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We present and study a family of finite amplitude breathers on a genuinely anharmonic Klein-Gordon
lattice embedded in a nonlinear site potential. The direct numerical simulations are supported by a quasilinear
Schrodinger equation (QLS) derived by averaging out the fast oscillations assuming small, albeit finite, amplitude
vibrations. The genuinely anharmonic interlattice forces induce breathers which are strongly localized with tails
evanescing at a doubly exponential rate and are either close to a continuum, with discrete effects being suppressed,
or close to an anticontinuum state, with discrete effects being enhanced. Whereas the D-QLS breathers appear to
be always stable, in general there is a stability threshold which improves with spareness of the lattice.
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I. INTRODUCTION

Since their introduction over two decades ago by Sievers
and Takeno, the intrinsically localized modes (ILMs), or
breathers, of the lattice have found a wide range of applica-
tions; see Refs. [1–4], and references therein. Their formation
is due to competing elements; discreteness and nonlinearity
either due to interparticles interaction or due to the nonlinear
site potential with the interaction between adjacent elements
assumed to be linear. A large variety of such ILMs was found,
characterized by a finite number of nodal points (masses
in the Newtonian case) being strongly excited, with typical
tails decaying exponentially. Typically these are microscopic
modes with discreteness of the lattice playing an essential
role, and they do not extend to the continuum level. In
contradistinction, with one exception, the modes studied in
the present paper have a finite macroscopic span which may
depend on the amplitude but to a far lesser extent on the
distance between the excited node points, and they naturally
extend into the continuum. In fact, we shall use both the
continuum and the anticontinuum limits to study the emerging
structures in lattices with a nonlinear on-site potential and
purely nonlinear intersite coupling (cf. Ref. [5]). A particular
setup of this problem was studied by one of us in Ref. [6]
where both the site potential and the interparticle interaction
were assumed to be quartic (cf. Refs. [7–12]). Though more
limited in scope, such a model has a great appeal because the
resulting equations of motion on both discrete and continuum
levels are space-time separable, which makes their dynamics
accessible analytically and reveals large amplitude breathers
of an almost compact span that vibrate at an anharmonic pace
and stay indefinitely.

For other interaction potentials the miracle of separability
is in general lost, and the resulting Klein-Gordon equation
presents a formidable mathematical difficulty. It is thus
natural that we first direct our attention to small, albeit finite,
amplitude excitations, which enables us to average over a fast
temporal oscillations and to derive on both the continuum
and discrete levels a quasilinear Schrödinger equation (cf.
Refs. [6,13]), which shall be referred to as a QLS and D-QLS
equation, respectively. Both describe the slow vibrations of

small amplitude breathers due to a wide variety of genuinely
anharmonic interactions and site potentials.

When addressing large vibrations or testing the viability
of the QLS model we have to address the original, genuinely
anharmonic, Klein-Gordon lattice. But now since, unlike the
QLS, the continuum rendition offers very little reprieve, it is
natural to start at the opposite, anticontinuum, limit wherein
the spatial separation � diverges 1/�↓0. Surprisingly enough,
in this regime the strong anharmonicity acts in our favor; not
only do the more robust breathers reside on sparse lattices, but
this localizes the dynamics to the extent that it is confined to a
very small number of mass points with the residents of the tail
decaying at a doubly exponential rate and thus very quickly
become exceedingly small.

II. LATTICES AND THEIR CONTINUUM LIMIT

We start with the Hamiltonian

H = �
∑

n

{
ẏ2

n

2
+ P

(
yn+1 − yn

�

)
+ �(yn)

}
, (1)

describing a chain of particles of equal masses (which is set to
one) and equal spatial separation �, where P and � denote the
interaction and site potentials, respectively. We assume both
potentials to be of a polynomial form

P (S) = ap

p + 1
|S|p+1 and �(y) = 1

2
y2 − bm

m + 1
|y|m+1,

(2)

with p,m > 1. For now we consider only the case of soft non-
linearity, bm > 0, where the frequency of on-site oscillations
decreases with the amplitude. The case of the hard nonlinearity
bm < 0 will be addressed later (see Sec. IV B). In realistic
setups, the potential �(y) as in (2) should be considered as a
low-amplitude rendition (so that one remains in the domain
of bounded oscillations only) of a more general potential.
Thus the standard potential ∼1 − cos y corresponds to (2)
with m = 3 and bm = 1/6.

The essential superlinearity of the interparticle coupling,
p > 1, makes the lattice genuinely anharmonic because linear
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waves (phonons) do not exist. This necessitates a very different
analysis from the one applicable to conventional breathers on
lattices. We normalize the equations of motion due to the
Hamiltonian (1): rescaling y one can set bm = 1, whereas
the constant ap is absorbed in �. We thus obtain a genuinely
anharmonic Klein-Gordon lattice

ÿn + yn = 1

�

[(
yn+1 − yn

�

)∣∣∣∣yn+1 − yn

�

∣∣∣∣
p−1

−
(

yn − yn−1

�

)∣∣∣∣yn − yn−1

�

∣∣∣∣
p−1]

+ yn|yn|m−1.

(3)

The continuum limit of the lattice model (3) when � → 0
begets a quasilinear extension of the Klein-Gordon equation
(QLKG),

ytt + y = ∂

∂x
(yx |yx |p−1) + y|y|m−1. (4)

We shall thus refer to its discrete antecedent, Eq. (3), as the
D-QLKG equation. Note that the nonlinear force due to the
anharmonic interactions constitutes a fundamental change,
for unlike the conventional Klein/sine-Gordon semilinear
scenarios, Eq. (4) is quasilinear. In general, in such equations
second derivatives of solutions may blow up in a finite time
(the mollifying effect of dispersion due to a site potential is in
general ineffective in arresting the gradient catastrophe). It is
the dispersion due to the discrete lattice which may prevent the
blow up, hence its singular effect on the dynamics. In the small
amplitude regime, Klein-Gordon equation can be simplified by
virtue of the standard averaging procedure [14]. This is done by
writing Eqs. (3) and (4) in terms of w = Keit (y + iyt ), where
K is a constant to be specified shortly. Dropping all terms
containing an explicit time dependence it begets a quasilinear
extension of the celebrated semilinear NLS equation in both
discrete,

i
dwn

dt
+ K1−pCp

1

�

[(
wn+1 − wn

�

)∣∣∣∣wn+1 − wn

�

∣∣∣∣
p−1

−
(

wn − wn−1

�

)∣∣∣∣wn − wn−1

�

∣∣∣∣
p−1]

+K1−mCm|wn|m−1wn = 0 , (5)

where Cp = �(p/2+1)√
π�(p/2+3/2) , and continuous setups,

iwt + K1−pCp

∂

∂x
[wx |wx |p−1] + K1−mCm|w|m−1w = 0.

Setting K = (Cm/Cp)
1

m−p and t → tKp−1/Cp we have

iwt + ∂

∂x
[wx |wx |p−1] + |w|m−1w = 0. (6)

We shall refer to Eqs. (5) and (6) as a discrete quasilinear
Schrodinger (D-QLS) and a quasilinear Schrodinger (QLS)
equation, respectively.

Equations (3)–(6) are a starting point of our search of
time-periodic breathers which are spatially localized.

III. BREATHERS IN A CONTINUUM LIMIT

A. A distinguished m = p case

In the distinguished case Eq. (4) admits separable
y = φ(t)U (x) [6,15] solutions. We thus obtain a system

φ̈ + φ = λφ|φ|p−1, (7)

[U ′|U ′|p−1]′ + U |U |p−1 = λU. (8)

Equation (7) shows that below the critical amplitude the
solution y is periodic in time, whereas above it blows up.
For compactly supported solutions U has to vanish at a
finite point. Such U , not vanishing identically, has a nonzero
spatial extremum, at which U ′ = 0, thus λ > 0 for U to
remain real when U ∼ 0. The separation constant λ may
then be eliminated rescaling φ and U leaving their product
y unchanged. Integrating once we obtain

p|U ′|p+1 + |U |p+1 = 1 + p

2
U 2, (9)

with integration constant discarded to ensure a compact
solution. Equation (9) may be easily solved. In particular, for
p = m = 3, [6], a breather’s profile is given as

|x| = 31/4

2

[√
2π − B

(
U 2

2
,
1

4
,
3

4

)]
, (10)

where B is the incomplete beta function. For this case, near
the edge located at x = L3

3 ≈ 2.92 [see Eq. (14)] U vanishes

and U ∼ (x−L3
3)2

2
√

6
, which causes Eq. (8) to degenerate there.

The degeneracy enables to extend the solution by zero for
|x| > L3

3, yielding a strictly compact solution.

B. The general m �= p case

Whereas separation of variables is lost for the original
Klein-Gordon setup, it still holds for the averaged small
amplitude version (6). In fact, let w = exp(iωt)U (x) in (6)
and integrating it once

2p

p + 1
|U ′|p+1 + 2

m + 1
|U |m+1 = ωU 2 , (11)

where integration constant was discarded to ensure solitary
solutions. Similarly to Eq. (8), Eq. (11) may also be integrated.
To show the compact span of its solutions it suffices to observe

that for U � 1; |U ′|p+1 ∼ U 2. Thus U ∼ (x − L
p
m)

p+1
p−1 near

the edge located at L
p
m, which is given via

Lp
m =

(
1 + m

1 + p
p

) 1
p+1

Um

p−m

p+1 Ip
m, (12)

where Um = (m+1
2 ω)

1
m−1 is the breather’s height,

Ip
m =

∫ 1

0

dz

[z2(1 − zm1 )]
1

p+1

= 1

m1
B

(
p

p + 1
,

p − 1

m1(p + 1)

)
,

(13)
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where m1 = m − 1, and B(x,y) is the beta function. In
particular, when m = p, breathers’ width

Lp
p = πp

1
p+1

(p − 1) sin
(

π
p+1

) (14)

is unaffected by changes in the breathers’ oscillation
frequency ω and thus in the amplitude. However, in general,
changes in ω affect breathers’ width with m > p and m < p

cases reacting in an opposite manner; for p > m taller
breathers widen, whereas for m > p they narrow. Note
that similarly to the edge, smoothness near a breather’s top

depends on the value of p but not of m; U ∼ Um(1 − β|x| 1+p

p ),
β = const.

IV. BREATHERS ON LATTICES

A. Profiles

Again, we start with the distinguished m = p case (though
discussed in Ref. [6], we repeat it for completeness). The
symmetry underlying the space-time separation remains intact
in the discrete case (3) as well, and the ansatz yn(t) = φ(t)Yn

results in Eq. (7) for the temporal part, whereas the spatial part
begets a difference equation

λYn = 1

�

[(
Yn+1 − Yn

�

)∣∣∣∣Yn+1 − Yn

�

∣∣∣∣
p−1

−
(

Yn − Yn−1

�

)∣∣∣∣Yn − Yn−1

�

∣∣∣∣
p−1]

+ Yn|Yn|p−1. (15)

The constant λ can again be set to one. Equation (15) has
to be addressed numerically using, for instance, a shooting
method. Separation of temporal and spatial dynamics implies
that the form of the breather is independent of its period (and,
correspondingly, its amplitude) and is solely determined by the
spareness parameter �. The results, together with all m 	= p

choices to be discussed shortly, are grouped together in Fig. 3.
Lifting the m = p limitation, we start with the D-QLS

[Eq. (5)] and utilize the separation of variables wn(t) = eiωtUn,
which holds for any m and p for the discrete version as well,
and yields a finite difference system

K1−pCp

1

�1+p
[(Un+1 − Un)|Un+1 − Un|p−1

− (Un − Un−1)|Un − Un−1|p−1]

+K1−mCmUn|Un|m−1 = ωUn. (16)

The freedom to choose K is now used again, and for m 	= p

we define

K = (�1+pCm/Cp)
1

m−p

[compare with the definition for the continuous case (6)]
leaving the rescaled frequency � = ωKp−1/Cp as the only
free parameter:

(Un+1 − Un)|Un+1 − Un|p−1 − (Un − Un−1)|Un

−Un−1|p−1 + Un|Un|m−1 = �Un. (17)

For every � a localized solution of Eq. (17) can be found
by shooting, with the amplitude U0 being an adjustable
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FIG. 1. (Color online) Breathers in lattice (17). (a) Dependence
of the frequency � on the amplitude; (b) dependence of breathers’

width, defined as W̃ =
∑

n�0 nUn∑
n�0 Un

, on the amplitude. Squares (red):

m = 4,p = 2; circles (blue): m = 2,p = 4.

free parameter. The properties of the resulting breathers are
displayed in Fig. 1.

Returning to the original D-QLKG equation, unless m = p,
to find breathers we have to resort to numerical means based
on advancing from the anticontinuum, 1/� → 0, limit toward
milder values of �. In the “anti-” limit the coupling in (3)
vanishes, and we have an entire range of on-site periodic
orbits with corresponding different amplitudes. Pick one such
solution, fix the resulting period, and follow it; take a small
step in � and march on. At each step, corresponding to a
specific value of �, use the available solution and apply Newton
iterations to determine the subsequent breather having the
same period. Reapplying this procedure one finds a sequence
of periodic breathers of the D-QLKG lattice (3). Figure 2
displays samples of such breathers.

We use a sequence of breathers’ periods to show in Fig. 3
the dependence of breathers’ amplitude Y0 and its width W ,

defined as W = �

∑
n�0 nYn∑
n�0 Yn

, on the spareness parameter �. One

observes that the dependence of the amplitude on the spareness
is basically the same irrespective whether m > p or m < p,
and, as expected, in the continuum � → 0 limit breathers’
amplitude is larger than in the anticontinuous, 1/� → 0,
end. Larger amplitude always corresponds to a breather with
a larger period (which, in fact, is determined by the sign
of nonlinearity but not by its power). The dependence of
breathers’ width on � is also qualitatively the same, with
the extremal value attained in the continuum limit. However,
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FIG. 2. (Color online) (a, b) m = 2,p = 4 (logarithmic and
linear scale). Examples of breathers: T = 6.8978, � = 1.5848935
(red circles), � = 0.9021607 (blue squares), � = 0.2319061 (black as-
terisks). (c, d) m = 4,p = 2 (logarithmic and linear scale). Examples
of breathers: T = 6.3170 � = 7.937005 (red circles), � = 2.026838
(blue squares), � = 0.3506743 (black asterisks).

breathers’ width-amplitude relations are opposite: while for
a given value of �, m > p breathers narrow with amplitude,
for m < p large-amplitude breathers widen. Notice that in the
separable m = p case the W vs � dependence is the same for

all periods and in plots like in Figs. 3(b) and 3(d) the different
curves coalesce into the same line.

It is instructive to compare the D-QLKG breathers with
their small amplitude separable offsprings, compliments of
the corresponding D-QLS equation. This is accomplished via
the scaling transformation that follows from (5) and (6):

�′ = T − 2π

T C
p−1
p−m

m C
m−1
m−p

p �
(m−1)(p+1)

p−m

,

(18)
U

′
0 = C1/(m−p)

m C1/(p−m)
p �

p+1
m−p Y0.

In the scaled coordinates the data of Figs. 3(b) and 3(d) are
replotted in Fig. 4 and compared with the predictions of the
D-QLS displayed in Fig. 1(b). Similarly, we use the data
of Figs. 3(a) and 3(c), apply the scaling (18), and in Fig. 5
compare it with the corresponding predictions of the D-QLS,
shown in Fig. 1(a). Note the nearly perfect validity of the
scaling as even at large amplitudes the breathers of D-QLS
remain quite close to those of the D-QLKG.

Although empirically we observe a close affinity between
the D-QLKG and the D-QLS breathers, nonetheless there is
an fundamental difference between the two equations, for
whereas the D-QLS admits separation of variables, unless
m = p, the D-QLKG does not. It is thus of interest to look
further into this issue. To test the separability feature we depict
in Fig. 6 the evolution of the central site vs the evolution of site
next to it. A straight line (but not ellipses) would indicate that
there is no phase shift between the two sites, thus implying
that the breather oscillates in-phase and thus space-time
separability. However, the observed curves are not straight
lines, say, yn(t) = const · y0(t). To quantify the deviation from
separability we plot [y1 − const · y0(t)] vs y0(t). Though the
deviations grow with breathers’ amplitude, they remain quite
small confirming quantitatively our observation that for a
variety of m and p the dynamics of the D-QLKG lattice stays
close to space-time separable conditions.

B. Three-points model

Unless resorting to head-on numerics, in the general
nonseparable cases there is not much we can say about
the dynamics of the original system in its continuous PDE
rendition. Fortunately, whereas in the small amplitude regime
the QLS suffices to describe both the structure and the
dynamics of breathers, in the full problem the key to our
understanding is found in the opposite, anticontinuum, regime
where due to the very quick change of ε = 1/�p+1 with �,
if � < 1 we are close to continuum, whereas for � > 1 we
are projected into the opposite, anticontinuum, domain with a
transition zone around � = 1 which narrows as p increases.

In what follows we further explore the anticontinuum
regime as ε = 1/�p+1↓0. Since, as a by-product of genuine
anharmonicity, the tails of solitary waves decay at superexpo-
nential rate, we shall consider a setup where all mass points
beyond the first three may be assumed to vanish. Let y0(t)
be the central point with the adjacent ones y−1(t) and y+1(t)
symmetrically located around y0 and thus y−n(t) = y+n(t) at
all times. We shall assume that · · · y±2 � y±1 � y0. The first
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FIG. 3. (Color online) Dependence of the amplitude Y0 and the width of breathers on the parameter �, for different periods of the breathers,
as depicted in width panels. (a, b) m = 2,p = 4; (c, d) m = 4,p = 2; (e, f) m = p = 3.

two chain equations of (3) thus read

ÿ0 + y0 − y0|y0|m−1 = ε[(y1 − y0)|y1 − y0|p−1

− (y0 − y1)|y0 − y1|p−1] (19)

and

ÿ1 + y1 − y1|y1|m−1

= ε[(−y1)|−y1|p−1 − (y1 − y0)|y1 − y0|p−1], (20)

with y±2 assumed to be negligible. Exploiting obvious anti-
symmetry and order relations we approximate our system as

ÿ0 + y0 − y0|y0|m−1 + 2εy0|y0|p−1 = 2pε|y0|p−1y1 + · · ·
(21)

and

ÿ1 + y1 − y1|y1|m = εy0|y0|p−1 + εpy1|y0|p−1 + · · · .

(22)

It is obvious from (22) that y1 = O(εyp

0 ). To a leading order
it can be thus further simplified:

ÿ1 + y1 = εy0|y0|p−1 ⇒

y1 = εp

∫ t

0
sin(t − r)y0|y0|p−1(r) dr. (23)

Further nodal points down the chain are similarly estimated;
y2 = O(ε|y1|p) and yn = O(εan |y0|np), an = ∑n

1 pj , which
reveals their exceedingly fast decay. In fact, to a leading order
the dynamics of each such term is given by a linear response
similar to that of y1:

yn = εp

∫ t

0
sin(t − r)yn−1|yn−1|p−1(r) dr, n � 1.

Returning to the leading Eq. (21) we note that the change due to
y1 is O(ε2) and to a leading order may be ignored. Integrating
once we have 1

2 ẏ2
0 + P = P0 where P = 1

2y2
0 − 1

1+m
|y0|1+m +

2ε
1+p

|y0|1+p, with the interaction having only a minor impact on
the effective potential, the maximal amplitude of oscillations
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FIG. 4. (Color online) Breathers in lattice (17) (black line, almost
indistinguishable from symbols). (a) m = 2,p = 4; (b) m = 4,p = 2.
The symbols show rescaled data from the breathers in the D-QLKG
lattices.
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indistinguishable from symbols). (a) m = 2,p = 4; (b) m = 4,p = 2.
The symbols show rescaled data from the breathers in the D-QLKG
lattices.
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FIG. 6. (Color online) Test of time-space nonseparability of the
D-QLKG breathers. (a) m = 2,p = 4. Period T = 7.7456, � =
0.5060098,y0 = 0.5980614. (b) m = 4,p = 2. Period T = 7.4844,
� = 0.9950531,y0 = 0.9752348.

being now ymax = 1 + 2ε
m−1 . Thus in the anticontinuum limit

the breather has the lowest amplitude. In fact, in the separable
m = p = 3 case ymax = 1√

1−2ε
, whereas the continuum yields

y = √
2.

We now comment on restricting our discussion to site
potentials with soft nonlinearity. From (21) one notes that
the frequency at the central site y0 (being the the frequency of
the breather) is smaller than the one for soft nonlinearity and
small ε. This implies that in the driven linear equation (22)
the response y1 is in phase with the driving mode y

p

0 , and thus
the amplitude of the breather does not change sign. As this
property persists for large ε as well, where the simplified theory
just presented is no longer valid, it is possible to construct
breathers from the anticontinuum up to the continuum. For
hard nonlinearity the situation is markedly different: now the
frequency of the central site is larger than one, and oscillations
of y1 are in antiphase with y0. The breather solution now takes
a zigzagging form and thus cannot extend to up the continuum.
In Sec. VII we shall present a class of such solutions.

V. IMPACT OF LINEAR INTERACTION

The purpose of this section is to see what structural
changes are caused by retaining a small but finite linear
interaction. To this end we derive a quasilinear Schrodinger ap-
proximation (QLS) for the coupling potential which includes
linear interaction as well:

P (S) = a1

2
S2 + ap

p + 1
|S|p+1, (24)
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where ai are constants. The resulting equation in the continuum
limit is then

ytt + y = ∂

∂x
{a1yx + apyx |yx |p−1} + �′

1(y). (25)

For a1 = 1,ap = 0, and �1(y) = 1 − cos y one recovers the
sine-Gordon case, while for a1 = 0,a3 = 1, and p = m = 3
we are back at Eq. (4).

Applying the same averaging procedure on the original
Newtonian lattice that yielded Eq. (5), we obtain this equation
appended with the linear interaction:

− i
dwn

dt
= 1

�
[Tn∇n − Tn−1∇n−1] + |wn|m−1wn, (26)

where Tn = ε2 + |∇n|p−1, ∇n = (wn+1 − wn)/�. Repeating
the averaging procedure for the continuum version Eq. (25)
and keeping only the leading term bmym in �′

1(y) we obtain

iwt = ∂

∂x
[(d1 + dp|wx |p−1)wx] + dm|w|m−1w, (27)

where dl = a1/2, dp = ap/Cp, dm = bm/Cm, and the coeffi-
cients Cl are the same as above. To keep both the harmonic
and the anharmonic parts of the interaction while carrying
the averaging procedure one assumes that both are on equal
footing, which, for instance, for p = 3 would imply that
d1 ∼ |yx |2. Equation (27) also admits harmonic vibrations:
w = exp(iωt)U (x) with the spatial part in normalized units
given via

[ε2U ′ + U ′|U ′|p−1]′ + U |U |m−1 = U. (28)

Integrating once,

ε2(U ′)2 + 2p

p + 1
|U ′|p+1 + 2

m + 1
|U |m+1 = U 2, (29)

with the integration constant discarded to ensure solitary
solutions.

We now discuss the properties of the localized solutions.
Assume in Eq. (29) that p = 3 and solve it in U ′2:

3(U ′)2 = −ε2 +
√

ε4 + 3

(
2U 2 − 4|U |m+1

m + 1

)
. (30)

The effect of finite sonic velocity is expressed by ε, and though
its neglect has no singular effect on the equation, it does affect

x

U
0.04

0.02

0
0 0.4 0.8 1.2

FIG. 7. (Color online) Tails of two solitary waves in close to
compacton conditions and edge of a genuine compact breather. Note
that the ε = 0.01 and ε = 0 cases, for all practical purposes, are
indistinguishable.
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FIG. 8. (Color online) Stability regions for breathers in the D-
QLKG. Green circles: m = 2,p = 4; blue triangles: m = 3,p = 3;
red squares: m = 4,p = 2.

the solution near the tail and its top where for small ε: Umax ∼√
2{1 + ε4/12}. To see its impact on the tail, we neglect the

last term in Eq. (30) and normalize

ε2

2
(z′)2 = −1 +

√
1 + z2 where U = ε2

√
6
z, (31)

which for z � ε2 to a leading order yields U ∼ ε2 exp x/ε.
When 1 � z � 1/ε2 expanding the radical in Eq. (31)
we obtain U = x2/

√
6 + O(ε2), which is the tail of the

compacton. Thus for a small ε there is a boundary layer tail
(Fig. 7) which collapses as ε↓0.

VI. STABILITY OF BREATHERS

To study breathers’ stability we have calculated the eigen-
values of the linearized equations in the D-QLS case and the
multipliers of the found periodic orbit in the general D-QLKG
case. Although breathers in D-QLKG and D-QLS have a
similar shape, their stability is markedly different. Whereas
the D-QLS breathers appear to be stable for all values of the
studied parameters, the stability of the D-QLKG breathers
strongly depends on the spareness parameter �. Close to the
anticontinuum limit the D-QLKG breathers are stable, but they
become unstable at some finite � as we march toward the
continuous limit. In fact, in Fig. 3 the value at the left edge
of each curve corresponds to a stability-wise extremal value
of �, as we stopped the continuation procedure of finding
breathers when the absolute value of the largest in absolute
value multiplier exceeded a threshold of ≈1.1.

In Fig. 8 domains of stability on the (�,Y0) plane are
displayed. Observe that breathers on sparse lattices maintain
their stability up to large amplitudes, whereas breathers on
dense lattices are stable only at small amplitudes. This is
similar to the results found for the separable m = p = 3 case;
see Ref. [6]. Notably, in all studied cases we observe the
stability threshold to follow a power law � ∼ Y

β

0 with β close
to one.

VII. ZIGZAGGONS: ALTERNATING SIGN BREATHERS

One of the tenets of the presented breathers is their
macroscopic width, which with mild changes persists into
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the continuum. Here we pause to present another class of
breathers whose amplitude zigzags from site to site and
thus are essentially microscopic modes without continuum
extension. To this end we first limit the site potential to a
quadratic form and in Eq. (2) set bm = 0, i.e., �(y) = y2/2.
Obviously, space-time separability yn = φ(t)Yn stays intact,
yielding Eq. (7) for the temporal evolution of φ(t), whereas for
Yn we have again Eq. (15) but without the Ym

n part. Introducing
bond variable un (cf. Refs. [16,17]) we recast our system

λun = ∇2
D(un|un|p−1) where un

.= 1

�
(Yn+1 − Yn) (32)

and ∇2
DAn

.= {An+1 − 2An + An−1}/�2.
To derive the zigzagging breathers let un = (−1)nVn and

set λ = −1 (only the sign of λ matters). Thus, unlike previous
cases, Eq. (7) now supports anharmonic oscillations of
arbitrary amplitude. Thus

∇2
D(Vn|Vn|p−1) + 4

�2
Vn|Vn|p−1 − Vn = 0. (33)

In terms of the new variables we have an additional site
force 4V

p
n /�2 that generates a potential well which supports

localized structures. In our context they form an outer envelope
of the zigzagging breather. To unfold their shape replace ∇2

DAn

with Axx , its continuum limit, and Vn → V (x). The resulting
equation

(V |V |p−1)′′ + 4

�2
V |V |p−1 − V = 0 (34)

is recognized as K(p,p) [18], which supports compactons

V (x) = (±1)p
{

p�2

2(1 + p)
cos2

[
p − 1

p

(
x

�

)]} 1
p−1

(35)

for |[· · · ]| � π/2 and vanishes elsewhere. Thus

Vn = V (n�) or Vn = V

[(
n + 1

2

)
�

]
.

The presence of spareness parameter � implies that (35)
describes an intrinsic mode which vanishes in the continuum
limit. A direct comparison of (35) with a direct numerical
solution of Eq. (32) (Fig. 9) shows (35) to be a good

approximation. Notably, for the p = 3 solution Eq. (35) hints
that Eq. (33) may also admit an exact periodic solution. In fact,
we have

Vn = ±�

√
3

8
cos

(
2n

3

)
. (36)

However, unlike the continuum case, the discrete wave does
not have a critical amplitude at which it turns into a train
of compactons; nevertheless it clearly indicates the viability
of the continuum approximation (35) everywhere but at the
edges where compactons’ sharp cutoff is replaced by a doubly
exponential decay.

Finally, using Eqs. (15) and (32) we express the breather in
terms of the original variable

Yn = (−1)n[Vn|Vn|p−1 + Vn−1|Vn−1|p−1]�−1

and yn = φ(t)Yn. Note that as elsewhere in this paper one
may derive a small amplitude version with spatial shape of the
resulting D-QLS breathers being exactly the same as in (34).
Being harmonic, at large amplitudes they oscillate at a slower
pace than the oscillations of the full problem.

It is natural to inquest whether the presented zigzaggons
can exist in a lattice with nonlinear on-site potential (2).
Unfortunately, extension of numerical methods of Sec. IV A is
far from straightforward, as in the anticontinuum the solution
is not a single-site oscillation. Instead, noting in Fig. 9(b) a
very fast decay of the strongly nonlinear asymmetric sparse
zigzaggons, in a similar fashion so Sec. IV B, we analyze the
problem in the sparse lattice limit and construct a four-points
antisymmetric compact breather. To this end we assume that
y1−n = −yn, for n � 1. Then, the first two Eq. (3) read

ÿ1 + y1 − y1|y1|m−1 = ε[(y2 − y1)|y2 − y1|p−1

− (2y1)|2y1|p−1],
(37)

ÿ2 + y2 − y2|y2|m−1 = ε[(y3 − y2)|y3 − y2|p−1

+ (y2 − y1)|y2 − y1|p−1].
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FIG. 9. (Color online) Solutions of Eqs. (33) (red markers) and (36) (blue line) (a), and the corresponding profile Yn (b). Parameters
p = 3, � = 1.
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Assuming that |y2| � |y1| and in particular that y3 is
negligible, we have

ÿ1 + y1 − y1|y1|m−1 + 2pεy1|y1|p−1 = −εpy2|y1|p−1 + · · · ,

(38)

ÿ2 + y2 − εy1|y1|p−1 = y2|y2|m−1 + εpy2|y1|p−1 + · · · .

(39)

Neglecting in the first approximation the terms on the right-
hand side of Eqs. (38) and (39), we have a semicoupled system
with y1 driving the enslaved linear mode y2 in (39). Similar
relations hold between subsequent nodal points: the nth node
drives the (n + 1) node, and so on. Depending on the sign of
the local nonlinearity, bm, the relation between m and p and
the sparseness ε, the frequency of the nonlinear oscillator (38)
may be larger or smaller then one. Correspondingly, two types
of zigzagging breathers are possible: either the amplitudes yn

alternate in sign ∼(−1)n, or, if the frequency is smaller than
one, the amplitudes yn have the same sign and the only sign
change occurs between the central nodes y0 and y1.

VIII. DISCUSSION

In this paper we have presented breather solutions in a
genuinely anharmonic one-dimensional Klein-Gordon lattices
(D-QLKG) imbedded in a local site potential. Together with
the basic model we have derived and studied a small, albeit
finite, amplitude version with the fast oscillations averaged
out. Though the resulting quasilinear Schrödinger lattice
(D-QLS) and the continuum QLS equation are of independent
mathematical and physical interest, their main role in the
present context was to provide an insight into the breathers
of the original Klein-Gordon lattice, where, unless close to the
anticontinuum limit, we are totally at the mercy of numerics.
Therefore attention was given to determine the utility of our
small amplitude model renditions. In particular, we aimed
to determine to what extent D-QLS breathers are a useful
approximation of the original problem in terms of shape and
stability. As the scalings presented in Figs. 4 and 5 indicate,
the amplitude-frequency and amplitude-width dependencies
of the original breathers are almost perfectly captured by
their D-QLS rendition. But whereas the D-QLS breathers
are unconditionally stable, the D-QLKG breathers become
unstable at a sufficiently large amplitude, with the critical

amplitude decreasing in tandem with the sparseness of the
lattice, which plays a key role in stabilization of breathers. As
a further indication of the close affinity between the original
problem and its small amplitude rendition, we note that though
in principle unless m = p the space-time separability property
is lost, in practice dynamics of breathers remains close to
a separable state. Since for small � stability suppresses the
permissible amplitude (recall that stability threshold decreases
with the spareness of the lattice) in this regime the D-QLS
may suffice to describe breathers dynamics. Their harmonic
oscillation implies space-time separability for all p and m in
tandem with our numerical findings.

The strongly anharmonic lattice at already moderately large
spareness parameter � induces dynamics typical of an anticon-
tinuum regime with breathers’ motion confined to a very small
number of participants. In fact, with a grain of salt one could
say that our system is in either a continuum or anticontinuum
phase separated in the vicinity of � ∼ 1 by a narrow transition
zone where discrete effects neither dominate nor are negligible.

Two topics are worth commenting on. First, the form
of the studied nonlinearities: Clearly, since insofar that two
different site potentials share the same first two terms in
Taylor expansion, their averaging yields the same equation;
therefore a given D-QLS, or QLS, is a generic small amplitude
representation of a whole family of site potentials. This in
turn implies that whereas small-amplitude features are generic,
the large amplitude patterns generated by the D-QLKG-type
equations may be model specific. Nevertheless, the maximal
simplicity of the presented class of anharmonic Klein-Gordon
lattices grants them a canonical status.

Second, several issues were left for future consideration.
Among those we mention the impact of nonlinearities on a
waiting time of a compact initial disturbances and dynamics
of higher dimensional breathers. In particular, one may
be interested in multinodal excitations similar to the ones
presented in Ref. [15]. Note that, as we discussed in Ref. [6],
in higher dimensions the transition to an isotropic continuum
is limited to hexagonal lattices and p � 3.
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