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We study scattering of a periodic wave in a string on two lumped oscillators attached to it. The

equations can be represented as a driven (by the incident wave) dissipative (due to radiation losses)

system of delay differential equations of neutral type. Nonlinearity of oscillators makes the

scattering non-reciprocal: The same wave is transmitted differently in two directions. Periodic

regimes of scattering are analyzed approximately, using amplitude equation approach. We show

that this setup can act as a nonreciprocal modulator via Hopf bifurcations of the steady solutions.

Numerical simulations of the full system reveal nontrivial regimes of quasiperiodic and chaotic

scattering. Moreover, a regime of a “chaotic diode,” where transmission is periodic in one

direction and chaotic in the opposite one, is reported. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4899205]

One of the mostly general results of the linear wave

theory is the reciprocity theorem, established in works of

Rayleigh, Helmholtz, and Lorentz. For the one-

dimensional wave scattering it means the symmetry of

the scattering matrix, so that transmission in both direc-

tions is the same. While in linear systems, violations of

reciprocity require violations of time-reversal symmetry;

in nonlinear wave propagation, reciprocity does not hold.

In particular, scattering of linear waves on nonlinear

objects may operate as a “wave diode,” with different

transmission properties in both directions. Here, we con-

sider a simple model of scattering of linear waves on two

lumped nonlinear oscillators. If one neglects dispersion

and dissipation in the medium and in the oscillators, the

equations can be reduced to a system of delay-differential

equations. We demonstrate in this paper different regime

of reciprocity violations. In the simplest case, transmis-

sions in both directions are different, while the waves

remain periodic. We observe also more complex regimes,

where reflected and transmitted waves are chaotic and

different. Probably, mostly nontrivial regime reported is

that of “chaotic diode:” a periodic wave sent to the scat-

terer in one direction remains periodic, while when the

same wave is sent in another direction, transmitted and

reflected waves are chaotic.

I. INTRODUCTION

Understanding the way in which nonlinearity affects

wave propagation is one of the basic issues in many different

domains such as nonlinear optics, acoustics, electronics, and

fluid dynamics. A related challenging goal is the control of

wave energy flow using fully nonlinear features.

The most elementary form of control would be to devise

a “wave diode,” in which some input energy is transmitted

differently along two opposite propagation directions. As it

is known, this is forbidden in a linear, time-reversal symmet-

ric system, by virtue of the reciprocity theorem.1 The stand-

ard way to circumvent this limit is to break the time-reversal

symmetry by applying a magnetic field, as done, for

instance, in the case of optical isolators. An entirely alterna-

tive possibility is instead to consider nonlinear effects. At

least, in principle, this option would offer novel possibilities

of propagation control based on intrinsic material properties

rather than on an external field. A general critical discussion

of those issues can be found in Ref. 2.

The idea of exploiting nonlinear effects has been pur-

sued in different contexts. In the domain of lattice dynamics,

asymmetric phonon transmission through a nonlinear layer

between two very dissimilar crystals has been demonstrated

in Ref. 3. Other concrete examples are offered by nonlinear

phononic media4,5 and the propagation of acoustic pulses

through granular systems.6,7 Nonlinear optics are also a ver-

satile playground as exemplified by the so-called all-optical

diode.8–10 In particular, in Ref. 11 symmetry-breaking in two

nonlinear microcavities has been described. Other proposals

include left-handed metamaterials,12 quasiperiodic sys-

tems,13 coupled nonlinear cavities14 or PT –symmetric

waveguides,15–17 and transmission lines.18 Extensions to the

quantum systems19,20 and nonlinear Aharanov-Bohm rings21

have been also considered.

Despite the variety of physical contexts, the basic under-

lying rectification mechanisms rely on nonlinear phenomena

as, for instance, second-harmonic generation in photonic22 or

phononic crystals,4 or bifurcations.7 In those examples, the

rectification depends on whether some harmonic (or subhar-

monic) of the fundamental wave is transmitted or not. As

discussed in Ref. 2, a more strict operating condition woulda)Electronic mail: stefano.lepri@isc.cnr.it
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be that the transmitted power at the same frequency and inci-
dent amplitude would be sensibly different in the two oppo-

site propagation directions. Nonlinear resonances have been

proved to be effective in achieving this23 (see also Ref. 24,

where Fano resonances have been considered).

The above issues are conveniently studied as a scattering

problem, i.e., by seeking for wave solutions impinging on a

nonlinear impurity. In a one-dimensional geometry, such sol-

utions can be found by simple methods like the transfer-

matrix approach (see Ref. 23 and references therein). Once

the solutions are known one natural question is the assess-

ment of their dynamical stability and bifurcations. This ques-

tion has been investigated only to a limited extent.25,26 More

recently, it has been shown that scattering states in the pres-

ence of (generally complex) impurities typically display os-

cillatory instabilities27 that may result in the creation of

stable quasiperiodic, nonreciprocal solutions.28 Those can be

seen as a superposition of an extended wave with a nonlinear

defect mode oscillating at a different frequency. It can be

envisaged that more complex dynamical regimes may be

observed and that this will affect the overall performance of

any device that one may wish to realize in practice.

In the present paper, we introduce a simple model for a

scalar wave field interacting with two different local nonlin-

ear elements. It is a generalization of the system introduced

in Ref. 29, as a simple example of chaotic wave scattering,

where only one local nonlinear oscillator coupled to a wave

medium was considered. Clearly, with one lumped oscillator

the scattering is fully reciprocal, although non-trivial. The

model we consider belongs to a class of wave systems with

local nonlinearity. In the case of dispersive waves (e.g., in a

lattice30,31 or with a periodic background potential32) such a

system can possess localized solutions (breathers); a similar

situation occurs in a Schr€odinger equation with local nonli-

nearity that creates local pseudopotential well, where wave

is localized.33 We consider here non-dispersive waves; this

system does not possess localized solutions.

As it will be shown in Sec. II, our model can be refor-

mulated as a delay-differential equation and thus admits a

very rich dynamics depending of the relation between its rel-

evant time scales. Indeed, complex input-output responses

can be easily achieved, including quasiperiodic and chaotic

ones. In Sec. III, we start the analysis of the system by con-

sidering the case of weak coupling between the string and

the oscillators. This limiting case can be treated by means of

approximate amplitude equations. In Sec. IV, we turn to the

more general case, in which there is no sharp separation

among timescales and the system can only be treated by

direct numerical integration of the full set of equation. Here,

the dynamics is considerably more complex, leading to high-

dimensional and possibly chaotic motion.

II. BASIC EQUATIONS

The model is inspired by Ref. 29 and is schematically

depicted in Fig. 1. It amounts to two lumped, undamped

oscillators v(t) and u(t) attached to an elastic string at points

�L/2 and L/2, correspondingly. The equations of motion for

the oscillators are

m1v
:: þ V vð Þ ¼ S

@y0

@x
� @y�

@x

� �
x¼�L=2

; (1)

m2€u þ U uð Þ ¼ S
@yþ

@x
� @y0

@x

� �
x¼L=2

: (2)

Here, y�(t, x), y0(t, x), and yþ(t, x) denote the string

displacement in the domains [�1, �L/2), (�L/2, L/2), and

(L/2,1], respectively; U and V are the local forces acting on

the two oscillator that we assume to be different to break the

mirror symmetry of the system around x¼ 0. The string

obeys the equation of motion

@2y

@t2
� c2 @

2y

@x2
¼ 0 ; c2 ¼ S

q
;

where S is the tension and q is the mass density. The energy

density of the wave is

E ¼ 1

2
S
@y

@x

� �2

þ 1

2
q
@y

@t

� �2

and the energy conservation reads

@

@t
E þ @

@x
J ¼ 0; (3)

J ¼ �S
@y

@x

@y

@t
; (4)

with J being the energy flux. We represent the string field as

Incident wave : Fðt� ðxþ L=2Þ=cÞ for x < �L=2;

reflected wave : aðx=cþ tÞ for x < �L=2;

transmitted wave : bðt� x=cÞ for x > L=2;

‘‘interaction’’ waves /ðt� x=cÞ; wðtþ x=cÞ;

for� L=2 < x < L=2:

In the Appendix, we show that the problem can be

reduced to a coupled system of delay-differential equations

for the variables describing the two oscillators. The possi-

bility of such a reduction heavily relies on the non-

dispersive, non-dissipative nature of wave propagation

along the string. In the case of dispersion and dissipation,

one would obtain integro-differential equations that are

very hard to investigate.

FIG. 1. The model.
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For convenience, we introduce the time scale according

to some frequency X, so that the new dimensionless time

will be s¼Xt. In terms of the dimensionless time delay

T¼XL/2c and dimensionless coupling parameter a ¼ S
mcX,

the system of equations reads

d2v

ds2
þ 2a

dv

ds
þ V vð Þ

mX2
¼ 2a _F X�1sð Þ þ 2a _w s� Tð Þ; (5)

d2u

ds2
þ 2a

du

ds
þ U uð Þ

mX2
¼ 2a _/ s� Tð Þ; (6)

_wðsÞ ¼ _uðs� TÞ � _/ðs� 2TÞ; (7)

_/ðsÞ ¼ _vðs� TÞ � _wðs� 2TÞ: (8)

From the system solution, we can compute reflected and

transmitted waves as

aðt� L=2cÞ ¼ vðtÞ � FðtÞ; bðt� L=2cÞ ¼ uðtÞ: (9)

Moreover, one can evaluate the reflected and transmitted

fluxes as

Jref l ¼ �
ffiffiffiffiffiffi
Sq

p
_a2; Jtrans ¼

ffiffiffiffiffiffi
Sq

p
_b

2
: (10)

It should be remarked that the system (5)–(8) differs

from standard delayed dynamical systems (like Ikeda,

Mackey-Glass, etc.) in several respects. Indeed, one typically

has only terms delayed by T, while here we have also a

reflected components delayed by 2T. Moreover, and more

importantly, the delayed coupling occurs via the derivatives

of the variables. This is referred to as “neutral type” of

delay-differential equation.34,35 Such equations also natu-

rally appear in electrical networks, where lumped elements

are connected with lossless transmission lines36,37 that, in

fact, is the setup equivalent to the mechanical one of Fig. 1.

Noteworthy, the system (5)–(8) is dissipative. This is the

radiation losses, as the only sink of energy is due to reflected

and transmitted waves. The dissipation parameter is the cou-

pling parameter a.

III. AMPLITUDE EQUATIONS AND THEIR ANALYSIS

Let us consider Eqs. (5)–(8) and set units such that

X¼m¼ c¼ 1. Furthermore, we specialize to the case of a

periodic wave forcing F(t)¼Feixtþ c.c. The dynamics is

thus characterized by three main timescales, T, 1/a, and 1/x.

In this section, we first focus on the case of weak coupling

whereby 1/a is much larger than both T and 1/x. For defi-

niteness, we consider forces of the form

UðuÞ ¼ x2
1uþ k1u3 ; VðvÞ ¼ x2

2vþ k2v
3 ; (11)

and distinguish three distinct regimes, where the system

equations can be simplified by suitable approximations.

A. 1:1 resonance

Let us first consider the case in which x�x1�x2. We

look for an expansion in slowly varying amplitudes (assum-

ing weak dissipation a)

vðtÞ ¼ Aeixt þ c:c: _vðtÞ ¼ ixAeixt þ c:c:

uðtÞ ¼ Beixt þ c:c: _uðtÞ ¼ ixBeixt þ c:c:

/ðtÞ ¼ Ueixt þ c:c: _/ðtÞ ¼ ixUeixt þ c:c:

wðtÞ ¼ Weixt þ c:c: _wðtÞ ¼ ixWeixt þ c:c::

In the same approximation, the transmitted intensity is pro-

portional to jBj2. Making use of the rotating wave approxi-

mation, we neglect higher-order harmonics, i.e.,

v3 � 3jAj2Aeixt þ c:c:; u3 � 3jBj2Beixt þ c:c:

Equating terms proportional to �eixt and keeping the lowest

order in a in the second-order derivatives, we obtain

i _A þ ðD1 þ iaþ c1jAj2ÞA ¼ iaðFþWðt� TÞe�ixTÞ;

i _B þ ðD2 þ iaþ c2jBj2ÞB ¼ iaUðt� TÞe�ixT ;

WðtÞ ¼ Bðt� TÞe�ixT � Uðt� 2TÞe�2ixT ;

UðtÞ ¼ Aðt� TÞe�ixT �Wðt� 2TÞe�2ixT ;

(12)

where we have defined the detunings

D1 ¼
x2

1 � x2

2x
� x1 � x; D2 ¼

x2
2 � x2

2x
� x2 � x

and the new nonlinearity parameters c1,2¼ 3k1,2/2x.

The steady state solutions are thus given by the system

of transcendental equations

ðD1 þ iaþ c1jAj2ÞA ¼ iaðFþWe�ixTÞ;

ðD2 þ iaþ c2jBj2ÞB ¼ iaUe�ixT ;

W ¼ Be�ixT � Ue�2ixT ;

U ¼ Ae�ixT �We�2ixT :

(13)

Solving the last two equations and substituting in the first

two yields

W ¼ �Ae�ixT þ BeixT

e2ixT � e�2ixT
;

U ¼ AeixT � Be�ixT

e2ixT � e�2ixT
;

D1 þ iaþ c1jAj2
� �

A ¼ ia Fþ�Ae�ixT þ BeixT

e2ixT � e�2ixT
e�ixT

� �
;

D2 þ iaþ c2jBj2
� �

B ¼ ia
AeixT � Be�ixT

e2ixT � e�2ixT
e�ixT :

Note that this solution runs into troubles when e�2ixT¼ 1,

since then the system is undetermined (a “small denomi-

nator” problem). Using terminology from optics, this corre-

sponds to the Fabry-Perot resonances xn ¼ pn
2T, n integer, of

the modes of the “cavity” represented by the portion of the

string comprised between the oscillators.

Away from such resonances, equations are solved by

introducing the amplitudes and phase shifts as A ¼ jAjeih;
B ¼ jBjeiðhþqÞ. Eliminating h and q, we obtain
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CjAj2 � DjBj2
� �2 þ a2

4
jAj2 þ jBj2
� �2 ¼ a2jAj2F2

D2 þ a2

4

	 

jBj2 ¼ a2

4

jAj2

sin22xT
; (14)

where

C � D1 þ c1jAj2 þ
a

2
cot2xT;

D � D2 þ c2jBj2 þ
a

2
cot2xT:

In the symmetric case (i.e., when the oscillators are

equal), D1 ¼ D2 ¼ D, c1 ¼ c2 ¼ c, perfectly transmitted solu-

tions jAj ¼ jBj ¼ F exist for C ¼ D ¼ 6 a
2

cot2xT, i.e., for

Dþ cF2 ¼ 0; Dþ cF2 ¼ a cot2xT:

The last equations determine the nonlinear resonances of the

system: whenever such solutions exist, a multistable regime

is expected, where asymmetric propagation should set in.23

This is confirmed in Fig. 2, where we plot jBj2 versus F2 in

the bistable regime and compare the symmetric case with

two ones in which D1 6¼ D2. The forward (respectively,

backward) case corresponds to an input applied to the first

(respectively, second) oscillator. This is obviously equiva-

lent to compare solutions of (13) whereby the two oscilla-

tors are exchanged. As it is seen, there are regions close to

the nonlinear resonance, in which the same input can be

transmitted very differently.23 In the case of the lower panel

of Fig. 2, transmission in one direction is actually almost

suppressed.

To conclude this subsection, we comment on the dy-

namics close to the Fabry-Perot resonances. To this aim, we

let x¼xnþ � with � being a smallness parameter such that

e62ixT � 1 6 2i� and assume a perturbative expansion

A ¼ A1�þ A2�
2…; B ¼ B1�þ B2�

2…; F ¼ F1�

(the last is just a rescaling of the force). Substituting and

equating the leading order terms

O 1ð Þ : A1 ¼ B1

O �ð Þ : D1 þ iað ÞA1 ¼ iaF1 þ
a

4
�A2 þ B2ð Þ;

D2 þ iað ÞA1 ¼
a

4
A2 � B2ð Þ:

From which we find the solution up to corrections O(�)

A ¼ B ¼ iaF

D1 þ D2 þ 2ia
;
jBj2

jFj2
¼ a2

D1 þ D2ð Þ2 þ 4a2
:

Note that, in this limit, the nonlinear terms are irrelevant and

transmission coefficient is therefore symmetric with respect

to the exchange of the two oscillators. So we do not expect

sizable reciprocity violations close to resonances.

B. Higher-order resonances

As mentioned in Sec. I, we are mostly interested in the

case of a transmitted wave having mostly the same frequency

as the input one. For completeness, we briefly touch on the

problem of higher-order resonances which can be studied with

a similar approach. Let us consider, for instance, the case of a

1:3 resonance, namely, the one in which x�x1�x2/3.

Conceptually, this corresponds to experimentally relevant sit-

uations in which the rectification is induced by excitation of

higher-order harmonics.4,18

The mechanism at work here is the following: the inci-

dent wave weakly excites the third harmonic of the first os-

cillator. The latter is in resonance with the second and can be

transmitted. On the other hand, excitation of the second os-

cillator is negligible since almost no power can be trans-

ferred. This suggests looking for solutions of the form

vðtÞ ¼ Aeixt þ aA3e3ixt þ c:c: _vðtÞ ¼ ixAeixt þ c:c:

uðtÞ ¼ aBe3ixt þ c:c: _uðtÞ ¼ 3iaxBe3ixt þ c:c:

with / and w having the same form as in Subsection III A.

The coupling between oscillators should thus occur through

the third-harmonic amplitude A3. This means that the asym-

metry of transmission should be pretty weak, of order a2,

and thus not very effective.

C. Small delay limit

Consider the case in which a � x� 1/T but xT !
const. In this limit, we can neglect the delay in Eq. (13) (up

to terms of order O(a2)). It means that the retardation effects

FIG. 2. Input-output curves computed from Eq. (14) for a2¼ 0.4,

c1¼ c2¼ 1, xT¼p/4, and different detuning values. In both panels, the solid

black line corresponds to the symmetric case D1,2¼ 1, while dashed and

dotted-dashed lines are, respectively, for and D1,2¼�1(1 6 0.1) (upper

panel) and D1,2¼�1(1 6 0.2) (lower panel), i.e., the left-to-right and right-

to-left transmission for unequal oscillators. The thin solid line is the bisec-

trix. Note that in the second case for F � 1, there is basically no transmis-

sion in one of the two directions.
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enter only through phase shifts. Expressing W, U as a func-

tion of A, B in the last two Eq. (13), we get

i _A þ d1 þ
ia

2
þ c1jAj2

� �
A ¼ iaFþ jB;

i _B þ d2 þ
ia

2
þ c2jBj2

� �
B ¼ jA; (15)

where we have introduced the new detunings and coupling

d1;2 � D1;2 þ
a

2
cot2xT; j � a

2 sin 2xT
: (16)

Before proceeding further, we note that these equations

resemble the ones obtained in Ref. 38 for a photonic Fabry-

Perot resonator coupled with two off-channel defects.

We performed some numerical experiments with these

simplified equations (in rescaled units in which a¼ 1 was

set). The generic findings are

1. For a given external input F, the dynamics approaches a

fixed point or a limit cycle; neither quasiperiodicity nor

chaos is observed.

2. The nonreciprocal behavior manifests itself in all the pos-

sible combinations of constant output in both directions,

and constant in one direction and periodic in the other. As

this would correspond to a modulation of output in the

original model, we may term this as a nonreciprocal
modulator.

3. The underlying Hopf bifurcations are typically subcritical

when the nonlinearities have the same sign and supercriti-

cal otherwise.

The results are exemplified in Figs. 3 and 4. For

instance, Figs. 4(a) and 4(c) display a case of a nonreciprocal

modulation. Indeed, the output in the forward direction is

modulated periodically for amplitudes larger than F¼ 2.5,

where a subcritical Hopf bifurcation sets in. On the contrary,

the output in the backward direction remains periodic in the

same ranges of input amplitudes.

IV. GENERAL CASE

Here, we discuss the case where no separation of time

scales occurs and we have to integrate the full system Fig. 1

numerically. We report on the results of numerical simula-

tions of (5)–(8) for T¼ 8. The potentials of the two point

oscillators are taken in form (11). The system has many pa-

rameters; main of them are the eigenfrequencies of the oscil-

lators. In most of the numerical results below, we use

x1¼ 1.2, x2¼ 1, and k1¼ k2¼ 1.

To get some insight on the dynamics, we first analyze

the system ((5)–(8) and (11)) linearized around the trivial

fixed point. We report on resulting eigenvalue spectrum in

Fig. 5. One can see that while eigenmodes (the Fabry-Perot

modes) with frequencies close to that of the oscillators have

large decay rates, those with small and large frequencies

have very low decay rates. This is a well-known property of

hyperbolic systems, and correspondingly of delay systems of

neutral type like Eqs. (5)–(8). Large (in fact, infinite) number

of nearly neutral modes makes many methods of numerical

analysis hardly applicable. To avoid excitation of such high-

frequency modes, we nearly adiabatically switched on the

external field in the study of scattering of the wave on the

oscillators.

The main parameters that we change in the study of wave

propagation are the frequency x and the amplitude A of the

incoming wave, as we choose in Eq. (5) _F ¼ xA cosðxsÞ. For

each amplitude, we focus on violations of reciprocity. Given

initially an empty system, we send a wave with the amplitude

slowly growing from zero to the maximal value, after which

this amplitude remains constant. After transients, we calculate

the average transmitted and reflected power; furthermore, cor-

relation properties of the transmitted and reflected waves have

been analyzed.

FIG. 3. Simulations of Eq. (15): input-

output curves (a)–(d) and transmission

coefficients (e) and (f) for

D1,2¼�2.5(1 6 0.05) and xT¼ 0.5.

Left panels: c1¼ c2¼ 1 right panels:

c1¼�c2¼ 1. Panels (a) and (b) and

solid black lines in panels (d) and (f)

refers to the forward propagation; (c)

and (d) and dashed red lines in (d) and

(f) to the backward one; input ampli-

tude F is increased in steps from the

lowest value.
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As one can expect, for small amplitudes of the incoming

wave the system is fully reciprocal, and we illustrate first

deviations from this in Fig. 6(a), where the results for a rela-

tively small amplitude A¼ 0.2 are shown. Here, nonlinear

effects are maximal in the range of frequencies close to that

of oscillators, while outside of the range 0.9 � x � 1.3 the

transmission rates in both directions follow the structure of

linear modes. Non-reciprocity is much stronger expressed at

a larger amplitude A¼ 1 (see Fig. 6(b)). Moreover, here, the

complexity of the field is rather different for the two ways of

propagation. We illustrate this in Fig. 7, where we show

transmitted waves for A¼ 1 and x¼ 1.2467. While the wave

transmitted in one direction is periodic, the one transmitted

in the other direction has a more complex form. Detailed

analysis of the autocorrelation function shows however, that

the correlations do not decay but the whole process appears

quasiperiodic (at the level of our numerical accuracy we can-

not in fact distinguish quasiperiodic regimes from periodic

ones with large period).

FIG. 4. Simulations of Eq. (15): same

as in previous figure with xT¼ 1.4.

For the oscillating amplitude regimes,

in panels (e) and (f) the time-averaged

amplitudes are reported.

FIG. 5. Eigenmodes (blue filled circles) for x1¼ 1, x2¼ 1.2, and a¼ 0.25.

Red dotted lines show Fabry-Perot resonances xk¼ kp/(2T), green dashed

lines show the oscillator frequencies x1,2.

FIG. 6. Transmission coefficients in dependence on the frequency of the

incoming wave, for a¼ 0.1 and two amplitudes: (a) A¼ 0.2 and (b) A¼ 1.

Solid black line: left-to-right, dashed red line: right-to-left.
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For large amplitudes of incoming wave chaotic scatter-

ing in model (5)–(8) is observed. We illustrate this in Fig. 8,

where we show transmitted fields for A¼ 20 and x¼ 1.45.

Probably, the mostly nontrivial situation is when the

transmission in one direction is chaotic, while in other direc-

tion periodic. We explored several sets of parameters and

found such a situation for the “resonant” frequencies of

lumped oscillators x2¼ 1.8, x1¼ 0.6. This “chaotic diode”

regime is illustrated in Fig. 9.

V. CONCLUSIONS

In this paper, we described non-reciprocity effects in

wave scattering on lumped nonlinear oscillators. We have

analyzed equations describing a simple model of a linear

string with two attached oscillators, on two levels. Close to

resonance, we used amplitude equations, which allowed us a

simplified analysis of transmitted and reflected waves. Here,

we demonstrated non reciprocity and multistability of

scattering. Already at this level of approximation, we have

shown that this setup can act as a nonreciprocal modulator

via a Hopf bifurcation of the steady solutions.

In the second part, we performed a numerical analysis

of full equations, and found more complex regimes of scat-

tering: quasiperiodic and chaotic. A quite interesting finding

is that of chaotic non-reciprocity: while a periodic wave sent

from one side remains periodic, the same wave sent on the

system from the other side becomes chaotic. We think that

such a regime might find application in chaotic communica-

tion. Unfortunately, we cannot link the two approaches. In

the first part, the equations are derived in the asymptotic

limit of large frequency, which is hardly accessible in nu-

merical studies of the full equations performed in part two.

This is mainly due to neutral type of the appearing

differential-delay equations. Another difference is that in

simulating the full equations we are not limited by a weak

nonlinearity, and in fact we considered rather large ampli-

tudes to see chaotic regimes.

In most presented cases, we reported scattering states

obtained by direct numerical simulations. These yield only

stable solutions. In several cases, we revealed bistability:

FIG. 7. (a) Transmitted waves from left to right (black) and from right to

left (red). (b) Autocorrelation functions of the black field in panel (a). Time

axis is in units of the period of the incident wave.

FIG. 8. Transmitted waves from left to right (bottom panel) and from right

to left (top panel) are chaotic. Time axis is in units of the period of the inci-

dent wave.

FIG. 9. Transmitted waves from left to right ((a), blue) and from right to left

((b), red), and their autocorrelation functions (panels (c) and (d)).

Parameters: A¼ 16, x1¼ 0.6, x2¼ 1.8, and x¼ 1.5. Time axis is in units of

the period of the incident wave.
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Scanning solutions by slow change of frequency of the inci-

dent wave different regimes have been obtained in some fre-

quency ranges depending on whether it was decreased or

increased. One cannot exclude higher degrees of multistabil-

ity, i.e., co-existence of many stable branches, but such an

analysis would require much stronger computational efforts.

In the present work, we focused on an idealized system,

where the waves are non-dispersive and there is no dissipa-

tion, neither in the wave propagation nor in the lumped oscil-

lators. This allowed us a coinsize formulation in terms of

delayed differential equations, although of neutral type. For

more realistic applications, e.g., in optical systems, one

needs to incorporate effects of dispersion and diffusion/dissi-

pation. We expect, however, that non-trivial regimes of com-

plex non-reciprocity could be found in such systems as well.
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APPENDIX: DERIVATION OF THE EQUATIONS

In the Appendix, we derive the equation of motion of

the system. We refer to Fig. 1 and the main text for the defi-

nition of the various quantities. For the string field, we have

four boundary conditions

vðtÞ ¼ FðtÞ þ aðt� L=2cÞ
¼ /ðtþ L=2cÞ þ wðt� L=2cÞ ;

uðtÞ ¼ bðt� L=2cÞ ¼ /ðt� L=2cÞ þ wðtþ L=2cÞ ;

and the expressions for derivatives

@y0

@x
¼ � 1

c
_/ t� x=cð Þ þ 1

c
_w tþ x=cð Þ ;

@y�

@x
¼ � 1

c
_F t� xþ L=2ð Þ=cð Þ þ 1

c
_a tþ x=cð Þ ;

@yþ

@x
¼ � 1

c
_b t� x=cð Þ :

Substituting this in the equations for v, u, we get

m1€v þ V vð Þ ¼ S

c
ð� _/ tþ L=2cð Þ þ _w t� L=2cð Þ

þ _F tð Þ � _a t� L=cð ÞÞ ;

m2€u þ U uð Þ ¼ S

c
ð� _b t� L=2cð Þ � _w tþ L=2cð Þ

þ _/ t� L=2cð ÞÞ :

From the boundary conditions we can express a and b

bðt� L=2cÞ ¼ uðtÞ ; aðt� L=2cÞ ¼ vðtÞ � FðtÞ :

Substitution of this gives

m1€v þ V vð Þ ¼ S

c
ð� _/ tþ L=2cð Þ þ _w t� L=2cð Þ

þ _F tð Þ � _v tð Þ þ _F tð ÞÞ ;

m2€u þ U uð Þ ¼ S

c
ð� _u tð Þ � _w tþ L=2cð Þ þ _/ t� L=2cð ÞÞ :

Furthermore, substituting

_wðtþ L=2cÞ ¼ � _/ðt� L=2cÞ þ _uðtÞ ;
_/ðtþ L=2cÞ ¼ � _wðt� L=2cÞ þ _vðtÞ ;

yields the final system

m1€v þ V vð Þ ¼ S

c
2 _w t� L=2cð Þ þ 2 _F tð Þ � 2 _v tð Þ
� �

;

m2 €u þ U uð Þ ¼ S

c
�2 _u tð Þ þ 2 _/ t� L=2cð Þ
� �

;

_w tð Þ ¼ _u t� L=2cð Þ � _/ t� 2L=2cð Þ ;
_/ tð Þ ¼ _v t� L=2cð Þ � _w t� 2L=2cð Þ :

We introduce the time scale according to some fre-

quency X, so that the new dimensionless time will be s¼Xt.
Furthermore, we restrict to the case m1¼m2¼m. Then,

d2v

ds2
þ V vð Þ

mX2
¼ S

mcX
2 _w s� XL=2cð Þ þ 2 _F X�1sð Þ � 2 _v
� �

;

d2u

ds2
þ U uð Þ

mX2
¼ S

mcX
�2 _u þ 2 _/ s� XL=2cð Þ
� �

;

_w sð Þ ¼ _u s� XL=2cð Þ � _/ s� 2XL=2cð Þ ;
_/ sð Þ ¼ _v s� XL=2cð Þ � _w s� 2XL=2cð Þ ;

which upon suitable parameter redefinition reduces to system

(5)–(8).
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