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We consider a generalization of the Kuramoto model of coupled oscillators to the situation where

communities of oscillators having essentially different natural frequencies interact. General equations

describing possible resonances between the communities’ frequencies are derived. The simplest situation

of three resonantly interacting groups is analyzed in detail. We find conditions for the mutual coupling to

promote or suppress synchrony in individual populations and present examples where the interaction

between communities leads to their synchrony or to a partially asynchronous state or to a chaotic

dynamics of order parameters.
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Networks of coupled oscillators describe synchroniza-
tion in lasers [1] and Josephson junctions [2], atomic recoil
lasers [3], electrochemical oscillators [4], applauding per-
sons in a large audience [5], pedestrians on footbridges [6],
and many other systems. The synchronization transition in
the simplest setup, when all oscillators are of the same type
and coupled via a mean field, has been treated by
Kuramoto [7,8] in analogy with the mean field theory of
ferromagnetic phase transitions. Since then, the Kuramoto
model, where the coupled oscillators are represented through
the phase dynamics, has been used as a paradigmatic one for
mutual synchronization of oscillators [8–10]. In various
generalizations this approach has been extended to more
complex and general situations. One direction is the intro-
duction of complex coupling functions [11], with possible
nonlinear dependencies on the mean fields [12–14]. Another
very popular extension of the Kuramoto model deals with
heterogeneous oscillator populations, consisting of different
communities (groups) that differ in their contributions to the
mean fields and in their response to these fields [15,16]. In
particular, nontrivial regimes appear if some interactions are
‘‘attractive’’ and others ‘‘repulsive,’’ or the oscillators can be
characterized as ‘‘conformists’’ and ‘‘contrarians’’ [17].

In most studies of the interacting oscillator commun-
ities, it is assumed that all oscillators have close frequen-
cies around some basic one. For a small coupling this
allows one to obtain, by virtue of averaging over the basic
period, equations containing phase differences only, and
to apply the Kuramoto method to them. In this Letter we
extend the theory to the case of multifrequency commun-
ities, where natural frequencies of interacting groups differ
significantly. Such a situation can be observed in popula-
tions of neurons: it is known that in the brain regular
macroscopic activity is observed across different fre-
quency ranges [18]. In particular, alpha, gamma, and
theta bands may demonstrate quite regular oscillations,
the interaction of which can be treated according to the

presented framework. In the case of different basic fre-
quencies, one cannot perform a common averaging, but has
to check if resonances between different communities are
present. In our previous study we focused on
the nonresonant case [19]; in this Letter we show that
resonant interactions between communities lead to non-
trivial effects of mutual synchronization and desynchroni-
zation of groups, and also to chaotic behavior of the
mean fields.
We start with a formulation of general phase equations for

resonantly interacting oscillator communities. Oscillators
are described by their phases, and interact via mean fields,
produced by communities. A field produced by a commun-
ity with index m can thus be represented as a function of
the generalized order parameters [20] of this community

ZðmÞ
k ¼ heik’ðmÞ i; (1)

where hi means averaging over the community members.
A combination of these fields constitutes a forceQðtÞ, acting
on an oscillator from community 0, having frequency close
to !0, which influences its phase dynamics as [8,9]

_’ ¼ !0 þ�!þ Sð’ÞQðtÞ ¼ !0 þ �!þX
sne

in’QðtÞ;

where Sð’Þ ¼ P
sne

in’ is the phase sensitivity function of
the oscillator and �! is a small individual deviation from
!0. Representing this phase as ’ ¼ !0tþ ~’, where ~’
varies slowly on the time scale !�1

0 , we can average over

the period 2�=!0 to get

_~’ ¼ �!þX
sne

in~’qn!0
; (2)

where qn!0
¼ R2�=!0

0 dtQðtÞ exp½in!0t� is the component

of the forcing at the frequency �n!0. In this component
we have to consider the slowly varying ingredients of the
forcing as the ‘‘frozen’’ ones. To separate slow and fast time
scales in the forcing, we represent the order parameters as

PRL 110, 134101 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

29 MARCH 2013

0031-9007=13=110(13)=134101(5) 134101-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.134101


ZðmÞ
k ¼ ~ZðmÞ

k exp½ik!mt�, where !m is a basic frequency of

the community with index m, and ~Z are slow. Substituting
this in Q and expanding in powers of order parameters, we
can generally write

qn!0
¼ X

k;m

~ZðmÞ
k �ðk!m � n!0Þ

þ X
k;m;l;j

~ZðmÞ
k

~ZðjÞ
l �ðk!m þ l!j � n!0Þ þ � � � : (3)

We see that a direct interaction between communities m
and 0 is possible if their basic frequencies are in a rational
relation k!m ¼ n!0 (if this relation is fulfilled only ap-
proximately, one uses the freedom in the definition of the
basic frequency of the community and shifts !m slightly to
have an exact resonance). Furthermore, the second term
in (3) describes a ‘‘triplet’’ interaction if three communities
have frequencies satisfying k!mþl!j�n!0; additionally,

higher-order interactions between four communities, desc-
ribed by cubic in ~Z terms, are possible, etc.

In this Letter we do not aim to consider all possible
cases of resonant multifrequency interactions contained in
Eqs. (2) and (3) but focus on a simple example. We assume
the simplest situation where the phase sensitivity function
has only the basic harmonics n ¼ �1, and only the first-
order mean fields with k ¼ �1 in Eq. (1) contribute to the
coupling. In this case the basic resonant condition includes
three communities: !1 þ!2 ¼ !3 � �, with small mis-
match �. Also taking into account the interactions inside
communities [which are described by the first term in (3)
with !m ¼ !0], we end up with the phase model describ-
ing the resonant interaction of oscillators in three commun-
ities (cf. Ref. [21] for a particular case of 1:2 resonance).
To simplify notations, we denote the phases in these
communities as �k, c k, �k, and the corresponding order
parameters as z1 ¼ hei�i, z2 ¼ heic i, z3 ¼ hei�i:

_�k ¼ !1 þ �!1;k þ 2 Im½ð�1z1 þ �1z
�
2z3Þe�i�k�;

_c k ¼ !2 þ �!2;k þ 2 Im½ð�2z2 þ �2z
�
1z3Þe�ic k�;

_�k ¼ !3 þ �!3;k þ 2 Im½ð�3z3 þ �3z1z2Þe�i�k�:
(4)

Here, the terms �!1�3;k account for a distribution of

frequencies of individual oscillators within communities,
and �i ¼ "ie

i�i and �i ¼ �ie
i�i are complex coupling

constants. In the absence of mutual resonant coupling
(� ¼ 0), each community is described by the standard
Kuramoto-Sakaguchi model [22]. It is instructive to write
intercommunity coupling terms in the microscopic phase
equations:

_�k ¼ � � � þ �1

X
m;l

sinð�m � c l ��k þ �1Þ;

_c k ¼ � � � þ �2

X
m;l

sinð�m ��l � c k þ �2Þ;

_�k ¼ � � � þ �3

X
m;l

sinð�m þ c l � �k þ �3Þ:

To obtain a closed system of equations for the order
parameters z1;2;3, we adopt the Ott-Antonsen approach

[23], in which a particular form of the distribution of the
phases is assumed, parametrized by the order parameter.
If, furthermore, a Lorentzian distribution of frequencies
around the basic ones is considered (with widths �1;2;3), the

Ott-Antonsen equations take an especially simple form:

_z1 ¼ z1ði!1 ��1Þ þ ½�1z1 þ�1z
�
2z3 � z21ð��1z�1 þ��

1z2z
�
3Þ�;

_z2 ¼ z2ði!2 ��2Þ þ ½�2z2 þ�2z
�
1z3 � z22ð��2z�2 þ��

2z1z
�
3Þ�;

_z3 ¼ z3ði!3 ��3Þ þ ½�3z3 þ�3z1z2 � z23ð��3z�3 þ��
3z

�
1z

�
2Þ�:
(5)

System (5), describing the dynamics of order parameters
of three resonantly interacting communities, is the main
object of our analysis below. We focus on specific features
resulting from the mutual coupling, where it acts ‘‘against’’
the internal coupling within the communities.
Essential properties of the coupling between oscillators,

such as their tendency to synchrony or to asynchrony,
depend on the arguments of the complex coupling parame-
ters �i and �i. For the coupling inside a community, the
argument � corresponds to the phase shift in the oscillator-
to-oscillator coupling in the Kuramoto-Sakaguchi formu-
lation [22]; for cos�> 0 the coupling is attracting and
synchronizing, while for cos�< 0 it is repulsing and
desynchronizing. A corresponding interpretation of argu-
ments of mutual coupling �i is not so straightforward.
To achieve it, we rewrite the complex system (5) in terms
of the amplitudes and the phases of the complex order
parameters zk ¼ 	k exp½i�k�:

_	1 ¼ ��1	1 þ ð1� 	2
1Þ½"1	1 cos�1 þ �1	2	3 cosð�þ �1Þ�;

_	2 ¼ ��2	2 þ ð1� 	2
2Þ½"2	2 cos�2 þ �2	1	3 cosð�þ �2Þ�;

_	3 ¼ ��3	3 þ ð1� 	2
3Þ½"3	3 cos�3 þ �3	1	2 cosð�� �3Þ�;

_� ¼ �0 � ð	�1
3 þ 	3Þ�3	1	2 sinð�� �3Þ � ð	�1

2 þ 	2Þ�2	1	3 sinð�þ �2Þ � ð	�1
1 þ 	1Þ�1	2	3 sinð�þ �1Þ:

(6)
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Here, �0 ¼ �þ ð1þ 	2
3Þ"3 sin�3 � ð1þ 	2

2Þ"2 sin�2 �
ð1þ 	2

1Þ"1 sin�1 is the effective frequency mismatch that
also includes frequency shifts due to intracommunities’
interactions, and � ¼ �3 ��2 ��1 is the phase differ-
ence between the communities’ order parameters. One
can see from the equations for _	i that the effect of the
intercommunity coupling depends on signs of terms
cosð�� �iÞ. These depend on the dynamics of the phase
difference�, so a general conclusion is hardly possible. Let
us look on the simplest situation of exact resonance, where
�0 ¼ 0, of equal coupling constants �1 ¼ �2 ¼ �3, and of
equal order parameters in each community 	1 ¼ 	2 ¼ 	3.
Then the stable phase difference is �0 ¼ arctan½ðsin�3 �
sin�2 � sin�1Þðcos�3 þ cos�2 þ cos�1Þ�1�. Substituting
this solution, we come to the diagram in Fig. 1, which
shows the regions of positive and negative signs of factors
cosð�0 � �iÞ, i.e., the regions where mutual resonance
coupling between communities promotes (for positive
signs) synchrony or tends to desynchronize (for negative
signs). In analytical form, these conditions are as follows:
communities 1, 2, 3 synchronize for 1þ cosð�1 þ �3Þ þ
cosð�2 � �1Þ> 0, 1þ cosð�2 þ�3Þ þ cosð�2 ��1Þ> 0
and 1þ cosð�1 þ �3Þ þ cosð�2 þ �3Þ> 0, respectively,
and desynchronize otherwise. We see that desynchroni-
zation in all three communities is not possible, while there
are situations where two desynchronize, regimes where
one desynchronizes, and states where mutual interaction
improves synchrony in all communities.

While below we give examples for synchronization and
desynchronization effects in several setups, we want to
discuss here a situation that mostly promotes synchrony.
As can be seen from Fig. 1, the largest central region
around the origin where the synchrony is enhanced corre-
sponds to the parameters�1 � �2 � ��3, and in this case
�0 � �3, so that the opposite effect from the coupling on
low- and high-frequency communities is compensated by
the phase shift �0. In other words, for �1��2���3, the

force on each oscillator resulting from the interaction with
other communities leads to an additional attraction within
its own group. In some sense, this synchronizing action is
similar to synchronization of populations by common
external periodic or noisy forces; however, in our case
these forces are determined self-consistently through the
adjustment of�0, and their effect crucially depends on the
coupling parameters �i, as can be seen from Fig. 1.
Mutual synchronization.—In this section we assume

that, internally in each community, the coupling is either
repulsing or weakly (subcritically) attracting and without
the mutual coupling the asynchronous states 	i ¼ 0 are
stable. To see that the mutual coupling can synchronize,
we consider a simple symmetric case where the distribu-
tion widths and coupling constants are the same for all
communities �i ¼ �, "i ¼ ", �i ¼ �, the arguments of
coupling constants and mismatch vanish �i¼�i¼�¼0.
Then it is easy to see from (6) that� ! 0. Moreover, from
the existence of the nonincreasing Lyapunov function
L¼��	1	2	3�P

3
i¼1½12�lnð1�	2

i Þþ"	2
i �, it follows that

in this system only equilibria are possible. According to
our assumption � > ", so the asynchronous state 	1 ¼
	2 ¼ 	3 ¼ 0 is always stable, while for large enough �
another synchronous state appears via a saddle-node bifur-
cation. In Fig. 2 we show the regions of parameters with
bistable synchrony-asynchrony states and illustrate the
appearance of the synchronous states as the mutual cou-
pling is increased.
Mutual desynchronization.—As above, here we assume

equal parameters for communities’ heterogeneity � and the
internal coupling ", so that the latter is real and exceeds
the critical value for synchronization " > �, and we set
� ¼ �i ¼ 0. To account for possibly desynchronizing mu-
tual interactions, we need to have nonzero arguments at
least in some constants of mutual coupling. To simplify, we
assume symmetry of the two low-frequency communities
1 and 2, setting �1 ¼ �2 and�1 ¼ �2. According to Fig. 1,
synchronization in community 3 may be destroyed if
�3 þ �1 is close to �. In order to clearly see the desynch-
ronization effect of the mutual coupling, we assume �!0,
in this case the synchronous communities are in fact

FIG. 1 (color online). Regions of synchronizing and desynch-
ronizing effect from the triplet coupling, for different arguments
of coupling constants (we use here the combinations �1��2 and
2�3 þ �1 þ �2 because the stability borders can be represented
via these expressions solely; this allows us to project the three-
dimensional space �1;2;3 to the two-dimensional plane of pa-

rameters as presented). The effect on a community is marked by
(þ) for enhancing synchrony, and by (�) for a desynchronizing
action. In small overlaps of the ovals these markers ‘‘multiply’’.

FIG. 2 (color online). Left: Region on the plane of parameters
where partially synchronous state appears. Right: Bifurcation
diagrams showing dependence of the steady state order parame-
ters (equal for all communities) on the mutual coupling, for
different couplings within the groups.
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identical clusters with order parameters 	 ¼ 1, and a con-
stant phase difference �0 ¼ � arctanf�3 sinð�1 þ �3Þ�
½2�1 þ �3 cosð�1 þ �3Þ��1g � �1. This solution is stable
for small �1 þ �3, but loses stability through a transcrit-
ical bifurcation at the critical value of this parameter:

cosð�1;cþ�3;cÞ¼ ½1��2
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4�1�1Þ�2

3þ1
q

�ð2�1�3Þ�1.

Beyond this transition, communities 1 and 2 remain in
synchrony, while community 3 becomes partially synchro-
nized, first with a constant order parameter, and at�1 þ �3

closer to �, with a periodically oscillating one. We show
the bifurcation diagram for the partial desynchronization
transition in Fig. 3.

Chaotic order parameters.—In the case when the mutual
coupling between communities is much stronger than the
internal one, complex synchronization patterns including
chaos are possible (for other examples of chaotic order
parameters in coupled communities, see Refs. [24–26]).
We show in Fig. 4 an example of such a chaotic variation of
the order parameters 	1;2;3 for the case where intracom-

munities’ couplings lead to synchrony in the groups " > �,
but due to mutual interactions chaos appears in a certain
range of arguments of mutual coupling �i; for real values
of the mutual coupling constants �, i.e., for �i ¼ 0, we
have not found complex behaviors.

In conclusion, we have derived general equations descri-
bing in the phase approximation the resonant interactions
between communities of oscillators, whose basic freq-
uencies differ from each other, but are in a combinational
resonance. As already mentioned, one possible application
field is neural populations with typically macroscopic
activities over a wide frequency range. Multifrequency
resonances are also possible in recent experimental setups
where synchronization effects have been studied with
optomechanical, micromechanical, and electronic oscilla-
tor arrays [27]. Especially in experimental studies of
chimera states with arrays of chemical and mechanical
oscillators [28], one prepares interacting subcommunities.
This setup is very close to that considered in this Letter.

We focused in this Letter on a detailed description of
the most elementary three-community triplet resonance
!1 þ!2 � !3, in terms of the evolution of communities’
order parameters. This is accomplished by using the
Ott-Antonsen ansatz allowing one to write a closed system
for three complex order parameters. Remarkably, the inter-
community interaction not only shifts relative phases of
the communities’ mean fields, but influences internal
synchrony within communities. We have demonstrated
how the intercommunity interaction can induce or suppress
internal synchronization. Furthermore, we have shown that
resonant interaction of communities can lead to chaotic
dynamics of the order parameters.
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