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Abstract – We study a generic model of globally coupled rotors that includes the effects
of noise, phase shift in the coupling, and distributions of moments of inertia and natural
frequencies of oscillation. As particular cases, the setup includes previously studied Sakaguchi-
Kuramoto, Hamiltonian and Brownian mean-field, and Tanaka-Lichtenberg-Oishi and Acebrón-
Bonilla-Spigler models. We derive an exact solution of the self-consistent equations for the order
parameter in the stationary state, valid for arbitrary parameters in the dynamics, and demonstrate
nontrivial phase transitions to synchrony that include reentrant synchronous regimes.

Copyright c© EPLA, 2014

Introduction. – Synchronization in a large population
of coupled oscillators of distributed natural frequencies is a
remarkable example of a nonequilibrium phase transition.
The paradigmatic minimal model to study synchroniza-
tion is the one due to Kuramoto, introduced almost
40 years ago [1], based on an earlier work by Winfree [2].
Over the years, many details of the Kuramoto model [3,4],
and applications to various physical [5], chemical [6],
biological [7], engineering [8], and even social problems [9]
have been addressed in the literature.

The Kuramoto model comprises oscillators that are de-
scribed by their phases, have natural frequencies given
by a common distribution, and are subject to a global
mean-field coupling. The phases follow a first-order dy-
namics in time. In the simplest setup of a purely sinu-
soidal coupling without a phase shift, and for a unimodal
distribution of frequencies, the model exhibits a continu-
ous (second-order) transition from an unsynchronized to
a synchronized phase as the coupling constant exceeds a
critical threshold. The phase transition appears as a Hopf
bifurcation for the complex order parameter.

The dynamics of the Kuramoto model is intrinsically
dissipative. When all the oscillators have the same
frequency, the analogue of the model in the realm of
energy-conserving Hamiltonian dynamics is the so-called
Hamiltonian mean-field model (HMF) [10,11]. In this case,
the dynamical equations are the Hamilton equations: the

oscillator phases follow a second-order dynamics in time,
i.e., the system constituents are in fact not oscillators, but
rotors. In order to include the effects of interaction with an
external heat bath, it is natural to consider the HMF evo-
lution in the presence of a Gaussian thermostat. In the re-
sulting Brownian mean-field (BMF) model, the dynamical
equations are damped and noise-driven [12,13]. Both the
HMF and the BMF model have an equilibrium stationary
state that exhibits a continuous phase transition between
a synchronized phase at low values of energy/temperature
and an unsynchronized phase at high values. On consider-
ing the BMF model with nonidentical oscillator frequen-
cies, the dynamics violates the detailed balance leading
to a nonequilibrium stationary state (NESS) [14]. In the
overdamped limit, the dynamics reduces to that of the
noisy Kuramoto model involving Kuramoto dynamics in
the presence of Gaussian noise, which was introduced to
model stochastic fluctuations of the natural frequencies in
time [15]. The resulting phase diagram is complex, with
both continuous and first-order transitions [14].

In this work, we study a generic model of globally
coupled rotors, in which two types of deviations from
equilibrium are included: i) a distribution of torques
acting on the rotors, similar to the distribution of fre-
quencies in the Kuramoto model, and ii) a phase shift
in the coupling, that makes the latter non-Hamiltonian.
We consider the rotors to have quite generally different
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moments of inertia given by a common distribution [16].
Our setup includes as special cases previously stud-
ied Sakaguchi-Kuramoto [17], Hamiltonian and Brownian
mean-field, Tanaka-Lichtenberg-Oishi [18], and Acebrón-
Bonilla-Spigler [19,20] models.

The basic roadblock in studying out-of-equilibrium dy-
namics, in particular, in characterizing the resulting long-
time NESSs is the lack of a framework that allows to treat
such states on a general footing, akin to the one for equi-
librium steady states à la Gibbs-Boltzmann. Even for
simple nonequilibrium models, obtaining the steady-state
distribution has been a tour de force [21], while in many
cases, the analytical characterization of the steady state
has so far been elusive, thereby requiring one to resort to
numerical simulations and approximation methods [22].

In this backdrop, it is remarkable that for our system of
study, we are able to characterize exactly the NESS un-
der quite general conditions. In the thermodynamic limit
N → ∞, we study the system by analyzing the Kramers
equation for the evolution of the single-rotor phase space
distribution. Using the combination of an analytical
approach to solve the Kramers equation in the steady
state [23] and a novel self-consistency approach [24,25], we
formulate an exact equation for the complex order param-
eter as a function of the relevant parameters of the sys-
tem, for arbitrary distributions of torques and moments
of inertia. As applications of our approach, we provide
for suitable and representative choices of the distribution
function several nontrivial illustrations of transitions to
synchrony, including in some cases interesting reentrant
synchronous regimes.

Basic model. – The equations of motion for the i-th
rotor read

miφ̈i + γφ̇i = γνi + KR sin(ψ − φi − β) +
√
γT ηi, (1)

where dots denote differentiation with respect to time τ .
Here, φi is the angle of the i-th rotor, γ is the friction
constant, K is the coupling constant, β is the phase shift
parameter, T is the temperature in units of the Boltzmann
constant, while R and ψ constitute the complex order pa-
rameter of the problem: R(τ)eiψ(τ) ≡ ∑N

j=1 e
iφj(τ)/N .

Note that R is the magnitude while ψ is the phase of
the mean field acting on the rotors. In the dynamics (1),
the term γνi is the external torque acting on the i-th ro-
tor. The parameters of the rotors, namely, their frequen-
cies νi’s and the moments of inertia mi’s, are quenched
random variables sampled from a common distribution
g(ν,m). The noise ηi(τ) is Gaussian and white, with
〈ηi(τ)〉 = 0, 〈ηi(τ)ηj(τ ′)〉 = 2δijδ(τ−τ ′). The fluctuation-
dissipation theorem implies the factor

√
γT in the noise

term in eq. (1). To reduce the number of relevant pa-
rameters, we introduce dimensionless variables t ≡ τT/γ,
Mi ≡ miT/γ

2, K = K/T , ωi = γνi/T , in terms of which
eq. (1) becomes (with dots now denoting derivative with
respect to t)

Miφ̈i + φ̇i = ωi +KR sin(ψ − φi − β) + ηi, (2)

involving two dimensionless parameters K and β;
here, ηi(t) is a Gaussian white noise with 〈ηi(t)〉 =
0, 〈ηi(t)ηj(t′) = 2δijδ(t − t′). Additional parameters de-
scribe the distribution G(ω,M) of dimensionless natural
frequencies and moments of inertia.

For the dynamics (2), we seek for NESS with nonzero,
uniformly rotating mean field, which generally has a fre-
quency Ω different from the mean frequency of the natu-
ral frequency distribution. Transforming to the reference
frame rotating with frequency Ω, as ψ ≡ Ωt + ψ0, φi ≡
θi + ψ − β, where ψ0 is a constant, eq. (2) reads

Miθ̈i + θ̇i = ωi − Ω −KR sin θi + ηi(t). (3)

In terms of the new variables θi, the equations of motion
no longer contain the phase shift β in the coupling func-
tion; however, now, the unknown frequency Ω appears as
a parameter on the right-hand side of eq. (3). The new
complex order parameter R̃(t)eiψ̃(t) ≡∑N

j=1 e
iθj(t) can be

expressed using the old one as R̃(t)eiψ̃(t) = R(t)eiβ . This
implies that the magnitude of the order parameter is con-
served in this transformation, R̃(t) = R(t). Moreover,
the argument of the new order parameter determines the
phase shift in eq. (2), β = ψ̃. From now on, we focus on
analyzing the dynamics (3).

At this point, it is instructive to link model (3) to pre-
viously studied setups. Consider the model without the
phase shift parameter, i.e., β = 0, leading to a symmet-
ric coupling function. Let us next specialize to the case
G(ω,M) = δ(M − M0)g(ω). When the frequency distri-
bution g(ω) is a delta function, g(ω) = δ(ω − ω0), so that
ωi = Ω = ω0, eq. (3) describes the BMF model. This
model has an equilibrium stationary state in which the
system exhibits a continuous phase transition between a
synchronized (R �= 0) and an unsynchronized (R = 0)
phase at the critical coupling Kc = 2 [12,13]. When g(ω)
is not a delta function, the dynamics (3) drives the system
to a NESS [14]. In particular, for M0 = 0, the dynamics
corresponds to the β = 0 case of the Sakaguchi-Kuramoto
model with the inclusion of noise. Then, taking g(ω) to
be unimodal with width D, the model shows a continuous
synchronization phase transition across Kc(D) described
in ref. [15]. In our normalization, the intensity of noise
is set to one, thus the noiseless situation corresponds to
the limit K,D → ∞. This noiseless dynamics defines
the Tanaka-Lichtenberg-Oishi model [18]. In ref. [20], for
model (3) with G(ω,M) = δ(M−M0)g(ω) and β = 0 (the
Acebrón-Bonilla-Spigler model), a linear stability analysis
and an approximate treatment of the transition to syn-
chrony have been performed. In both these works, a first-
order transition to synchrony was revealed.

Thermodynamic limit: the Kramers equation
and its self-consistent stationary solution. – We
now consider the dynamics (3) in the thermodynamic
limit N → ∞. In this limit, the dynamics is char-
acterized by the single-rotor conditional distribution
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ρ(θ, v, t|ω − Ω,M), which gives at time t and for the
given set of parameters (ω,M) the fraction of rotors
with angle θ and angular velocity v = θ̇. The dis-
tribution is 2π-periodic in θ, and obeys the normaliza-
tion

∫ 2π
0 dθ

∫∞
−∞ dv ρ(θ, v, t|ω − Ω,M) = 1, while evolving

toward a stationary distribution following the Kramers
(Fokker-Planck) equation [14]

∂ρ

∂t
= −v ∂ρ

∂θ
+

∂

∂v

[
1
M

(
v − ω + Ω +A sin θ

)
ρ

]
+

1
M2

∂2ρ

∂v2 ,

(4)
where we have defined A ≡ KR. In the steady state, R is
time-independent, with

Reiβ =
∫

dWG(ω + Ω,M)eiθρ(θ, v|ω,M) ≡ F (Ω, A),

(5)
where dW = dθdvdωdM . The stationary distribution
ρ(θ, v|ω−Ω,M) depends on the unknown quantities A and
Ω, which we, from now on, consider as given parameters.
The representation (5) gives the solution of the problem
in a parametric form: the order parameter R and the cou-
pling parameters, K,β, are expressed as explicit functions
of A and Ω, as

R = |F (Ω, A)|, K =
A

|F (Ω, A)| , β = argF (Ω, A). (6)

By varying Ω and A, while keeping the parameters of the
distribution G(ω,M) fixed, we find the order parameter
R as a function of K and β (cf. [24,25]).

The stationary solution of the Kramers equation (4) is
described in [23]. One looks for a solution in the form
of a double expansion in Fourier modes in θ and Hermite
functions in v as

ρ(θ, v|ω − Ω,M) =

(2π)−1/2Φ0(v)
∞∑
n=0

∞∑
k=−∞

an,k(ω − Ω,M)Φn(v)eikθ , (7)

where Φn(v) are the Hermite functions: Φn(v) =√
α/(
√

2nn!
√
π) exp[−v2α2/2]Hn(αv); α =

√
M/2.

Note that ρ being real, it follows that a∗
n,k = an,−k, where

∗ denotes complex conjugation. By inserting the expan-
sion (7) into the Kramers equation in the stationary state,
one obtains a linear system of equations for coefficients
an,k, which can be solved using the matrix continued frac-
tion method [23]. Substituting expansion (7) into eq. (5),
we find that

F (Ω, A) =
√

2π
∫

dωdMG(ω,M)a∗
0,1(ω − Ω,M). (8)

According to the matrix continued fraction method [23],
the coefficient a0,1 can be found from the matrix H, as

a0,1(ν,M) = H1,0(ν,M)/
(√

2πH0,0(ν,M)
)
, (9)

where H(ν,M) is given by the following recurrent formula:

H = − 1√
M

D̃−1
(
I −MD

[
I − M

2
D(I

− M

3
{D[I − . . .]}−1D̃)−1D̃

]−1

D̃
)
, (10)

with the matrix D = ikδn,k, while the matrix D̃ is

D̃n,k ≡
((

ik − ν
)
δn,k − i

(
δn,k+1 − δn,k−1

)A
2

)
. (11)

The construction of the exact solution for the order
parameter consists now of the following steps. i) The
recurrence formula (10) yields the matrix H, and thus,
according to relation (9), the value of a0,1 for any set of
ω,Ω, A,M . ii) The substitution of these values into inte-
gral (8) yields the complex function F (Ω, A). iii) With the
help of eq. (6), we get the order parameter R and the pa-
rameters K,β as functions of Ω, A, which constitutes the
analytic solution in a parametric form. In order to eval-
uate this solution numerically, several approximations are
needed. In step i), we do not calculate an infinite matrix,
but instead truncate the Fourier and the Hermite series
such that n = 0, . . . , Ñ and k = −K̃, . . . , K̃. After that,
fixing a certain discretization grid on the plane (ν,M), we
calculate finite-dimensional matrices D and D̃. The latter
allows us to calculate the finite matrix H(ν,M) with de-
sired accuracy, using a finite number of recurrence steps
in (10). In step ii), we perform the integration using a
summation on the grid. The basic parameters determining
numerical accuracy are the truncation numbers Ñ , K̃ and
the parameters of the grid (ν,M); they were determined in
such a way as not to change the final result beyond a given
accuracy. In the following sections, we present several ap-
plications of our approach to compute the steady state R
for representative choices of the frequency and moment of
inertia distribution and parameters of the dynamics, and
highlight possible synchronization transitions.

Phase transitions in the case of symmetric cou-
pling function (i.e., β = 0). – Here, we consider the
symmetric, Hamiltonian coupling, i.e., with the phase
shift β = 0. As one can see from (6), the function F , given
by eqs. (5) and (8), should be real. Let us choose for each
moment of inertia M the distribution G(ω,M) to be sym-
metric about its mean Ω0: G(ω−Ω0,M) = G(Ω0 −ω,M).
Then, using eq. (8) and the fact that F is real, one
arrives at the consistent conclusions that Ω = Ω0 and
a0,1(ν,M) = a∗

0,1(−ν,M). (For a general asymmetric
distribution, like eq. (15) below, to be consistent with
β = 0, one has to vary Ω to find the value at which
argF (Ω, A) = 0). As the simplest example of such a
situation, we consider the case of equal moments of in-
ertia, and a Gaussian distribution with mean zero and
width D for the frequencies G(ω,M) = δ(M − M0)g(ω),
with g(ω) = 1/(

√
2πD2) exp[−ω2/(2D2)]. In fig. 1, we re-

port the phase diagram in the three-dimensional space of

40003-p3



Maxim Komarov et al.

(a)

(b)

(c)

Fig. 1: (Colour on-line) For G(ω,M) = δ(M − M0)g(ω), with
g(ω) being a Gaussian with zero mean and width D, (a) shows
the order parameter R as a function of K for M0 = 1 and for
various values of D marked in the figure. For sufficiently large
D, the synchronized phase arises as a first-order phase tran-
sition from the unsynchronized phase, with two characteristic
thresholds, K

(1)
c and K

(2)
c . (b) Surfaces K

(1)
c and K

(2)
c in the

three-dimensional M0-K-D space. (c) Sections of the surfaces
K

(1)
c and K

(2)
c in (b) for different values of M0.

parameters M0,K,D, stressing on the synchronized and
unsynchronized states. The previously known limits are
1) for M0 = 0, when one has the line Kc(D) for the con-
tinuous transition given byKc(D) = 2[

∫∞
−∞ dω g(ω)/(ω2+

1)]−1 [15], 2) forD = 0, when one has the continuous tran-
sition point of the BMF model given by Kc ≡ Kc(0) = 2,
independent of M0 [12,13]. For M0, D �= 0, one expects a
first-order phase synchronization transition characterized

by two thresholds K
(1)
c and K

(2)
c , where the former is

the stability threshold of the unsynchronized phase, while
K

(2)
c is the point at which two branches of synchronized so-

lutions arise [14]. These observations are borne out by our
numerical results depicted in fig. 1. Panel (a) shows R as
a function of K at a fixed M0 and for different values of D:
one may observe that at large D, the synchronized phase
arises as a first-order transition from the unsynchronized
phase.

Nonuniversal phase transitions in the case of
phase shift in coupling. – In this section, we illustrate
several examples of nontrivial and nonuniversal phase
transitions to synchrony in the case of nonzero β, by choos-
ingG(ω,M) = δ(M−M0)g(ω), where we choose a nontriv-
ial symmetric g(ω) that is known to yield a nonuniversal
transition in the Sakaguchi-Kuramoto model [25]:

g(ω) =

⎧⎪⎨⎪⎩
p
D − ω

D2 + (1 − p)
qD − ω

q2D2 ; ω ≤ qD,

D − ω

D2 ; ω > qD.
(12)

The results are shown in fig. 2. Panel (a) shows two ex-
amples of a reentrant synchronization transition: with in-
crease of the coupling constant, synchrony first appears
but disappears at larger coupling, beyond which there is
a second threshold. Figure 2(b) shows that this behavior
depends on the value of M0 in a nontrivial way: while the
reentrance is observed for small and large M0, it is absent
for intermediate values. Finally, in fig. 2(c), we illustrate
how the reentrant behavior depends on noise. As the noise
intensity is set to one in our scheme of normalization, we
simultaneously varied parameters M0 and D according to
M0 = M̃0σ, D = D0/σ, with M̃0 = 0.1, D0 = 5. The re-
sulting path in the (M0, D)-plane corresponds effectively
to the variation of the noise intensity, with σ ∼ T . One
can see that with increase of the noise, the area of non-
trivial transitions marked in grey shrinks and disappears.
The inset illustrates how the region of the reentrance is
determined from the solution. It shows the values of β(Ω)
for vanishing mean field A = 0+, i.e. at the transition
points. At σ = 0.025 (dashed curve in (c) (inset)), there
is a nonmonotonic dependence of β on Ω. Thus, in the
region between the local extrema, there are three values
of Ω that give the same value of β. These three values
correspond to the different branches in each of the R(K)
plots in fig. 2(a) at which the value of the order parameter
vanishes (i.e. the values of K at which synchrony appears,
disappears, and appears again). At relatively strong noise
(σ = 0.1, solid curve in (c) (inset)), there is a mono-
tonic dependence of β on Ω, with only one transition to
synchrony.

Phase transitions in populations with distribu-
tion of moments of inertia. – In this section, we
present several examples of phase transitions by choos-
ing nontrivial distributions for both moments of inertia
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(c)

(b)

(a)

Fig. 2: (Colour on-line) (a) Examples of nonuniversal tran-
sitions for G(ω,M) = δ(M − M0)g(ω), with g(ω) given by
eq. (12). Parameters are M0 = 5 × 10−3, β = −1.164 (up-
per panel), and M0 = 0.06, β = −1.95 (lower panel). In
both cases, p = 0.6, D = 100, q = 0.08. (b) Regions in the
(M0, β)-plane with complex nontrivial transitions marked in
grey, for the same parameters of the frequency distribution as
in panel (a). (c) Dependence of the region of reentrance (gray
regions in (b)) on the effective noise intensity (see main text);
the increase of σ corresponds to the linear increase of the noise
intensity.

and frequencies. In the first example, we used indepen-
dent distributions of moments of inertia and frequencies:
G(M,ω) = g(ω)f(M), with

f(M) =

⎧⎨⎩
1
C

[
1 − (M −M0)2

D2
m

]
, |M −M0| ≤ Dm,

0, |M −M0| > Dm.

(13)

Thus, the moments of inertia are distributed according
to a simple parabolic shape with characteristic width Dm

(a)

(b)

Fig. 3: (Colour on-line) (a) R(K) for the distribution (13) with
two different values of Dm but with the same mean moment
of inertia M0 = 1.01. (b) For the distribution (14), the figure
shows the dependence of K

(1)
c on the parameter p for different

values of D (width of the frequency distribution g(ω)).

(C is the normalization constant), while for frequencies,
we use a Gaussian distribution with mean zero and width
D. In fig. 3(a), dependences of the order parameter on
the coupling are presented for two distributions for differ-
ent Dm’s, but with the same mean moment of inertia M0.
One can see that the more diverse is the population, the
easier it is to synchronize. To reveal the underlying mech-
anism, we calculated the synchronization threshold K

(1)
c

in a more simple setup of rotors having just two different
moments of inertia, i.e., the distribution is a sum of two
delta functions:

f(M) = pδ(M −M0) + (1 − p)δ(M −M1), (14)

where we assume that M0 < M1. By increasing the pa-
rameter p from 0 to 1, we increase the fraction of light
particles in the population. Figure 3(b) shows that the
critical coupling K(1)

c decreases with p: One can see that
the addition of light particles always leads to a decrease of
K

(1)
c , implying ease of the population to synchronize with

more lighter particles; this is consistent with the result in
fig. 3(a).

In the second example, we illustrate a situation where
the symmetry of the frequency distribution is broken in a
nontrivial way, through a correlation with the moments of
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Fig. 4: (Colour on-line) Dependences of R,Ω on the coupling
strength K for the correlated distribution (15) with k = 1,
D0 = 1 and M0 = 1.01.

inertia. We take a distribution

G(ω,M) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
C

(
1 −

(
ω

D0

)2
)

×δ(M −M0 − kω), |ω| ≤ D0,

0, |ω| > D0.

(15)

where although the partial distribution of frequencies is
symmetric, the overall symmetry of G(ω,M) is broken.
In this case, the frequency Ω of the order parameter will
be nonzero even for the purely symmetric coupling β = 0;
we illustrate this in fig. 4.

Conclusion. – In conclusion, we have suggested a uni-
fied analytic approach that allows to analyze the dynamics
of noise-driven populations of globally coupled rotors with
a phase shift in the coupling, for arbitrary distribution of
their natural frequencies and moments of inertia. In ad-
dition to well-studied effects of inertia that lead to a first-
order transition to synchrony in the absence of a phase
shift in coupling, the method allowed us to study more
complex regimes. In the limiting case of vanishing inertia
and absence of noise, our model reduces to the Sakaguchi-
Kuramoto model of coupled phase oscillators. For the
latter, reentrant transition to synchrony [25], in which
two ranges of coupling exists for observing synchrony, was
observed; we demonstrated a similar phenomenon in our
model. Furthermore, the general formulation of our model
also includes populations with distributions of moments of
inertia of the rotors. A nontrivial effect here is the shift of
the frequency of the mean field due to correlations between
natural frequencies and the moments of inertia.
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