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We study synchronization properties of coupled oscillators on networks that allow description in

terms of global mean field coupling. These models generalize the standard Kuramoto–Sakaguchi

model, allowing for different contributions of oscillators to the mean field and to different forces from

the mean field on oscillators. We present the explicit solutions of self-consistency equations for the

amplitude and frequency of the mean field in a parametric form, valid for noise-free and noise-driven

oscillators. As an example, we consider spatially spreaded oscillators for which the coupling

properties are determined by finite velocity of signal propagation. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4880835]

Synchronization of large ensembles of oscillators is an

ubiquitous phenomenon in physics, engineering, and life

sciences. The most simple setup pioneered by Winfree

and Kuramoto is that of global coupling, where all the

oscillators equally contribute to a mean field which acts

equally on all oscillators. In this study, we consider a gen-

eralized Kuramoto-type model of mean field coupled

oscillators with different parameters for all elements. In

our setup there is still a unique mean field, but oscillators

differently contribute to it with their own phase shifts

and coupling factors, and also the mean field acts on each

oscillator with different phase shifts and coupling coeffi-

cients. Additionally, the noise term is included in the con-

sideration. Such a situation appears, e.g., if the oscillators

are spatially arranged and the phase shift and the attenu-

ation due to propagation of their signals cannot be

neglected. A regime, where the mean field rotates uni-

formly, is the most important one. For this case, the solu-

tion of the self-consistency equation for an arbitrary

distribution of frequencies and coupling parameters is

found analytically in the parametric form, both for noise-

free and noisy oscillators. First, we consider independent

distributions for the coupling parameters when self-

consistency equations can be greatly simplified. Second,

we consider an example of a particular geometric organi-

zation of oscillators with one receiver that collects signals

from oscillators, and with one emitter that sends the driv-

ing field on them. By using our approach, synchroniza-

tion properties can be found for different geometric

structures and/or for different parameter distributions.

I. INTRODUCTION

Kuramoto model of globally coupled phase oscillators

lies at the basis of the theory of synchronization of oscillator

populations.1,2 The model can be formulated as the

maximally homogeneous mean field interaction: all oscilla-

tors equally contribute to the complex mean field, and this

field equally acts on each oscillator (when this action also

includes a phase shift, common for all oscillators, one speaks

of the Kuramoto–Sakaguchi model3). The only complexity

in this setup stems from the distribution of the natural fre-

quencies of the oscillators, and from a possibly nontrivial

form of the coupling function (which can be, e.g., a nonlinear

function of the mean field4,5).

If one considers coupled oscillators on networks, quite a

large variety of setups is possible where different oscillators

are subject to different inputs, so that mean fields are not

involved in the interaction and thus the coupling cannot be

described as a global one. In this paper, we consider a situa-

tion where the oscillators are structured as a specific network

that allows one to describe the coupling as a global one. We

assume that there is some complex “global field” which

involves contributions from individual oscillators, and which

acts on all of them. However, contrary to the usual

Kuramoto–Sakaguchi setup, we assume the contributions to

the global field to be generally different, depending on indi-

vidual oscillators. Furthermore, the action of this global field

on individual oscillators is also different.

Different models having features described above have

been studied in the literature. In Ref. 6, the contributions to

the global field from all oscillators were the same but the

action on the oscillators was different—some oscillators

were attracted to the mean field and some repelled from it. A

generalization of these results on the case of a general distri-

bution of forcing strengths is presented in Ref. 7. In Ref. 8,

the authors considered different factors for contributions to

the mean field and for the forcing on the oscillators, how-

ever, no diversity in the phase shifts was studied. In Ref. 9,

only diversity of these phase shifts was considered.

In this paper, we consider a generic Kuramoto-type

globally coupled model, where all parameters of the cou-

pling (factors and phases of the contributions of oscillators

to the global field, and factors and phases for the forcing ofa)mr.voov@gmail.com
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this mean field on the individual oscillators) can be different

(cf. Ref. 10 where such a setup has been recently independ-

ently suggested). Furthermore, external noise terms are

included in the consideration. We formulate self-consistency

conditions for the global field and give an explicit solution of

these equations in a parametric form. We illustrate the results

with different cases of the coupling parameter distributions.

In particular, we consider a situation where the factors and

phases of the coupling are determined by a geometrical con-

figuration of the oscillator distribution in space.

II. BASIC MODEL

We consider a generic system of the Kuramoto-type

phase oscillators hi(t) having frequencies xi, with the mean

field coupling depicted in Fig. 1. Each oscillator j contributes

to the mean field H(t) with its own phase shift bj and cou-

pling constant Bj. The mean field H(t) acts on oscillator i
with a specific phase shift ai and a coupling strength Ai.

It is convenient to introduce additionally the overall

coupling strength e (e.g., by normalizing one or both of the

introduced quantities Ai, Bj; below for definiteness we

assume Ai, Bj> 0 because changing the sign of the coupling

can be absorbed to the phase shifts bj, ai) and the overall

phase shift d (e.g., by normalizing the shifts bj, ai).

Additionally, we assume that the oscillators are subject to

independent Gaussian white noise forces (hniðtÞnjðt0Þi
¼ 2dijdðt� t0Þ) with intensity D. In this formulation, the

equations of motions of the oscillators read

_hi ¼ xi þ Ai
e
N

XN

j¼1

Bj sinðhj � bj � hi þ ai � dÞ þ
ffiffiffiffi
D
p

niðtÞ:

(1)

The system (1) can be rewritten in terms of the mean field

H(t)

_hi ¼ xi þ Ai ImðHðtÞe�iðhi�aiÞÞ þ
ffiffiffiffi
D
p

niðtÞ;

HðtÞ ¼ ee�id

N

XN

j¼1

Bje
iðhj�bjÞ: (2)

It is convenient to reduce the number of parameters by a

transformation of phases ui ¼ hi � ai. Then, the equations

for ui are

_ui ¼ xi þ Ai Im HðtÞe�iui

� �
þ

ffiffiffiffi
D
p

niðtÞ;

HðtÞ ¼ ee�id

N

XN

j¼1

Bje
iðuj�wjÞ;

(3)

where wj¼bj � aj.

This model appears to be the most generic one among

models of mean-field coupled Kuramoto-type phase oscilla-

tors. If all the parameters of the coupling Ai, Bi, bi, ai are

constant, then the model reduces to the standard

Kuramoto–Sakaguchi one.3 The case with different Ai, ai,

and xi of specific form has been considered previously in

Refs. 9 and 11. Also, the case with double delta distribution

of Ai has been studied in Ref. 6. The case ai¼bi¼ 0 was

considered in Ref. 8. In Ref. 10, the system (1) without noise

was examined. Below we formulate the self-consistent equa-

tion for this model and present its explicit solution.

It should be noted that the complex mean field H(t) is

different from the “classical” Kuramoto order parameter

N�1
P

j eiuj and can be larger than one, depending on the pa-

rameters of the system. Because this mean field yields the

forcing on the oscillators, it serves as a natural order parame-

ter for this model.

III. SELF-CONSISTENCY CONDITION AND ITS
SOLUTION

Here, we formulate, in the spirit of the original

Kuramoto approach, a self-consistent equation for the mean

field H(t) in the thermodynamic limit, and present its solution.

In the thermodynamic limit, the quantities x, A, B, and w
have a joint distribution density g(x)¼ g(x, A, B, w), where x
is a general vector of parameters. While formulating in a gen-

eral form, we will consider below two specific situations: (i)

all the quantities x, A, B, and w are independent, then g is a

product of four corresponding distribution densities; and (ii)

situation where the coupling parameters A, B, and w are

determined by a geometrical position of an oscillator and thus

depend on this position, parameterized by a scalar parameter

x, while the frequency x is distributed independently of x.

Introducing the conditional probability density function

qðu; t j xÞ, we can rewrite the system (3) as

_u ¼ xþ A Im HðtÞe�iu
� �

þ
ffiffiffiffi
D
p

nðtÞ
¼ xþ A Q sinðH� uÞ þ

ffiffiffiffi
D
p

nðtÞ;

HðtÞ ¼ QeiH ¼ ee�id
ð

gðxÞBe�iw
ð2p

0

qðu; t j xÞeiudu dx: (4)

It is more convenient to write equations for Du ¼ u�H,

with the corresponding conditional probability density func-

tion qðDu; t j xÞ ¼ qðu�H; t j xÞ:

d

dt
Du ¼ x� _H � A Q sinðDuÞ þ

ffiffiffiffi
D
p

nðtÞ; (5)

Q ¼ ee�id
ð

gðxÞBe�iw
ð2p

0

qðDu; t j xÞeiDudDu dx: (6)

The Fokker–Planck equation for the conditional probability

density function qðDu; t j xÞ follows from Eq. (5):FIG. 1. Configuration of the network, coupled via the mean field H(t).
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@q
@t
þ @

@Du
x� _H � A Q sinðDuÞ
� �

q
� �

¼ D
@2q
@Du2

: (7)

While one cannot a priori exclude complex regimes in

Eq. (7), of particular importance are the simplest synchro-

nous states where the mean field H(t) rotates uniformly

(this corresponds to the classical Kuramoto solution).

Therefore, we look for such solutions that the phase H
of the mean field H(t) rotates with a constant (yet

unknown) frequency X. Correspondingly, the distribution

of phase differences Du is stationary in the rotating with X
reference frame (such a solution is often called traveling

wave)

_H ¼ X; _qðDu; t j xÞ ¼ 0: (8)

Thus, the equation for the stationary density qðDu; t j xÞ
¼ qðDu j xÞ reads

@

@Du
x� X� A Q sinðDuÞ½ �qð Þ ¼ D

@2q
@Du2

: (9)

Suppose we find solution of Eq. (9), which then depends

on Q and X. Denoting

FðX;QÞ ¼
ð

gðxÞBe�iw
ð2p

0

qðDu; t j xÞeiDudDu dx; (10)

we can then rewrite the self-consistency condition (6) as

Q ¼ ee�idFðX;QÞ: (11)

It is convenient to consider now Q, X not as unknowns but

as parameters, and to write explicit equations for the cou-

pling strength constants e, d via these parameters

e ¼ Q

jFðX;QÞj ; d ¼ argðFðX;QÞÞ: (12)

This solution of the self-consistency problem is quite con-

venient for the numerical implementation, as it reduces to

finding of solutions of the stationary Fokker–Planck equation

(9) and their integration (10). Below we consider separately

how this can be done in the noise-free case and in presence

of noise.

IV. NOISE-FREE CASE

In the case of vanishing noise D¼ 0 and Eq. (9)

reduces to

@

@Du
x� X� A Q sinðDuÞ½ �qð Þ ¼ 0: (13)

The solution of Eq. (13) depends on the value of the parame-

ter A. There are locked phases when jAj > jX� xj=Q so

x� X� A Q sinðDuÞ ¼ 0 and rotated phases when jAj
< jX� xj=Q such that q¼CðA;xÞjx�X�AQsinðDuÞj�1

.

So the integral over parameter x in Eq. (10) splits into two

integrals

FðX;QÞ ¼
ð
jAj>jX�xj=Q

gðxÞBe�iw eiDuðA;xÞdx

þ
ð
jAj<jX�xj=Q

gðxÞBe�iw CðA;xÞ

�
ð2p

0

eiDu dDu
jx� X� A Q sinðDuÞj dx ; (14)

where in the first integral

sinðDuðA;xÞÞ ¼ �X� x
A Q

and in the second one

CðA;xÞ ¼
ð2p

0

dDu
jx� X� A Q sinðDuÞj

 !�1

:

Integrations over Du in Eq. (14) can be performed explicitly

CðA;xÞ ¼
ð2p

0

dDu
jx� X� A QsinðDuÞj

 !�1

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX� xÞ2 � A2Q2

q
2p

;

ð2p

0

eiDu dDu
jx� X� A QsinðDuÞj ¼

2pi

AQ

X� x
jX� xj �

X� xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX� xÞ2 � A2Q2

q
0
@

1
A: (15)

After substitution of Eq. (15) into Eq. (14), we obtain the final general expression for the main function F(X, Q)

FðX;QÞ ¼
ð
jAj>jX�xj=Q

gðxÞBe�iw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðX� xÞ2

A2Q2

s
dx � i

ð
gðxÞBe�iw X� x

A Q
dx

þ i

ð
jAj<jX�xj=Q

gðxÞBe�iw X� x
jX� xj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX� xÞ2

A2Q2
� 1

s
dx : (16)
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A. Independent parameters

The integrals in Eq. (16) simplify in the case of inde-

pendent distributions of the parameters x, A and B, w. That

means that gðxÞ ¼ g1ðx;AÞ g2ðB;wÞ. In this case, it is con-

venient to consider e and d as scaling parameters of the dis-

tribution ~g2ð ~B; ~wÞ, such that

ee�id ¼
ð ð

~g2ð ~B; ~wÞ ~Be�i~wd ~Bd~w; (17)

so the parameters B ¼ ~B=e and w ¼ ~w � d have such a dis-

tribution g2ðB;wÞ ¼ e~g2ð ~B; ~wÞ that satisfiesð ð
g2ðB;wÞBe�iwdBdw ¼ 1: (18)

From Eq. (18) it follows that Eq. (16) reduces, because the

integration over B and w yields 1, to the following

expression:

FðX;QÞ ¼
ð ð
jAj>jX�xj=Q

g1ðx;AÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðX� xÞ2

A2Q2

s
dAdx

� i

ð ð
g1ðx;AÞ

X� x
A Q

dAdx

þ i

ð ð
jAj<jX�xj=Q

g1ðx;AÞ

� X� x
jX� xj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX� xÞ2

A2Q2
� 1

s
dAdx: (19)

Then the parameters e and d can be found from Eq. (12)

depending on X and Q. Noteworthy, all the complexity of

distributions of parameters B and w is accumulated in values

of e and d, while distributions of x, A still contribute to the

integrals.

Below we give an example of application of our theory.

In Fig. 2, we present results of the calculation of the order

parameter Q and the frequency of the global field X as func-

tion e, d, for g1(x, A)¼ g(A)g(x) and gðAÞ ¼ A
h2 e�A=h;

gðxÞ ¼ 1ffiffiffiffi
2p
p e�x2=2.

Furthermore, Eq. (19) simplifies even more when the

individual frequencies of the oscillators are identical, i.e.,

when g(x)¼ d(x � x0). Then the integration over dx can

be performed first

FðX;QÞ ¼
ð
jAj>jX�x0j=Q

gðAÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðX� x0Þ2

A2Q2

s
dA

� i

ð
gðAÞX� x0

A Q
dA þ i

ð
jAj<jX�x0j=Q

gðAÞ

� X� x0

jX� x0j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX� x0Þ2

A2Q2
� 1

s
dA: (20)

It is convenient to treat the function F(X, Q) in Eq. (20) as a

function of a new variable Y ¼ X�x0

Q , which is a combination

of variables X and Q. Then Eq. (20) for F(X, Q) transforms

to the following equation for F(Y):

FðYÞ ¼
ð
jAj>jYj

gðAÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Y2

A2

r
dA

�i

ð
gðAÞ Y

A
dA þ i

ð
jAj<jYj

gðAÞ Y

jYj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2

A2
� 1

r
dA; (21)

where we took into account that Q� 0.

Despite the fact that Eq. (12) are still valid for finding e
and d, it is more convenient to use Y and e as a parameters in

Eq. (11) instead of Q and X. Then the final expressions for

finding Q, X and d take the following form:

Q ¼ e jFðYÞj; X ¼ x0 þ eY jFðYÞj; d ¼ argðFðYÞÞ: (22)

The results of the calculation of Q(e, d) and X(e, d) for

the identical natural frequencies are shown in Fig. 3, where

we chose g1ðx;AÞ ¼ A
h2 e�A=hdðx� x0Þ.

Summarizing this section, we have presented general

expressions for the order parameter, frequency of the mean

field and the coupling parameters in a parametric form.

These expressions are exemplified for specific distributions

of the strengths and phase shifts in the couplings in Figs. 2

and 3. In the case of a distribution of natural frequencies

FIG. 2. Dependencies of the amplitude Q of the mean field (a) and of its fre-

quency X on the parameters e and d, for h¼ 1. White area corresponds to

asynchronous state with vanishing mean field.
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(Fig. 2), there is a threshold in the coupling for the onset of

collective dynamics. For the oscillators with equal frequen-

cies (Fig. 3), there is no threshold.

V. SELF-CONSISTENT SOLUTION IN THE PRESENCE
OF NOISE

Here, we have to find the stationary solution of the

Fokker–Planck equation (9). It can be solved in the Fourier

modes representation

qðDu j xÞ ¼ 1

2p

X
n

CnðxÞeinDu;

CnðxÞ ¼
ð2p

0

qe�inDudDu; C0ðxÞ ¼ 1: (23)

Substituting (23) in Eq. (9), we obtain

ð2p

0

dDu � @

@Du
ð½x�X� AQ sinðDuÞ�qÞ þD

@2q
@Du2

" #
e�ikDu

¼ �k2DCk þ ikðX�xÞCk þ ikAQ
Ck�1 �Ckþ1

2i
¼ 0: (24)

As a consequence, we get a tridiagonal system of algebraic

equations

½2kD� i2ðX� xÞ�Ck þ AQðCkþ1 � Ck�1Þ ¼ 0: (25)

The infinite system (25) can be solved by cutting it at some

large N, as follows (see Ref. 12):

Ck ¼ akCk�1; ak ¼ 2kD� i2ðX� xÞ; aN ¼
AQ

aN
;

ak ¼
AQ

ak þ AQakþ1

: (26)

As a result, C1 can be found recursively as a continued

fraction

C1 ¼ a1 ¼
AQ

a1 þ AQa2

¼…: (27)

From Eq. (27), it is obvious that in general C1 is a function

of X, Q, x, and A

C1 ¼ C1ðX;Q;x;AÞ: (28)

The integral over Du in (10) can be calculated using the

Fourier-representation (23), yieldingð2p

0

qðDu j xÞeiDudDu ¼ C�1ðX;Q;x;AÞ: (29)

Thus, the expression for F in the case of noisy oscilla-

tors reads

FðX;QÞ ¼
ð

gðxÞBe�iwC�1ðX;Q;x;AÞdx: (30)

A. Independent parameters

From the expression (28), it follows that the integral in

Eq. (30) simplifies in the same case of independent distribu-

tion of the parameters g(x)¼ g1(x, A) g2(B, w), similar to the

noise-free case described in Sec. IV. Here, we use the same

notations as before, including condition (18).

The parameters e and d can be found from Eq. (12),

where F(X, Q) is determined from

FðX;QÞ ¼
ð

g1ðx;AÞC�1ðX;Q;x;AÞdAdx: (31)

In this way, we obtain Q(e, d) and X(e, d) (Fig. 4). For calcu-

lations we used the same distribution g1(x, A) as in the

noise-free case.

Contrary to the noise-free case, when oscillator’s indi-

vidual frequencies are identical (delta-function distribution),

no further simplification of F(X, Q) appears possible. In

Fig. 5, we report the results for the same parameters as in

Fig. 3, but with noise D¼ 1.

In the considered model, the main effect caused by noise

is the shift of the synchronization threshold to larger values

of the coupling strength e. The noise acts very much similar

FIG. 3. Dependencies of the amplitude Q of the mean field (a) and of its fre-

quency X on the parameters e and d, for h¼ 1 and x0¼ 0. White area corre-

sponds to asynchronous state with vanishing mean field.
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to the distribution of natural frequencies; if the oscillator’s

individual frequencies are identical, noise leads to a non-

zero threshold in the coupling.

VI. EXAMPLE OF A GEOMETRIC ORGANIZATION OF
OSCILLATORS

In this section, we present a particular example of appli-

cation of general expressions above to the case where distri-

butions of parameters are determined by configuration of

oscillators. We consider spatially spreaded phase oscillators

with a common receiver that collects signals from all oscilla-

tors, and with an emitter that receives the summarized signal

from the receiver and sends the coupling signal to the oscil-

lators; below we assume that these signals propagate with

velocity c. We assume that the oscillators have the same nat-

ural frequencies x0¼ 1 (cases where the frequencies are dis-

tributed (dependent or independent of geometric positions of

oscillators) can be straightforwardly treated within the same

framework).

We assume that oscillators are distributed uniformly on

a circle of radius r. Each oscillator is thus labeled by the

angle xi (Fig. 6). The receiver, the emitter, and the center of

the circle are supposed to lie on one line.

Also, we assume that the phase shifts bj and ai are pro-

portional to the distances between the oscillator, the receiver,

and the emitter, so that the system can be described by

Eq. (1), where

bj ¼
x0

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2 � 2rb cos xj

q
;

ai ¼
x0

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 � 2ra cos xi

p
: (32)

Coupling strengths Bj and Ai are inversely proportional to the

square distances between each oscillator, receiver, and

emitter

FIG. 4. The same as Fig. 2, but with noise D¼ 1. FIG. 5. The same as Fig. 3, but with noise D¼ 1.

FIG. 6. Scheme of the system.
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Bj ¼
1

r2 þ b2 � 2rb cos xj
; Ai ¼

1

r2 þ a2 � 2ra cos xi
; (33)

where a and b is the distances from the center of the circle

to the emitter and the receiver, respectively (Fig. 6). The

parameters e and d can be interpreted as a coupling coeffi-

cient and a phase shift for the signal transfer from the

receiver to the emitter.

The theory developed above yields stable solutions for

any given parameters a and b. Since all the oscillators have

the same natural frequencies, the variable transformation

Y¼ (X � x0)/Q described in Sec. III should be performed.

Thus, it is suitable to use Eq. (22) in order to find Q, X, and

d as a functions of e and Y.

In the numerical example presented in Fig. 7, we fixed

b¼ r/2 and varied a, finding the order parameter Q(a) and

the frequency of the collective oscillations X(a) for e¼ 1 and

d¼ 0. One can see a sequence of synchronization regions

separated by asynchronous intervals; this is typical for sys-

tems with time delay in the coupling—in our case, this delay

is due to separation of the emitter from the community of

oscillators, and the finite speed of signal propagation

assumed. The dependencies shown are not smooth, because

as parameter a varies, some oscillators enter/leave the syn-

chronization domain.

VII. CONCLUSION

We have developed a theory of synchronization for

phase oscillators on networks with a special structure of cou-

pling through a global mean field. A unified description of

the frequency and the amplitude of the mean field in a para-

metric form is valid both for noise-free and noisy oscillators.

In the latter case numerical evaluation of a continued frac-

tion is needed, otherwise the solution reduces to calculation

of integrals over parameter distributions. As one of the

examples we considered a situation, where contributions to

the mean field and its action on oscillators are prescribed by

a geometric configuration of the oscillators; phase shifts and

the contribution factors result from the propagation of the

signals as waves having certain velocity. The general formu-

lation, we developed can be used for any such configuration.

It appears that the method above may be useful also in more

general network setups, where there is no global mean field,

but such a field can be introduced as approximation (cf.

Refs. 13 and 14).
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