finite ensembles.
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a b s t r a c t

We study synchronization in a Kuramoto model of globally coupled phase oscillators with a bi-harmonic
coupling function, in the thermodynamic limit of large populations. We develop a method for an analytic
solution of self-consistent equations describing uniformly rotating complex order parameters, both
for single-branch (one possible state of locked oscillators) and multi-branch (two possible values of
locked phases) entrainment. We show that synchronous states coexist with the neutrally linearly stable
asynchronous regime. The latter has a finite life time for finite ensembles, this time grows with the
ensemble size as a power law.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Large systems of coupled nonidentical oscillators are of gen-
eral interest in various branches of science. They describe Joseph-
son junction circuits [1–3], electrochemical [4] and spin-torque
[5,6] oscillators, as well as variety of interdisciplinary applications
including pedestrian induced oscillations of footbridges [7], ap-
plauding persons [8], and others. Similar models are also used in
biology, for example in studying of neural ensembles dynamics
[9,10] and systemsdescribing circadian clocks inmammals [11,12].
In many cases the analysis of large ensembles consisting of het-
erogeneous oscillators can be successfully performed in the phase
approximation [13,14]. Indeed, if the interaction between the el-
ements is weak, the amplitudes are enslaved, and the dynamics
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of self-sustained oscillators can be effectively described by a rela-
tively simple system of coupled phase equations. The special case
of a globally coupled network of phase oscillators (so-called Ku-
ramotomodel [13,15]) attracted a lot of attention [16] andhas been
established as a paradigmatic model describing transitions from
incoherent to synchronous states in the ensembles of coupled os-
cillators.

Quite a complete analysis of the Kuramoto model can be
performed in the case of a harmonic sin-coupling function
[13,17,18], although even here non-trivial scenarios of transition to
synchrony have been reported [19]. Less studied is the case ofmore
general coupling functions, containing many harmonics. Here we
perform a systematic study of the synchronous regimes for a bi-
harmonic coupling function (see [20] for a short presentation
of these results which have been later confirmed in [21]). We
introduce the model and discuss previous findings in Section 2.
Then in Section 3 we give a general solution of the self-consistent
equations describing rotating-wave synchronous solutions. In
Section 4 we give a detailed analysis of the simplest symmetric
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case (no phase shifts in the coupling), while a general situation
is illustrated in Section 5. In conclusion, we summarize the
results and outline open questions. In this paper we focus on the
deterministic oscillator dynamics, the case of noisy oscillators will
be considered elsewhere [22].

2. Kuramoto model and bi-harmonic coupling

The general Kuramoto model is formulated as a system of
differential equations for the phases ϕk of N oscillators:

ϕ̇k = ωk +
1
N

N
n=1

Γ (ϕn − ϕk), k = 1, . . . ,N. (1)

All the oscillators are identical, except for diversity of the natural
frequencies ωk, distributed according to a certain distribution
function g(ω). The level of coherence in the network of phase
oscillators can be described by order parameters Rn, defined as:

RneiΘn =
1
N

N
k=1

einϕk , n ∈ N. (2)

The state with Rn = 0 for all n corresponds to a purely incoherent
dynamics (uniform distribution of the phases), while non-zero
values of at least some order parameters indicate for certain
synchrony in the ensemble. In the case of pure sinusoidal coupling,
Γ (x) = ε sin(x + α), the original analysis by Kuramoto [15,
13] and its subsequent extensions [23–25,17,18] revealed a clear
picture of a transition from an asynchronous state to coherence
in the thermodynamical limit N → ∞. It was shown that
above certain critical value of the coupling (ε > εc), the system
undergoes a transition from disordered behavior to synchronous
collective motion via a supercritical bifurcation with the main
order parameter obeying R1 ∼ (ε − εc)

1
2 .

The situation is much less trivial for more general coupling
functionsΓ . The presence of higher harmonics in coupling function
[26,24,25,27] may change scaling of the order parameter to linear
law R1 ∼ ε − εc . Moreover, as has been already mentioned
in an early paper by Winfree [28] and in subsequent numerical
studies by Daido in [29,30], sufficiently strong higher modes
in the coupling function Γ may cause a so-called multibranch
entrainment, in which a huge number of stable or multistable
phase-locked states exist. In certain cases the interplay between
synchronizing action of one coupling mode and repelling force
from another one can be a reason for an oscillatory behavior of
macroscopic order parameters [31].

This paper is devoted to a systematic study of the Kuramoto
model in the case of a general bi-harmonic coupling function

Γ (x) = ε sin(x − β1)+ γ sin(2x − β2) (3)

in the thermodynamic limit N → ∞. In Section 3 we formulate
an analytic self-consistent approach [15,13,32] which allows us
to calculate stationary or uniformly rotating order parameters
R1,2 (including all possible multi-branch entrainment states)
depending on the parameters of the bi-harmonic coupling function
Γ . Based on the self-consistent method, we present in Section 4
a complete diagram of uniformly rotating states with constant
order parameters, for a special case of symmetric coupling function
Γ (β1,2 = 0). Surprisingly, (i) synchronous solutions appear
prior to the stability threshold of incoherent state; (ii) these
regimes have order parameters that can take values anywhere
in the range (0, Rmax] for some Rmax < 1; (iii) there is a huge
multiplicity of these states for fixed coupling parameters (multi-
branch entrainment) which can also appear for relatively weak
second mode (when parameter γ is small compared to absolute
value of ε) in the coupling. Here we also illustrate the multiplicity
of solutions, and, combining the self-consistent approach and a
perturbative analysis, we derive the scaling laws of R1,2(ε, γ ) near
the transition points where coherent state appears.

For a general case of non-zero phase shifts β1,2, consideration
of the self-consistent equations becomes rather tedious due to a
large number of parameters involved. We restrict our attention in
Section 5 to several examples with multibranch entrainment and
already mentioned oscillatory states [31].

Before proceeding with the analysis, we mention three exam-
ples of realistic physical systemswhere the second harmonics term
in the coupling function is strong or even dominating. The first ex-
ample is the classical Huygens’ setup with pendulum clocks sus-
pended on a common beam (common platform). The horizontal
displacement of the beam leads to the first harmonics coupling
∼ ε, while the vertical mode produces the second harmonics term
∼ γ [33]. We give a derivation of the phase equations for the case
where both horizontal and vertical displacements of the platform
are present, in Appendix, where Eq. (32) is in fact the Kuramoto
model with bi-harmonic coupling. Another example are recently
experimentally realized ϕ-Josephson junctions [34], where the dy-
namics of a single junction in the array is governed by a double-
well energy potential. Therefore one can expect strong effects
caused by the second harmonics in the interaction. The third ex-
ample are experiments with globally coupled electrochemical os-
cillators [35,36], where a pronounced second harmonics has been
observed in the coupling function inferred from the experimental
data.

3. Self-consistent equations and their solution

We start our analysis with reformulation of Eq. (1) for the bi-
harmonic coupling as

ϕ̇k = ωk + εIm


e−iβ1−iϕk

1
N


n

eiϕn


+ γ Im


e−iβ2−i2ϕk

1
N


n

ei2ϕn

.

In the thermodynamical limit, using the two relevant order
parameters R1,2eiΘ1,2 , defined according to (2), we obtain:

ϕ̇ = ω + εR1 sin(Θ1 − ϕ − β1)+ γ R2 sin(Θ2 − 2ϕ − β2). (4)

We assume the natural frequencies ω to be distributed according
to a symmetric unimodal density g(ω). Furthermore, due to
rotational invariance of the problem, the mean frequency can be
set to zero by virtue of a transformation into a rotating reference
frame. In the thermodynamic limit the complex order parameters
RmeiΘm can be represented using the conditional distribution
function ρ(ϕ|ω):

RmeiΘm =


dϕdω g(ω)ρ(ϕ|ω)eimϕ, m = 1, 2. (5)

Below we consider only the states of uniformly rotating
order parameters. Let us perform the following transformation of
variables to the rotating (with some frequencyΩ) reference frame:

Θ1 = Ωt + θ1; Θ2 = 2Ωt + θ2;

ϕ = Ωt + θ1 − β1 + ψ,
(6)

where θ1 and θ2 are constants. Then Eq. (4) changes as follows:

ψ̇ = ω −Ω + εR1 sin(−ψ)

+ γ R2 sin(θ2 − 2θ1 + 2β1 − β2 − 2ψ). (7)
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Fig. 1. (a) Regions V1 and V2 in the plane of parameters (u, v): Domain V1 corresponds to a double-well form of function y(u, v, ψ) (Fig. 1(b,d)), while in domain V2 function
y(u, v, ψ) has a single-well form like shown in Fig. 1(c). (b) Example of function y(u, v, ψ) with 4 extrema is presented. There are two stable branches (solid curves) for
stationary phases of locked oscillators. The left branchψ = Ψ1(x, P) is larger than the right oneψ = Ψ2(x, P). (ψ1,2, x1,2) denote coordinates of the extrema corresponding
to the branch Ψ1 , while (ψ3,4, x3,4) denote extrema at Ψ2 . In the domain y(ψ) ∈ [xb1, x

b
2] there is a bistability on the microscopic level: in this domain the oscillators can be

locked either on the branch Ψ1 in the rangeψ ∈ [ψb
1 , ψ

b
2 ] or on the branch Ψ2 in the rangeψ ∈ [ψb

3 , ψ
b
4 ]. (c) Example of function y(u, v, ψ)with only two extrema and one

stable branch ψ = Ψ1(x, P) (solid curve). (d) Example of function y(u, v, ψ) in the special case v = 0. In this special case branches Ψ1 and Ψ2 are symmetric (see Eq. (18)).
Due to the symmetry the first branch is always centered in the interval [−ψ1, ψ2], and the second branch is centered in the interval [π −ψ2, π +ψ2]. The area of bistablity
for the first branch Ψ1 is in the interval [−ψb

1 , ψ
b
1 ]. For the second branch the entire range [π − ψ2, π + ψ2] (where this branch is defined) is in the area of bistability.
It is convenient to introduce a set of parameters {R, u, v, z} = P
in the following way:

εR1 = R sin u, γ R2 = R cos u,
Ω = zR, v = θ2 − 2θ1 + 2β1 − β2.

(8)

Now Eq. (7) takes the form:

ψ̇ = R (x − z − sin u sinψ − cos u sin(2ψ − v))

= R (x − z − y(u, v, ψ)) . (9)

Wedenoted x = ω/R and y(u, v, ψ) = sin u sinψ+cos u sin(2ψ−

v).
Here we summarize the meaning of all new variables and

parameters:

• θ1 = Θ1 − Ωt and θ2 = Θ2 − 2Ωt are the phase shifts of the
first and the second order parameters in the rotating frame.

• ψ = ϕ −Ωt + β1 − θ1 is the oscillator’s phase in the rotating
frame, shifted by a constant β1 − θ1.

• R =


ε2R2

1 + γ 2R2
2 is an overall amplitude of the coupling

function. For ε, γ ≠ 0, R can be zero only if both order
parameters vanish R1 = R2 = 0.

• u is a parameter reflecting relative strengths of coupling terms
in the first and the second harmonics: (sin u =

εR1
R and cos u =

γ R2
R , respectively) For example, when u = 0 oscillators interact

only via the second harmonics (∼ γ R2).
• z = Ω/R is the rescaled rotating frequency of the order

parameters.
• x = ω/R are the rescaled individual frequencies of oscillators.
• v = θ2 − 2θ1 + 2β1 − β2 is an effective phase shift of the

second harmonics coupling term with respect to the coupling
at the first harmonics.
• y(u, v, ψ) = sin u sinψ − cos u sin(2ψ − v) is the rescaled
coupling function.

Setting parameters P to some constant values in (9) (this means
that R1,2, θ1,2 are constants, i.e. the order parameters are uniformly
rotating with velocity Ω), one can find a stationary distribution
function ρ(ψ |x, P) and then calculate the corresponding complex
order parameters as:

R1eiθ1 = ei(θ1−β1)R


dxdψρ(ψ |x, P)eiψg(Rx)

= ei(θ1−β1)RF1(P)eiQ1(P),

R2eiθ2 = ei2(θ1−β1)R


dxdψρ(ψ |x, P)ei2ψg(Rx)

= ei2(θ1−β1)RF2(P)eiQ2(P),

Fm(P)eiQm(P) ≡


dxdψρ(ψ |x, P)eimψg(Rx), m = 1, 2.

(10)

Our next goal is to calculate the integrals Fm(P), for thiswe need
to find, using the dynamical equation (9), the distribution function
ρ(ψ |x, P). Let Ymin and Ymax denote the global minimum and the
global maximum of function y(u, v, ψ), respectively. (Fig. 1(b)).
All the oscillators can be separated into locked ones (for Ymax ≥

|x − z| ≥ Ymin) or rotating, unlocked ones (x − z > Ymax or
x − z < Ymin). The distribution function of rotating oscillators
(index r) is inversely proportional to their phase velocity:

ρr(ψ |x, P) = g(Rx)ρ(ψ |x, P) =
C(x)

|x − z − y(ψ, u, v)|
, (11)

where C(x) is the normalization constant to which we included
also the distribution of frequencies:

C(x) =
g(Rx) 2π

0
dψ

|x−z−y|

.
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The stationary phases of locked oscillators (index l) can be found
from the following relation:

x − z = y(u, v, ψ). (12)

When finding ψ as a function of x, we have to satisfy an
additional stability condition ∂y(u,v,ψ)

∂ψ
> 0 that follows from the

dynamical equation (9). In the (u, v) plane there are two regions
V1 and V2 (Fig. 1(a)) with qualitatively different properties of
system (9) and different types of distribution function ρl(ψ |x, P),
correspondingly:

(i) {u, v} ∈ V1. In this case function y(u, v, ψ) has a double-well
form like shown in Fig. 1(b). According to (12), oscillators can be
located on two possible stable branches highlighted by solid curves
in Fig. 1(b): the first branch is ψ = Ψ1(x, P) in the range ψ ∈

[ψ1, ψ2] and another branch is ψ = Ψ2(x, P) for ψ ∈ [ψ3, ψ4].
Here andbelowweassumeΨ1(x, P) to be the biggest stable branch.
In the range (x − z) ∈ (xb1, x

b
2) (Fig. 1(b)) there is an area of

bistability on the microscopic level: the oscillators with the same
natural frequency x can be locked at two different phases Ψ1(x, P)
andΨ2(x, P). Therefore, the distribution function has the following
form:

ρl(ψ |x, P)

=


(1 − S(x))δ(ψ − Ψ1(x, P))+ S(x)δ(ψ − Ψ2(x, P))

for (x − z) ∈ [xb1, x
b
2],

δ(ψ − Ψ1(x, P)) for (x − z) ∈ [x1, x2] \ [xb1, x
b
2],

δ(ψ − Ψ2(x, P)) for (x − z) ∈ [x3, x4] \ [xb1, x
b
2].

(13)

Here 0 ≤ S(x) ≤ 1 is an indicator function describing the
redistribution over the stable branches; this function is arbitrary.

(ii) {u, v} ∈ V2. In the second case, function y(u, v, ψ) has only
two extrema (Fig. 1(c)) and there is only one stable branch ψ =

Ψ1(x, P). The distribution function is:

ρl(ψ |x, P) = δ(ψ − Ψ1(x, P)) for x ∈ (z + x1, z + x2). (14)

Taking into account the obtained expressions for the distribu-
tion function ((11), (13) and (14)), the integrals in (10) can be
rewritten as a sum of five terms:

Fm(P)eiQm(P) =

 ψ2

ψ1

dψeimψg (R(z + y))
∂y
∂ψ

−

 ψb
2

ψb
1

dψeimψS(z + y)g (R(z + y))
∂y
∂ψ

+

 ψ4

ψ3

dψeimψg (R(z + y))
∂y
∂ψ

−

 ψb
4

ψb
3

dψeimψ (1 − S(z + y)) g (R(z + y))
∂y
∂ψ

+


X

 2π

0
dxdψ

C(x)eimψ

|x − z − y|
. (15)

Here the first and the second terms stand for integration over the
first branch Ψ1 in the range [ψ1, ψ2]. The second term accounts
for certain redistribution S(x) of oscillators between the branches
in the range [ψb

1 , ψ
b
2 ] (Fig. 1(b)). Similarly, the third and the fourth

terms correspond to integration over the possible stable branchΨ2
in the range [ψ3, ψ4]. In the same way, the fourth term accounts
for redistribution of oscillators between branches in the range
[ψb

3 , ψ
b
4 ] (Fig. 1(b)). In the last term the interval X = (−∞, z +

Ymin)

(z + Ymax,∞) is the domain of frequencies where the

oscillators are not locked.
Now, using the integrals (15), one can calculate the absolute
values of the complex order parameters R1,2 and the frequencyΩ
as functions of introduced parameters R, u, v, z:

R1,2(P) = RF1,2(P), Ω(P) = Rz. (16)

Then, from relations (8), (10) and (16) it follows that:

ε(P) =
sin u
F1(P)

, γ (P) =
cos u
F2(P)

,

β1(P) = Q1(P), β2(P) = Q2(P)− v.

(17)

All together Eqs. (16) and (17) determine the stationary amplitudes
of the order parameters R1,2 and the frequency of their rotation
Ω in dependence on model parameters ε, γ , β1,2 in an analytic,
albeit parametric form. The parameters P uniquely define the
distribution function ρ(ψ |x, P), with a given indicator function S.
This yields uniquely defined values of R1,2. Therefore, a certain
choice of parameters P and function S yields the values of
R1,2, ε, γ , β1,2 and Ω . On the other hand, the order parameters
and the oscillating frequency as functions of original system
parameters ε, γ , β1,2 can be multi-valued. Note that this solution
fully accounts to multi-branch entrainment, due to presence of
the indicator function S. Arbitrariness of this functions means that
there is a huge multiplicity of microstates.

We stress, that in the solutions ((16), (17)) parameters
R, u, v, z and the indicator function are independent, while the
order parameters R1,2 and the coupling parameters ε, γ , β1,2
are functions of them. If, on the other hand, one wants to fix
the coupling parameters, then one should adjust some of the
parameters R, u, v, z and the indicator function, whichwill be now
not independent. This is a standard procedure in a parametric
representation of a solution.

4. Symmetric bi-harmonic coupling function

Here we consider the simplest case where β1 = β2 = 0, what
corresponds to a symmetric coupling function Γ (x) = ε sin(x) +

γ sin(2x).

4.1. General solution of self-consistent equations

Symmetry of the coupling function allows us to perform the
self-consistent approach in the special case z = v = 0 (see
however Section 4.7 for a more general situation). First we will
simplify equations (Eqs. (15)–(17)) taking into account the relation
z = v = 0.

A typical form of function y(u, v = 0, ψ) is presented in
Fig. 1(d). For v = 0, the critical value u = ± arctan(2) separates
double-well and single-well shapes of function y(u, 0, ψ). If
| tan(u)| < 2, the function y(u, 0, ψ) contains two stable branches
Ψ1 and Ψ2 (see Fig. 1(d)), otherwise only one branch Ψ1 exists as
shown in Fig. 1(c). The stable branches Ψ1 and Ψ2 (if the latter
exists) are always centered in the intervals

Ψ1 : [−ψ1,+ψ1] and Ψ2 : [π − ψ2, π + ψ2],

where the values ψ1,2 can be calculated explicitly:

ψ1,2 = arccos


∓ sin u +


sin2 u + 32 cos2 u
8 cos u


.

Moreover, the branches Ψ1,2 are symmetric (see Fig. 1(d)):

y(u, 0, ψ) = −y(u, 0,−ψ),
y(u, 0, π + ψ) = −y(u, 0, π − ψ).

(18)
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Fig. 2. (a) Diagram of different synchronous states in dependence on parameters (ε, γ ), resulting from the analytical solution Eqs. (19) and (20). Bold (blue) line L1:
border of synchronous states, inside area A there is only the incoherent solution; between the lines L1 and L2 (bold dashed (blue) line) there are two solutions (stable and
unstable) with non-zero R1,2 and at the line L2 the unstable branch touches zero (see region between points S and P in Fig. 3(a)). Dotted (red) lines: onset of synchrony for
σ = 0.2, 0.4, 0.5, 0.6, 0.8, 1 (from left to right). Inset shows the domain of large in absolute value negative ε < 0 in more details (with the same axes definitions). (b)
The same as in Fig. 2(a) but in the area ε, γ > 0. An additional line L3 is drawn from the condition tan u = 2, dividing domains B (single synchronous state) and C (multiple
synchronous states). Above L3 multiplicity of synchronous states due to multi-branch entrainment occurs (beyond point Q in Fig. 3(a)).
Taking all this into account, the relation (15) can be radically
simplified:

Fm(R, u)eiQm(R,u) =

 ψ1

−ψ1

dψeimψ (1 − S(y))g (R(y))
∂y
∂ψ

+

 π+ψ2

π−ψ2

dψeimψ (S(y))g (R(y))
∂y
∂ψ

+


|x|>x1

 2π

0
dxdψ

C(x)eimψ

|x − z − y|
. (19)

Similar to Eq. (15), the first term in Eq. (19) represents integral
over the stable branch Ψ1 in the range [−ψ1, ψ1]. We assume
that the indicator function S(y) = 0 everywhere outside interval
[−ψb

1 , ψ
b
1 ] (range of microscopic bistability, see Fig. 1(d)). The

second term represents contribution of the oscillators on the
second branch Ψ2 in the range [π − ψ2, π + ψ2] and the last
term accounts for the contribution of the unlocked oscillators. If
the functions S(x) and g(x) are even, then it is easy to see that
the imaginary part in all of the integrals in (19) vanishes (recall
that y(u, 0, ψ) is odd). Thus, for any S(x) = S(−x) and g(x) =

g(−x) we obtain Q1,2(R, u) = 0 and automatically β1,2 = 0.
(See Section 4.7 below for discussion of an asymmetric indicator
function S.)

In summary, for the case z = v = 0 and even S(x), g(x)wehave
Ω = β1,2 = 0 and the following expressions for the parameters
ε, γ and real order parameters R1,2 as functions of two introduced
parameters R, u:

R1,2(R, u) = RF1,2(R, u), ε(R, u) =
sin u

F1(R, u)
,

γ (R, u) =
cos u

F2(R, u)
.

(20)

4.2. Stability of the incoherent state

Before proceeding with presentation of the main results we
recall that an issue of linear stability of the incoherent state
(with uniform distribution of phases) was a milestone in almost
all preceding mathematical studies [37,24,25,27] of Kuramoto-
type models. This analysis of the partial differential equation for
the density distribution function revealed the following stability
properties of the incoherent state [37,24,25,27]: (i) the continuous
part of the spectrum always lies on the imaginary axis; (ii) when
one of the couplings exceeds certain threshold ε > εlin or γ > γlin,
in the discrete spectrum appears an eigenvalue with a positive
real part revealing instability of the asynchronous state. In the
linear theory, the modes of the perturbation corresponding to the
harmonics of the coupling are independent on each other, and one
gets εlin = γlin =

2
πg(0) . Below in this paper we use a Gaussian

distribution of frequencies g(ω) = (2π)−1/2 exp(−ω2/2), thus

εlin = γlin = 2


2
π
. In presentation of the results, we will always

normalize the values of the coupling parameters ε, γ by the linear
stability thresholds.

4.3. Diagram of synchronous states

In Fig. 2 we illustrate the diagram of the states on the plane of
parameters (ε, γ ), and in Fig. 3 some cuts of it, for the simplest
case, where the indicator function S(ω) = σ is a constant. This
diagram is obtained by application of analytic formulas (20).

We start the description with an even simpler case σ = 0
(so that all the phases are on one stable branch). Setting in (19),
(20) R = 0+ and varying u, we find a curve on the plane
of parameters (ε, γ ) where a solution with going to zero order
parameters R1,2 exists (line L2 in Fig. 2, see Section 4.8 below for
the details of calculation of this line), possibly coexisting with
another solutions. In the plane (ε, γ ) also exists the curve L1, which
corresponds to the line of a ‘‘saddle–node bifurcation’’ where two
branches of coherent solutions first appear (point S in Fig. 3(a)).
This means that nontrivial solutions R1,2(ε, γ ) > 0 appear via
a first-order transition, as the coupling strengths (ε, γ ) increase
(Fig. 3(a)); exception are the pure cases ε = 0 and γ = 0,
where L1 touches L2 (see Section 4.8 below). The line L1 splits the
plane (ε, γ ) in two different regions: in area A in Fig. 2(a, b) only
incoherent solution of self-consistent equations exists, outside
area A (regions B and C in Fig. 2(b)) synchronous solution(s) exist.
Between curves L1 and L2 there are two solutions with σ = 0.
We also show a curve L3 corresponding to the parameter value
tan u = 2, which separates the two-branch (Fig. 1(a,d)) and the
one-branch (Fig. 1(b)) situations (marked as C and B on panel
Fig. 2(b) correspondingly).

Below L3 there is a solution with S(ω) = 0 only, above it,
multiplicity due to arbitrariness of the indicator function S(ω)
occurs. We depict also curves corresponding to synchronous
solutions with R1,2 = 0+ at several fixed values of σ (red curves
in Fig. 2), to the right of these curves synchronous states with
corresponding values of σ exist.
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Fig. 3. (a) Dependence of the order parameters R1,2 on coupling strength γ at fixed value of ε = 0.9εlin (see also vertical arrow in Fig. 2(b)). Markers are results of direct
simulation of a population of N = 2 · 104 oscillators. Different curves correspond to different values of σ , as depicted on the panel. For γ . 0.6γlin there is a unique
synchrony state, for larger couplings multiplicity is observed. Point S denotes a ‘‘saddle–node bifurcation’’ at which coherent states appear (curve L1 in Fig. 2). At point P the
order parameters at the unstable branch of coherent solution vanish (curve L2 in Fig. 2). Between points S and P a finite perturbation of the incoherent state is needed to
come to a synchronous regime. Point Q , the onset of multiplicity, corresponds to curve L3 in Fig. 2(b). (b) The same as in Fig. 3(a) but for γ = 0.9γlin , and varying ε (horizontal
arrow in Fig. 2(b)). For ε & 1.6εlin the solution is unique, for smaller ε there are multiple states with different σ appearing at different critical couplings. (c) Detailed view
of curves R1,2(ε) for σ = 0 (left panels) and σ = 0.2 (right panels). For both cases γ = 0.9γlin . Here markers denote averaged values of stationary order parameters of
different independent numerical simulations (see text). (d) Enlargement of the curves R1,2(ε) (σ = 0, γ = 0.9γlin , panel(b)) for small values of order parameters, indicating
a first-order type of the transition, hardly seen in panel (b). Thus in both cases (panels (a) and (b)) near the point P the dependence of R1,2 on coupling constants ε and γ is
linear with negative slope (see Section 4.8 for details).
We illustrate different synchronous regimes as functions
of coupling parameters (ε, γ ) in Fig. 3(a, b). Fig. 3(a) shows
dependence of synchronous states on the coupling parameter γ
for fixed ε = 0.9εlin (vertical arrow in Fig. 2(b)). As it has been
mentioned above, two branches of coherent solutions arise at
point S. With increase of γ , the lower branch merges with the
incoherent solution at point P . The upper branch is unique until
the border of multiplicity tan u = 2 (point Q ) is crossed. Multiple
solutions exist for all larger values of γ .

A special symmetric solution appears at the linear threshold
γ = γlin. This regime contains only the second harmonic (R1 = 0)
and has symmetric redistribution of oscillators (σ = 0.5) between
the two symmetric stable branches. This regime appears as a
square root of supercriticality R2 ∼ (γ − γc)

1
2 (see the branch of

R2 starting at γ /γlin = 1 for σ = 0.5 in Fig. 3(a)) and corresponds
to the bifurcation from the asynchronous state as described in
[24,25].

In Fig. 3(b) the order parameters are shown as functions of ε for
fixed γ = 0.9γlin (horizontal arrow in Fig. 2(b)). As for parameters
almost everywhere here we are in the region of multiplicity,
the synchrony arises at different values of ε for different σ .
Immediately beyond the threshold (which corresponds to σ = 0)
multiple synchrony states with σ > 0 are possible (as here
tan u < 2). With further increase of ε, when the line L3 is crossed
(at large values of ε not shown in Fig. 2(b)), multiplicity disappears.

In contrast to Fig. 3(a), the first synchronous solution σ = 0
in Fig. 3(b) looks like arising via a second-order phase transition.
However a detailed analysis of the situation in Fig. 3(d) shows
that this is not the case (as was erroneously stated in [20]). With
decrease of parameter u to zero (decrease of ε), lines L1 and L2
come close to each other but they merge only at the point u = 0
which corresponds to the pure second-harmonics Kuramotomodel
(ε = 0). In the Section 4.8 below, using a combination of the
self-consistent approach and a perturbative analysis, we will show
that at L2 the dependence of R1,2 on coupling strengths ε and γ is
linear with a negative slope, everywhere except at singular points
u = 0 and u = π/2 which correspond to the pure cases of second-
harmonic and first-harmonic Kuramoto models, respectively.

4.4. Stability properties

Unfortunately, we cannot perform analytically, and even
numerically, a thorough stability analysis of the constructed
solutions. The only analytic results we can rely on, are outlined
in Section 4.2. Stability calculations of the asynchronous state
R1,2 = 0 yield instability for ε > εlin or γ > γlin, and neutral
stability with a continuous spectrum for ε < εlin, γ < γlin [37,
24,25,27]. This conclusion can be easily reproduced numerically.
However, we could not study stability of self-consistent solutions
in the same manner, because these solutions have a singular
component (delta-function in Eqs. (13) and (14)).

Therefore, we checked for stability via direct numerical
simulation of large ensembles (see also [21]). The found solutions
follow the theoretically predicted curves as shown by markers in
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Fig. 4. (a) Examples of time evolution of the order parameter R1 in direct simulations of an ensemble (1) for γ = 0.85γlin, ε = 0.6εlin and different N (from left to right,
N = 5 · 104, 105, 2 · 105, 5 · 105, 106). (b) Averaged transition times from the incoherent state to a synchronous solution, in dependence on the ensemble size N for
γ = 0.85γlin, ε = 0.6εlin . Error bars show standard deviations. Each point was obtained from a statistics of 128 different simulations. Inset shows the same plot in log–log
scale. One can see a power law with exponent ≈ 0.72 (dashed line).
Fig. 3(a, b). However, the stability of states with small values of R1,2
cannot be easily confirmed due to finite-size effects.

In order to study these finite-size effects in the vicinity of
‘‘bifurcation points’’, i.e. for small values of the order parameters,
we performed additional simulations with large ensemble size
N = 218

= 262144. Two theoretical curves with σ = 0 and
σ = 0.2 for γ = 0.9γlin (Fig. 3(b)) have been tested for stability. In
each simulation we independently generated random distribution
of frequencies for N = 262144 oscillators and prepared initial
conditions according to the distribution function, obtained from
our self-consistent analysis at given parameters. As a result,
Fig. 3(c) shows the averaged values of R1,2 (obtained from the
numerical simulation of more than 32 independent runs for each
point). One can see that the markers are slightly below the
curves, indicating that on an average synchronization is weaker
than the analytically predicted level. Nevertheless, certain level of
coherence is always present and it is reasonably in agreementwith
analytically predicted curves.

Next, we simulated the linearly neutrally stable asynchronous
state, in the region beyond the curve L2, where also synchronous
solutions exist. In simulations this state appears to be only
metastable. After a transient, which becomes longer for very
large ensembles, the ensemble evolves abruptly to one of the
synchronous states, we illustrate this in the Fig. 4(a). Remarkably,
the averaged time that the system spends in the vicinity of
incoherent metastable state grows as a power law of number of
oscillators N (Fig. 4(b)).

Thus, although the curves in Fig. 3(b) look like a standard
hysteretic transition, it is not the case: on line L2 (at point P)
the incoherent steady state does not become linearly unstable,
instead it remains linearly neutrally stable in the thermodynamic
limit, but is metastable due to finite-size effects. This neutral
stability/metastability allows also synchronous states to appear
with arbitrary small amplitudes R1,2 (see on Fig. 2(a, b) curve L2
and corresponding curves for different values of σ , which occupy
the whole region on this diagram, and also Fig. 3(b)). Therefore,
the points in Fig. 3(b) where R1,2 vanish, do not correspond to a
usual bifurcation from an equilibrium, and cannot be described as
the points where the incoherent state becomes linearly unstable.
While this issue requires further investigation, we attribute it to
the singularity of the appearing states: as one can see from Eqs.
(13), (14), the density includes a combination of delta-functions for
any small R1,2, similar to the Van Kampen modes in plasmas [38].
On the other hand, in the stability analysis [24,25] one operates
with modes which are non-singular.
4.5. Illustration of multi-branch entrainment states

Here we discuss the issue of multiplicity and illustrate
different multi-branch entrainment states [29,30]. As mentioned
above, in the thermodynamic limit any indicator function S(x) is
admissible. Thus for fixed parameters ε, γ , a macro-state with
given order parameters ε, γ , R1,2 containsmanymicro-states with
different redistributions between the stable branches. In Fig. 5
we show several multi-branch states obtained from different
initial conditions for a certain choice of coupling parameters. In
Fig. 5(a)–(c), we have chosen a two-cluster state as an initial
condition. Phases were set to ϕk = 0 or to ϕk = π (k = 1, . . . ,N)
with probabilities 1 − σ and σ , correspondingly.

So far, we considered only constant indicator function S(ω)=σ ,
so that the redistribution of oscillators between the branches was
independent of their natural frequencies. However, in the self-
consistent approach the function S(ω) appears only in the integrals
(15), therefore it is arbitrary integrable function which can be
extremely non-smooth. Fig. 5(d) shows the example of wildly
varying function S(ω), what corresponds to practically random
redistribution of oscillators at different internal frequencies ω.
Such a state was obtained by splitting initial values of phases into
two clusters where ϕk = 0 or ϕk = π (k = 1, . . . ,N) with
different probabilities for different internal frequencies ω.

If both branches are occupied, one observes a two-hump
distribution of locked phases which can be also interpreted as a
two-cluster state (cf. [35]).

In fact, we can easily estimate the degree of the multiplicity.
We can view the locked oscillators in the bistability range as
‘‘uncoupled spins’’. Assuming for simplicity that the phases of two
branches differ byπ , we conclude that the order parameter R2 does
not depend on the ‘‘spin orientation’’, i.e. on which branch they
are sitting, while R1 can be interpreted as a ‘‘magnetization’’. Then
finding the number of differentmicro-states at prescribed values of
the order parameters reduces to a textbook problem of calculating
the entropy

S(R1) = Nbist


−


1 − R1

2


ln

1 − R1

2


−


1 + R1

2


ln

1 + R1

2


(21)

under condition of a constant magnetization, for Nbist non-
interacting spins (the latter is the number of locked oscillators
in the range of bistability; it is less than N but is a macroscopic
quantity for R1,2 not too small). Correspondingly, the number
of micro-states grows exponentially with the number of locked



M. Komarov, A. Pikovsky / Physica D 289 (2014) 18–31 25
Fig. 5. Illustration ofmultiplicity of states (ε = γ = 1.25εlin,N = 2·104). In all cases one can see two stable branches of locked phases and the corresponding coarse-grained
indicator function S(ω).
oscillators∼ eS(R1) (cf. [30]). We stress here that while the entropy
(21) gives the number of micro-states at given macroscopic
order parameters, it does not define any relative stability of the
macroscopic states, as the evolution of oscillators is dissipative
and not a Hamiltonian evolution needed for application of
microcanonical arguments. In fact, the relative size of the basins
of attractions for different macro-states may not follow Eq. (21).

4.6. Competition of the coupling terms

A non-trivial consequence of the multi-branch entrainment
occurs in the region of negative ε. When ε < 0, the coupling
due to the first mode in the coupling function is repulsive (or
desynchronizing); it tends to stabilize the incoherent state and
to destroy synchrony. With the second harmonic in coupling
function, one might expect that the repulsion for large negative
ε should be compensated by a strong attractive second-harmonic
couplingwith large positive γ , for synchronization in the system to
occur. However, following the curve L1 in Fig. 2(a) one can see that
the critical value of γ decreases and tends to some constant value
below γlin as ε → −∞. This means that the effect of very strong
repulsive coupling via the first harmonics can be compensated
by a relatively weak synchronizing force ∼ γ . Fig. 6(a) shows
dependences R1,2(γ ) at ε = −9.29εlin. Remarkably, the presented
solutions are characterized by rather low values of R1. The plots
of φ(ω) in Fig. 6(b, c) shed light onto this effect. In the region
ε > 0 the solutions appearing on the line L1 have simple structure
of single-branch entrainment states (Fig. 6(b)). On the contrary,
in the region of repulsing first-harmonic coupling ε < 0, the
appearing solutions represent two-cluster states with indicator
function S = 1, like in Fig. 6(c). The oscillators are distributed
among the branches in such a way that the value of R1 is minimal,
so that effective repulsive force εR1 (see Eq. (4)) is sufficiently
weak.
4.7. Non-symmetric solutions

Until now we considered the cases where the functions S(x)
(indicator function) and g(x) (distribution of frequencies) were
even S(x) = S(−x), g(x) = g(−x). Such symmetric indicator and
frequency distribution functions yield solutions with β1,2 = 0 and
Ω = 0 at zero values of parameters z = v = 0 in the self-
consistent equations ((15)–(17)). However in the general case of
non-even S(x) or g(x) zero values ofβ1,2 correspond to certain non-
zero z and v. For example, asymmetric redistribution of oscillators
between stable branches (a non-even indicator function S(x) ≠

S(−x)) gives rise to a non-zero frequency shift Ω = Rz ≠ 0 even
in the case of β1,2 = 0 and symmetric distribution of frequencies
g . The example is presented in Fig. 7 where we use S(x) = σ for
x < (xb1 + xb2)/2 (see Fig. 1(b)) and S(x) = 0 otherwise.

4.8. Perturbative analysis near critical points

In this section we combine the self-consistent approach ((19),
(20)) with a perturbative analysis, to derive the scaling law of
macroscopic order parameters in the vicinity of bifurcation line L2
(Fig. 2) where coherent solution appears. The idea is to consider
((19), (20)) in the limit R → 0 and to find dependence of R1,2 on
criticalities (ε − εc) and (γ − γc) in this limit of vanishing order
parameters. For simplicity of presentation we will assume below
S(x) = 0 (all oscillators are on the same branch and εc, γc are on
the curve L2) and shortly discuss other possibilities at the end of
this section. In this case (19) reads

Fm =

 2π

0
dψ cosmψg(Ry)

∂y
∂ψ

+

 2π

0
dψ


±∞

|x|>x1
dx

g(Rx)C ′(x) cos(mψ)
|x − y(u, ψ)|

≡ Am(R, u)+ Bm(R, u), m = 1, 2.
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Fig. 6. (a) Dependence of order parameters R1,2 on coupling strength γ at ε = −9.29γlin . (b, c) Phases of oscillators versus internal frequencies. For both cases γ = 1.18γlin .
In panel (b) ε = 0.16εlin , in panel (c) ε = −9.29εlin . Markers in panel (a) are result of direct simulation for N = 2 × 104 .
Fig. 7. Dependence of the order parameters R1,2 and their frequencyΩ on coupling
strength ε at γ = 0.9γlin and β1,2 = 0 for non-even indicator function: S(x) = σ

for x < (xb1 + xb2)/2 (see Fig. 1(b)) and S(x) = 0 otherwise.

(Here C ′ is the normalization constant.) Because g(x) is a
symmetric unimodal density, its expansion for small arguments
reads g(x) = g(0) − G2x2 + · · ·. Suppose that R ≪ 1, then the
first term in equation for Fm can be represented using this series
for g as follows:

Am =

 2π

0
dψ cosmψ(g(0)− G2R2y2)

∂y
∂ψ

= Am0 − Am2R2. (22)

For calculation of the second term Bm we first compute
Φm(x) =

 2π
0

dψ cos(mψ)
|x−y(u,ψ)| 2π

0
dψ

|x−y(u,ψ)|

.

With notation z = 1/xwe get

Φm(z) =

 2π
0

dψ cos(mψ)
|1−zy(u,ψ)| 2π

0
dψ

|1−zy(u,ψ)|

=

 2π
0 dψ cos(mψ)[1 + zy(u, ψ)+ z2y2(u, ψ)+ · · ·] 2π

0 dψ[1 + zy(u, ψ)+ z2y2(u, ψ)+ · · ·]

.

Substituting here expression for ywe get

Φ1(z) =
z2π sin u cos u
2π + z2π

≈ z2
1
2
sin u cos u = z2Φ12,

Φ2(z) =
z2π(− sin2 u/2)

2π + z2π
≈ −z2

1
4
sin2 u = z2Φ22,

or in the old notation

Φ1(x) = x−2Φ12, Φ2(x) = x−2Φ22,

Φ12 =
sin u cos u

2
, Φ22 = −

sin2 u
4

.
(23)

The last expressions are valid for x ≫ 1. For small x,Φm are
bounded from aboveΦm(x) ≤ Φ̄m.

Now we can rewrite the integrals in the expression for Bm as

Bm =


±∞

|x|>x1
dxg(Rx)Φm(x) = 2


∞

x1
dxg(Rx)Φm(x)
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= 2


∞

x1
dxg(0)Φm(x)+ 2


∞

x1
dx[g(Rx)− g(0)]Φm(x)

≡ Bm0 − B̃m.

To calculate the last term, we divide the integration range into two
subintervals

B̃m = 2


∞

x1
dx[g(0)− g(Rx)]Φm(x)

= 2
 R−1/6

x1
dx[g(0)− g(Rx)]Φm(x)

+ 2


∞

R−1/6
dx[g(0)− g(Rx)]Φm(x).

In the first interval we use the upper bound for Φm, and because
here Rx ≪ 1, we use the expansion g(x) = g(0)− G2x2:

2
 R−1/6

x1
dx[g(0)− g(Rx)]Φm(x) < 2Φ̄mG2R2

 R−1/6

x1
x2dx

= 2/3Φ̄mG2R2(R−1/2
− x31) = O(R3/2).

In the second integral, because x ≫ 1, we use the expansion (23)
forΦm(x)

2


∞

R−1/6
dx[g(0)− g(Rx)]Φm(x)

= 2Φm2


∞

R−1/6
dx[g(0)− g(Rx)]x−2

= 2Φm2R


∞

R5/6
dz[g(0)− g(z)]z−2

= 2Φm2R


∞

0
dz[g(0)− g(z)]z−2

− 2Φm2R
 R5/6

0
dz[g(0)− g(z)]z−2

≈ Φm2RΓ − 2Φm2RG2

 R5/6

0
dz ≈ Φm2RQ

where

Q = 2


∞

0
dz[g(0)− g(z)]z−2

characterizes the frequency distribution, and we neglected terms
having higher orders in R. Summing together we get

Bm = Bm0 − RQΦm2.

Thus, in the leading order, we obtain the following expressions
for the functions Fm:

Fm(R, u) = Am0 + Bm0 − RQΦm2 = Fm0(u)− RQΦm2(u). (24)

Here we can immediately identify cases where the expansion (24)
is not sufficient corresponding to situations where Φm2 = 0. For
u = 0 we have Φ12 = Φ22 = 0; according to Eq. (20) this
corresponds to ε = 0, i.e. to pure second harmonic coupling. For
u = π/2 only one coefficient vanishes Φ12 = 0, this corresponds
to the standard Kuramoto model with γ = 0. In both cases the
dependences of the order parameters on the coupling constants
follow the square-root law R1 ∼ (ε − εlin)

1/2, R2 ∼ (γ − γlin)
1/2

[13].
Using general expression (24) we can find how the order

parameters depend on the coupling constants for any crossing
of the critical curve. Suppose we consider a critical point εc, γc
corresponding to uc , and we choose some direction q of crossing
the criticality, so that u = uc + qR. Then

ε =
sin u

F10(u)− RΓΦ12(u)
=

sin uc + cos ucqR
F10(uc)+ (F ′

10q − ΓΦ12(uc))R

=
sin uc

F10(uc)
+ R


q
cos uc

F10(uc)
−

sin uc(F ′

10q − ΓΦ12(uc))

F 2
10(uc)


= εc + ε1(q)R,

γ =
cos u

F20(u)− RΓΦ22(u)
=

cos uc − sin ucqR
F20(uc)+ (F ′

20q − ΓΦ22(uc))R

=
cos uc

F20(uc)
+ R


q
− sin uc

F20(uc)
−

cos uc(F ′

20q − ΓΦ22(uc))

F 2
20(uc)


= γc + γ1(q)R.

This yields

Rm =
Fm0(uc)

ε1(q)
(ε − εc) =

Fm0(uc)

γ1(q)
(γ − γc). (25)

Choosing parameter q = q0 in such a way that γ1(q0) = 0 we
have:

Rm = κεm(ε − εc), γ ≡ γc, (26)

and γ1(q0) = 0 implies that:

q0 =
cos ucΓΦ22(uc)

sin ucF20(uc)+ cos uc
∂F20
∂q

.

The same for ε1(q1) = 0:

Rm = κγm(γ − γc), ε ≡ εc (27)

with

q1 =
sin ucΓΦ12(uc)

sin uc
∂F10(uc )
∂q − F10(uc) cos uc

.

Here we denote

κεm(uc) =
Fm0(uc)

ε1(q0)
, κγm(uc) =

Fm0(uc)

γ1(q1)
. (28)

Eqs. (25)–(27) show that generally the order parameters R1,2
scale linearly at the ‘‘bifurcation points’’, in contradistinction to the
situations ε = 0 and γ = 0, see also [39] for the first discovery of
this scaling.

For the Gaussian distribution of frequencies g(ω) =
1

√
2π

e−
x2
2

the constant Q can be evaluated explicitly and it is equal to one. In
the latter case calculations of (28) show (Fig. 8) that κε,γ1,2 (uc) are
finite and non-zero everywhere except for the above mentioned
singular pointsuc = 0 anduc = π/2,which correspond to the one-
harmonic Kuramoto model where the transition has a continuous
second-order type form.

According to numerical simulations of finite-size ensembles
(Fig. 3), the appearing solutions at the line L2 are unstable and
they are not observable in an actual numerical simulation of
the network. However, the linear scaling of the self-consistent
order parameters (25) described above may shed light on the
nature of the transition happening at line L2. This is a nontrivial
‘‘bifurcation’’, as the linear stability property of the trivial state
R1,2 = 0 do not change. Analysis of this transition from the point
of view of bifurcation theory should be a subject of further studies.
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Fig. 8. Dependences of κε,γ1,2 on uc (Eq. (28)).
5. Asymmetric coupling function

In this sectionwe present several examples of application of our
general theory for calculation of uniformly rotating synchronous
states for the case of non zero phase shifts β1,2 in the coupling
function, see Eqs. (16) and (17). Here the number of control
parameters (ε, γ , β1, β2) is large, thus we do not perform a
comprehensive analysis, but just illustrate applicability of the
method.

The main general feature at non-zero phase shifts β1, β2 is a
general appearance of the frequency shift Ω . Thus mean fields
rotate with the frequency different from the mean frequency of
the distribution g(ω). Fig. 9 shows dependences of the order
parameters R1,2 and of frequencyΩ on coupling constants ε and γ ,
for fixed values of β1,2 = π/8 (Fig. 9(a)) and β1,2 = π/4
(Fig. 9(b)). These curves have been obtained fromEqs. (16) and (17)
by adjusting free parametersP to achieve the given values ofβ1, β2.

Another interesting example is motivated by work of Hansel
et al. [31]. In this paper the authors consider an ensemble of
identical (with equal natural frequencies) phase oscillators with a
bi-harmonic coupling function. At π/3 < β1 < π/2, β2 = π ,
ε/γ = 4 the authors describe slow periodic oscillations of the
order parameters and show that these variations arise due to a
closed heteroclinic cycle in the phase space of the model. Such
an oscillating dynamics due to existence of heteroclinic cycles
has been studied in details for relatively small ensembles in
[40]. In order to model identical oscillators in our setup, one has
to consider a delta-distribution of frequencies g(ω) = δ(ω).
However, we have normalized the width of this distribution
to one. Because normalization of frequencies is equivalent to
normalization of time, in our approach the limit of identical
oscillators corresponds to the limit ε, γ → ∞ at a fixed width
of the distribution g(ω). Therefore, we applied our method for the
parameters β1,2 as in [31], for very large values of the coupling
constants.

Fig. 10(a) shows the solutions of Eqs. (15)–(17) at β1 = π/2.5
β2 = π and ε/γ = 4, together with the results of direct numerical
simulations of a large ensemble with N = 2 × 104. At small
values of coupling (ε < 650), the stationary state obtained from
our self-consistent approach is reproduced by direct numerical
simulations of (1) (the time series is shown in Fig. 10(b)). At
larger values of the coupling, this stationary solution loses stability
via (presumably) a supercritical Andronov–Hopf bifurcation at
which slow oscillatory variations of the order parameters appear
(Fig. 10(c)). This example shows that while we always can find a
uniformly rotating solution with constant order parameters, this
solution can be unstable in some parameter range, where a more
complex dynamics establishes.
Fig. 9. Dependences of the order parameters R1,2 and their frequency Ω on
coupling strength ε at fixed values of β1,2 and γ = 1.5. In the panel (a) β1,2 = π/8,
in the panel (b)β1,2 = π/4. Here no normalization on the linear stability thresholds
is performed.

6. Conclusion

In this paper we have described nontrivial synchronous states
that appear in the Kuramoto model with a bi-harmonic coupling
function. Here we summarize essential novel features compared
to the standard Kuramoto setup.
1. Due to a possibility to have two stable branches of phase-

locked oscillators, one observes a multi-branch locking with a
multiplicity of micro-states [28,30]. On the macro-level, this
multiplicity manifests itself as existence of a whole range
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Fig. 10. (a) Lines are solutions of self-consistent equations (15)–(17) at β1 = π/2.5, β2 = π and ε/γ = 4. Markers (showing maximum, minimum and mean values of
R1,2 calculated from time series after some transient period) depict results of direct numerical simulation of Eqs. (1) at the same parameters for N = 2× 104 . The stationary
state loses stability at a large coupling strength ε ≈ 650, beyond which stable oscillations appear. (b, c) Time series of R1,2 at different coupling strengths are presented: in
the panel (b) ε = 323, in panel (c) ε = 1420.
of possible order parameters for given coupling constants.
We have incorporated this multiplicity of multi-branch states
into an analysis of self-consistent equations for the order
parameters, and presented a general analytic solution.

2. Appearance of the synchronous states is not related to a
standard bifurcation, as the asynchronous state does not change
its neutral linear stability. We have found domains on the plane
of basic coupling constants for the existence of such solutions,
for different distributions of the locked phases between the
branches (Fig. 2).

3. When a synchronous state is present, numerical experiments
with finite ensembles show that the asynchronous state lives
a finite time that scales like T ∼ N0.7, after which an
abrupt transition to synchrony occurs. Similarly, we checked
numerically stability of the stateswith single- andmulti-branch
entrainment through simulations of finite ensembles (Fig. 3).

4. At asymmetric distribution between the branches, the fre-
quency of the order parameters deviates from the central fre-
quency of the distribution, even if the latter and the coupling
are symmetric.

Below we outline some open questions deserving further
analysis. In the case of a general multi-harmonic coupling function
Γ , one can expect existence of more than two stable branches
for oscillators at a particular frequency, with more possibilities for
different redistributions of the oscillators’ phases. Another feature
not addressed in this paper is related to the possibility of non-
standard transitions to synchronize for particular distributions
of the natural frequencies, similar to the analysis presented in
Ref. [19] for the one-harmonic coupling. Detailed theoretical
understanding of stability of the asynchronous states constructed
via the self-consistency approach in this paper, is still missing.
Finally, noise regularizes the multiplicity of the micro-states and
turns neutral stability into an asymptotic one [41,20]; these effects
will be discussed in details elsewhere [22].
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Appendix

Let us consider a system of N pendulums (with mass m and
length l, described by angles θj) suspended on a beam of mass
M , which can move vertically (axis y) and horizontally (axis x)
without rotation. These motions are controlled by two springs kx
and ky. This conservative system is described by the Lagrangian (cf.
[42,33])

L =
M
2


ẋ2 + ẏ2


+

m
2


j


ẋ2 + ẏ2 + lẋθ̇j cos θj − lẏθ̇j sin θj + l2θ̇j

2


+mgl


j

cos θj + gy (Nm + M)−
kxx2

2
−

kyy2

2
.
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The equations are two equations for the degrees of freedom of the
beam (where we shift y to the steady position g(Nm+M)/ky), and
for each pendulum:

(M + Nm)ẍ + kxx =


j

−
ml
2
θ̈j cos θj +


j

ml
2
θ̇j

2
sin θj

(M + Nm)ÿ + kyy =


j

ml
2
θ̈j sin θj +


j

ml
2
θ̇j

2
cos θj

ml2θ̈j + mgl sin θj =
ml
2

ÿ sin θj −
ml
2

ẍ cos θj.

In order to model self-sustained oscillations of the pendulum
clocks, we add dissipation terms (∼ γx,y) to beam equations, and
van der Pol-type self-excitation terms ∼ σ , together with cubic
saturation, to the pendula dynamics. In the case of small deviations
θ1,2 (i.e. for σ/ρ ≪ 1) we have:

(M + Nm)ẍ + γxẋ + kxx =


j

−
ml
2
θ̈j +


j

ml
2
θ̇j

2
θj (29)

(M + Nm)ÿ + γyẏ + kyy =


j

ml
2
θ̈jθj +


j

ml
2
θ̇j

2
(30)

θ̈j − (σ − ρθ2j )θ̇j + ω2θj =
1
2l
ÿθj −

1
2l
ẍ (31)

where ω2
= g/l.

For small σ ≪ ω we can apply the averaging (van der Pol)
method. We will seek for a solution of the form:

θj = Ajeiωt + A∗

j e
−iωt , θ̇j = iω(Ajeiωt − A∗

j e
−iωt)

where Aj are slowly varying in time amplitudes.
Using this representation, we can express the driving terms in

the equations for the beam as follows:

ml
2
θ̈j = −

mlω2

2


Ajeiωt + A∗

j e
−ωt

ml
2
θ̇j

2
θj = −

mlω2

2
×

A3
j e

3ωt
− |A|

2
j Ajeiωt − A∗

j |A|
2
j e

−iωt
+ (A∗

j )
3e−3ωt

ml
2
θ̈jθj = −

mlω2

2


A2
j e

2iωt
+ 2|A|

2
j + (A∗

j )
2e−2ωt

ml
2
θ̇2j = −

mlω2

2


A2
j e

2iωt
− 2|Aj|

2
+ (A∗

j )
2e−2iωt

Now the response of the beam to this driving can be expressed
via solution of the linear equations, where the amplitudes A are
considered as constants:

x(t) =


j

mlω2

2
[Hx(ω)Aj(1 + |A|

2
j )e

iωt

+H∗

x (ω)A
∗

j (1 + |Aj|
2)e−iωt

−

Hx(3ω)A3

j e
3ωt

+ H∗

x (3ω)(A
∗

j )
3e−3ωt

]

y(t) =


j

−mlω2 Hy(2ω)A2
j e

2iωt
+ H∗

y (2ω)(A
∗

j )
2e−2iωt

and for the second derivatives we get

ẍ(t) =


j

−
mlω4

2
[Hx(ω)Aj(1 + |A|

2
j )e

iωt

+H∗

x (ω)A
∗

j (1 + |Aj|
2)e−iωt

− 9

Hx(3ω)A3

j e
3ωt

+ H∗

x (3ω)(A
∗

j )
3e−3ωt

]

ÿ(t) =


j

4mlω4 Hy(2ω)A2
j e

2iωt
+ H∗

y (2ω)(A
∗

j )
2e−2iωt .
Here Hx,y(ω) are the response functions for the linear oscillators:

Hx,y(ω) =
1

−ω2(M + Nm)+ iγx,yω + kx,y
.

Equations for the complex amplitudes Aj(t) follow from rewriting
Eq. (31) in terms of Aj and averaging it over the fast time (basic
period 2π/ω):

Ȧj =
1
2
Aj

σ − ρ|Aj|

2
+

1
4iωl

⟨ÿθje−iωt
⟩ −

1
4iωl

⟨ẍe−iωt
⟩.

After averaging only the terms with ÿθj ∼ eiωt and ẍ ∼ eiωt
survive:

Ȧj =
1
2
Aj

σ − ρ|Aj|

2
+ DA∗

j


k

A2
k + S


k

Ak

where

D = −imω3Hy(2ω), S = −
imω3

8
Hx(ω)

(here we neglected terms containing higher orders in Aj, due to
smallness of the amplitudes). Terms ∼ D arise from the vertical
motion of the beam ÿ, while terms ∼ S are due to the horizontal
motion ẍ.

In the phase approximation we assume that the amplitudes |Aj|

are nearly constants |Aj| =
√
σ/ρ and the interaction does not

affect their dynamics. Therefore for phases φj (Aj = |Aj|eiφj) we
have the following equations:

φ̇j = Ω + d

k

sin(2(φk − φj)+ β)+ s

k

sin(φk − φj + α)(32)

where d = σρ−1
|D|, s = |S|, β = arg(D) and α = arg(S). The

frequency is determined as Ω = Im

σρ−1D + S


. The obtained

system is the Kuramoto model with bi-harmonic coupling.
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