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Ensemble inequivalence in a mean-field XY model with ferromagnetic and nematic couplings
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We explore ensemble inequivalence in long-range interacting systems by studying an XY model of classical
spins with ferromagnetic and nematic coupling. We demonstrate the inequivalence by mapping the microcanonical
phase diagram onto the canonical one, and also by doing the inverse mapping. We show that the equilibrium
phase diagrams within the two ensembles strongly disagree within the regions of first-order transitions, exhibiting
interesting features like temperature jumps. In particular, we discuss the coexistence and forbidden regions of
different macroscopic states in both the phase diagrams.
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Recent years have seen extensive studies of systems with
long-range interactions that have the two-body potential in
d dimensions decaying at large separation r as 1/rα , 0 �
α � d [1–4]. Examples span a wide variety, from bacterial
population [5], plasmas [6], and dipolar ferroelectrics and
ferromagnets [7], to two-dimensional geophysical vortices
[8] and self-gravitating systems [9]. A striking feature of
long-range systems distinct from short-range ones is that
of nonadditivity, whereby thermodynamic quantities scale
superlinearly with the system size. Nonadditivity manifests
in static properties like negative microcanonical specific heat
[10,11], inequivalence of statistical ensembles [12–19], and
other rich possibilities [20]. As for the dynamics, long-range
systems often exhibit broken ergodicity [16,21] and slow
relaxation towards equilibrium [8,16,22–25].

Here, we demonstrate ensemble inequivalence in a model
of long-range systems that has mean-field interaction (i.e.,
α = 0) and two coupling modes. This so-called generalized
Hamiltonian mean-field (GHMF) model, a long-range version
with added kinetic energy of the model of Ref. [26], has N

interacting particles with angular coordinates θi ∈ [0,2π ] and
momenta pi , i = 1,2, . . . ,N , which are moving on a unit circle
[27]. The GHMF Hamiltonian is

H =
N∑

i=1

p2
i

2
+ 1

2N

N∑
i,j=1

[1 − � cos θij − (1 − �) cos 2θij ],

(1)

where θij ≡ θi − θj . Here, cos θij is an attractive interac-
tion minimized by the particles forming a cluster, so that
θij = 0 (mod 2π ), while cos 2θij with two minima at θij =
0, π (mod 2π ) promotes a two-cluster state. The parameter
� ∈ [0,1] sets the relative strength of the two coupling
modes. The potential energy in Eq. (1) is scaled by N to
make the energy extensive, following the Kac prescription
[28], but the system remains nonadditive. In terms of the
XY -spin vectors Si ≡ (cos θi, sin θi), the interactions have the
form of a mean-field ferromagnetic interaction ∼ −�Si · Sj ,

and a mean-field coupling ∼ −(1 − �)(Si · Sj )2 promoting
nematic ordering. For XY lattice models with this type of
ferro-nematic coupling, see Refs. [26,29–31]. The system (1)
has Hamilton dynamics: dθi/dt = pi , dpi/dt = −∂H/∂θi .
For � = 1, when no nematic ordering exists, the GHMF model
becomes the Hamiltonian mean-field (HMF) model [22], a
paradigmatic model of long-range systems [1].

In this work, we report on striking and strong inequivalence
of statistical ensembles for the GHMF model. The system
has three equilibrium phases: ferromagnetic, paramagnetic,
and nematic, with first- and second-order transitions. Let us
note that Ref. [32] studied another model with long-range
interactions, which also shows paramagnetic, ferromagnetic,
and nematic-like phases. For the GHMF model, by comparing
the phase diagrams in the canonical and microcanonical
ensembles (the latter is derived in Ref. [27]), we show in the
regions of first-order transitions that the phase diagrams differ
significantly. We analyze the inequivalence in two ways, by
mapping the microcanonical phase diagram onto the canonical
one, as is usually done [13–19], and also by doing the inverse
mapping of the canonical onto the microcanonical one; in
particular, we discuss the coexistence and forbidden regions
of different macroscopic states. This study demonstrates
the subtleties and intricacies of the presence of different
stability regions of macroscopic states in long-range systems in
microcanonical and canonical equilibria. It is worth noting that
compared to the pure para-ferro transition, the phenomenology
here due to the presence of the additional nematic phase is
much richer. We show that the region where the three phases
meet, within both microcanonical and canonical ensembles, is
the one exhibiting ensemble inequivalence.

We now turn to derive our results. Rotational symmetry
of the Hamiltonian (1) allows us to choose, without loss of
generality, the ordering direction in the equilibrium stationary
state to be along x (there are no stationary states with a nonzero
angle between the directions of ferromagnetic and nematic or-
der) and to define as order parameters the equilibrium averages

Rm ≡ 〈cos mθ〉, m = 1,2, (2)
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where m = 1 (2) stands for the ferromagnetic
(nematic) order. The canonical partition function is
Z = ∏

i

∫
dpidθi exp(−βH ), with β = 1/T being the inverse

of the temperature T measured in units of the Boltzmann
constant. Since Eq. (1) is a mean-field system, in the thermo-
dynamic limit N → ∞, one follows the standard Hubbard-
Stratonovich transformation and a saddle-point approximation
to evaluate Z [1]. One then obtains expressions for Rm’s, and
the average energy per particle, given by 〈ε〉 = ∂(βf )/∂β,
where f is the free energy per particle. One has, with m = 1,2,

Rm =
∫

dθ cos mθeβ[�R1 cos θ+(1−�)R2 cos 2θ]∫
dθeβ[�R1 cos θ+(1−�)R2 cos 2θ]

, (3)

〈ε〉 = 1/(2β) + 1/2 − (1/2)(�R2
1 + (1 − �)R2

2), and

f = − 1

2β
ln

(
2π

β

)
+ 1

2
+ 1

2

(
�R2

1 + (1 − �)R2
2

)

− 1

β
ln

( ∫
dθeβ[�R1 cos θ+(1−�)R2 cos 2θ]

)
. (4)

The canonical phase diagram in the �-T plane is obtained by
plotting the equilibrium values of R1 and R2 that solve Eq. (3)
and minimize the free energy (4).

We now describe a practical way to obtain the canonical
phase diagram, by introducing auxiliary variables R, α as

R ≡
√

(β�R1)2 + (β(1 − �)R2)2,
(5)

cos α ≡ β�R1/R, sin α ≡ β(1 − �)R2/R.

Then, the argument of the exponential in Eq. (3) becomes
R(cos α cos θ + sin α cos 2θ ), and the integrals on the right
hand side of Eq. (3) evaluate to two quantities Cm(R,α) that
depend on the introduced auxiliary variables. Using Rm =
Cm(R,α) we obtain, by virtue of Eq. (5), all the parameters in a
parametric form in terms of the introduced auxiliary variables:

β = R cos α

C1
+ R sin α

C2
, � = 1 − T

R sin α

C2
. (6)

Once R1,2, β, and � are determined, one can use Eq. (4) to find
the free energy of the solution. Varying R � 0 and α ∈ [0,π/2)
gives all solutions of Eq. (3), while Eq. (4) yields the stable
branches. We note that in Ref. [33], studying a nonequilibrium
version of our model, a different and more useful method of
finding C1,2, based on the Fourier mode representation of an
equivalent Fokker-Planck equation, is used; in our equilibrium
setup, however, exploiting the integrals (3) is simpler. For the
pure nematic phase (that has R1 = 0), one sets α = π/2, so
that the only auxiliary parameter is R; one finds R2 = C2(R)
from Eq. (3), and the temperature from β = R/(R2(1 − �)).

In contrast to Eq. (3), the order parameters within a
microcanonical ensemble, derived in Ref. [27], satisfy

Rm =
∫

dθ cos mθ exp
[

�R1 cos θ+(1−�)R2 cos 2θ

q(ε)

]
∫

dθ exp
[

�R1 cos θ+(1−�)R2 cos 2θ

q(ε)

] . (7)

Here, ε is the energy per particle, and q(ε) ≡ 2ε − 1 + �R2
1 +

(1 − �)R2
2. For given values of ε and �, the equilibrium values

of R1 and R2 are obtained as a particular solution of Eq. (7)

that maximizes the entropy [27]:

s(ε) = 1

2
ln 2π + 1

2
+ ln q(ε)

2
− 1

2

(
�R2

1 + (1 − �)R2
2

q(ε)

)

+ ln
∫

dθ exp

[
�R1 cos θ + (1 − �)R2 cos 2θ

q(ε)

]
.

(8)

The averages (7) are the same as Eq. (3) on making the
identification of the microcanonical energy ε with the average
energy 〈ε〉 in the canonical ensemble, so that the inverse
temperature β in Eq. (3) is

β−1 = q(ε) = 2ε − 1 + �R2
1 + (1 − �)R2

2 . (9)

This constitutes a link between the phase diagrams in the
two ensembles. Using then the integrals (3), we get the
following parametric representation in the �-ε plane for
the microcanonical ensemble: After finding R1 = C1(R,α)
and R2 = C2(R,α), we get R cos α = �R1/q(ε), R sin α =
(1 − �)R2/q(ε), or, explicitly,

� = R2 cos α

R2 cos α + R1 sin α
,

(10)

ε = 1

2

[
(1 − �)R2

R sin α
− �R2

1 − (1 − �)R2
2 + 1

]
.

Once R1,2,ε,� have been determined, one can use Eq. (8) to
find the entropy of the solution. For the pure nematic phase,
α = π/2, and R2

2 = 1 + (1 − 2ε)/(1 − �).
Summarizing, expressions (3), (6), (7), and (10) provide

self-consistent stationary state solutions for the order param-
eters in the canonical and the microcanonical ensembles,
respectively. Stable branches of these solutions correspond
respectively to the minimum of the free energy (4) and to the
maximum of the entropy (8).

We now present results of the phase diagrams for the two
ensembles in Fig. 1. Both diagrams are qualitatively similar,
with three phases: paramagnetic, ferromagnetic, and nematic.
For large values of the parameter �, on decreasing the energy
or temperature, one observes a second-order transition from the
paramagnetic to the ferromagnetic phase; only at lower values
of � does this phase transition become of first order. For low
values of �, decreasing the energy or temperature results in
a second-order transition from the paramagnetic to the purely
nematic phase for which R1 is zero; a further decrease results
in either a second-order transition (for very small values of �)
or a first-order transition (for � ≈ 1/2) to the ferromagnetic
phase that has nonzero R1.

While the phase diagrams in Fig. 1 look simple, their map-
pings onto each other (Fig. 2) reveal nontrivial inequivalence
between the canonical and microcanonical descriptions. This
inequivalence is because while the self-consistent solutions
(3), (6), (7), and (10) are the same for both ensembles
and transform onto one another by using Eq. (9), they are
nevertheless stable in different parameter regimes. Thus, using
the mapping, Eq. (9), two situations can arise: either a gap, i.e.,
a region of inaccessible states, or an overlap, i.e., a region of
multiple stable solutions. Note that the second-order transition
to the nematic phase is the same in both descriptions.
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FIG. 1. (Color online) Comparison of the canonical and the
microcanonical phase diagrams. Here, pf1 means first-order para-
ferro transition, etc. (a) Phase diagram in the �-ε plane in the
microcanonical ensemble, Eqs. (7) and (8). The two tricritical points
are at � ≈ 0.545, ε ≈ 0.636, and at � ≈ 0.477, ε ≈ 0.628, while
there is a critical end point at � ≈ 0.487, ε ≈ 0.628. The inset shows
a zoom into the central part. (b) Phase diagram in the �-T plane in
the canonical ensemble, Eqs. (3) and (4). There are two tricritical
points, at � ≈ 0.667, T ≈ 0.333, and at � ≈ 0.34, T ≈ 0.267. The
critical end point is at � ≈ 0.441, T ≈ 0.279.

As Fig. 2(a) shows, mapping of the canonical phase diagram
onto the �-ε plane yields a gap. In the domain of � where a
first-order canonical transition occurs, the canonical transition
line splits into two lines when mapped onto the �-ε plane.
Between these lines, there is no stable canonical state for a
given ε (cf. Fig. 3).

A more nontrivial situation arises due to the mapping
of the microcanonical phase diagram onto the �-T plane,
as shown in Fig. 2(b). Here, two features are evident. First,
in regions where the microcanonical transition is of second
order but the canonical transition is of first order, there are
three microcanonically stable values of R1,2 at temperatures
between the lines T (1)

max (green line) and T (1)
min (red line), and

those between the lines T (1)
max and T (2)

min (brown line). Second, in
regions of a first-order microcanonical transition, the transition
line splits into two lines, denoted T (1ord)

max (blue line) and T (1ord)
min

(black dashed line), with the latter coinciding with either T (1)
min

or T (2)
min, such that for temperatures in between there are two

microcanonically stable values of R1,2; see the inset of Fig. 2(b)
and cuts of the �-T phase diagram at fixed values of � in
Fig. 3. Thus, in the whole domain of � where the canonical
transition is of first order, one observes a multiplicity of
microcanonically stable states in the �-T plane. Remarkably,
the tricritical points are different in the two ensembles.

In Fig. 4, we employ relation (9) to draw the temperature-
energy relation T (ε) for � = 0.5. For both microcanonical
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FIG. 2. (Color online) Inequivalence of phase diagrams in the
two ensembles. (a) Canonical phase diagram Fig. 1(b) mapped onto
the �-ε plane (the microcanonical diagram is in the background
in gray). Between the bold black and the thin red lines, there is
no canonical equilibrium state possible. (b) Microcanonical phase
diagram Fig. 1(a) mapped onto the �-T plane (the canonical diagram
is in the background in gray). T (1)

min (red) is the minimal temperature
at which the paramagnetic phase exists. T (1)

max (green) is the maximum
temperature at which the ferromagnetic phase exists. T (2)

max (cyan)
(T (2)

min, brown)] is the maximum (minimum) temperature at which the
nematic phase exists. The blue line for T (1ord)

max shows the splitting of
the first-order microcanonical transition in the region 0.477 < � <

0.545 (another line that belongs to this splitting is masked by T (1)
min

and T (2)
min). The inset shows a zoom into this middle region, where

black dashed and blue dotted lines correspond to the two values of
the temperature at the microcanonical jump.

and canonical ensembles, this curve has two branches: a high-
energy branch and a low-energy branch. At the point where the
two branches intersect, the two entropies in the microcanonical
ensemble and the two free energies in the canonical ensemble
become equal. In the region where the canonical curve shows
a jump in the energy at a given temperature, characteristic of a
first-order transition that here occurs between the paramagnetic
and the ferromagnetic phase [see Fig. 1(b)], the microcanonical
curve shows a region of negative specific heat (∂T /∂ε < 0).
Since the canonical specific heat is always positive, being given
by the fluctuations in the energy of the system, the negative
microcanonical specific heat is a further indication of ensemble
inequivalence for the model under study.

To conclude, we addressed the issue of ensemble inequiv-
alence in long-range interacting systems by studying an XY

model of classical spins with linear and quadratic coupling,
and evolving under Hamilton dynamics. In this so-called
generalized Hamiltonian mean-field model, we compared
exact equilibrium phase diagrams in the microcanonical and
canonical ensembles. We showed that, within the region of
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FIG. 3. (Color online) Stable solutions of R1,2 vs temperature
T in the canonical ensemble and energy ε in the microcanonical
ensemble (dotted grey lines); red solid lines are stable “imports” from
another ensemble (canonically stable states on left column panels and
microcanonically stable states on right column panels); � equals 0.49
(top) and 0.47 (bottom). The values of T (1)

max, T (1)
min, T (2)

max, T (2)
min, and T (1ord)

max

marked by arrows coincide with those in Fig. 2.

first-order transitions, the two ensembles show very different
behaviors. Nevertheless, let us remark that when plotted using
appropriate variables, the arrangement of critical points and
transition lines is similar in the phase diagrams of the two
ensembles. One may study how the relaxation to equilibrium
differs in the two ensembles, a behavior investigated earlier in
the microcanonical ensemble in Ref. [27]. In that paper, it was
shown that an isolated system described by the Hamiltonian
(1) relaxes to quasistationary states (QSSs) which also have
paramagnetic, ferromagnetic, and nematic phases. The phase
diagram of a QSS, however, is very different from the one

0.2

0.3

0.4 0.6

T

ε

FIG. 4. (Color online) Plot of the dependence ε-T for � = 0.5,
showing regions of microcanonical energies that are inaccessible
canonically. Bold grey lines, canonically stable states; blue solid
lines, microcanonically stable states.

predicted by the equilibrium statistical mechanics in the
microcanonical ensemble, Fig. 1. Nevertheless, we expect
that since the lifetime of the QSS scales with the number
of particles in the system, a finite system will eventually relax
to the Boltzmann-Gibbs equilibrium. In the thermodynamic
limit, however, this relaxation might take longer than the age
of the universe. It will be of interest to explore such dynamical
behavior in the canonical ensemble.

Finally, we mention that an overdamped nonequilibrium
version of the GHMF is a Kuramoto-type model of synchro-
nization of globally coupled oscillators (just as an overdamped
nonequilibrium version of the HMF model is the standard
Kuramoto model [34,35]), where transitions to synchroniza-
tion are of major interest. In the context of synchronization,
nematic and ferromagnetic phases correspond respectively
to two-cluster and one-cluster synchronization patterns (see
Ref. [33]), but their stability is obtained from dynamical and
not from free energy or entropy considerations.
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