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We study the Kuramoto model of globally coupled oscillators with a biharmonic coupling function. We

develop an analytic self-consistency approach to find stationary synchronous states in the thermodynamic

limit and demonstrate that there is a huge multiplicity of such states, which differ microscopically in the

distributions of locked phases. These synchronous regimes already exist prior to the linear instability

transition of the fully asynchronous state. In the presence of white Gaussian noise, the multiplicity is

lifted, but the dependence of the order parameters on coupling constants remains nontrivial.
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Since its introduction almost 40 years ago, the Kuramoto
model of globally coupled oscillators [1] has been estab-
lished as a standard model describing synchronization
transitions in large populations of coupled oscillators.
Similar to the Ising model in the theory of phase transi-
tions, the Kuramoto model captures essential features of
synchronization, observed in many physical systems, e.g.,
in Josephson junctions [2], atomic recoil lasers [3], spin-
torque [4] and electrochemical [5] oscillators, as well as in
a more interdisciplinary context, like for applauding
persons in a large audience [6] and for pedestrians on
footbridges [7]. For other examples, see Ref. [8].

The general Kuramoto model is formulated as a system
of differential equations for the phases �k of N oscillators
having natural frequencies!k, which are coupled globally:

_�k ¼ !k þ 1

N

XN
j¼1

�ð�j ��kÞ: (1)

The simplest and most studied case is that of sinusoidal
coupling �ðc Þ ¼ " sinc . Here, the original analysis by
Kuramoto [1] and its subsequent extensions [9,10] revealed
a clear picture of the transition in the thermodynamic limit
N ! 1. For symmetric one-hump frequency distributions
gð!Þ, there exists a critical coupling "c depending on gmax,
at which the synchronization sets in, and the order parame-

ter (the mean field) grows �ð"� "cÞ1=2. The situation is
much less trivial for more general coupling functions �.
For example, if both the first and the second harmonics are
present [9,11,12], the transition may have a different scal-
ing of the order parameter �ð"� "cÞ.

In this Letter, we report on rather surprising findings in
the Kuramoto model (1) with a general biharmonic cou-
pling function

�ðc Þ ¼ " sinðc Þ þ � sinð2c Þ (2)

and a unimodal distribution of frequencies, making this
case distinct both from a particular problem with the
second harmonics only [13] and from the situations where

the second harmonics is considered perturbatively
[9,11,12]. We show that (i) there exist synchronous
regimes prior to the stability threshold of the desynchron-
ized state, (ii) these regimes have order parameters that can
take values anywhere in the range ð0; Rmax� for some
Rmax < 1, (iii) there is a huge multiplicity of these states
for fixed coupling parameters, and we estimate their num-
ber as growing exponentially withN, and (iv) when a small
noise is added, the multiplicity is lifted, but a nontrivial
synchronous regime coexists with the stable asynchrony.
Before proceeding with the analysis, we give three

examples of realistic physical systems where the second
harmonics term is strong or even dominating. The first
example is the classical Huygens setup with pendulum
clocks suspended on a common beam. Here, the horizontal
displacement of the beam leads to the first harmonics
coupling�", while the vertical mode produces the second
harmonics term �� [14]. Another example is recently
experimentally realized ’ Josephson junctions [15], where
the dynamics of a single element in the array is governed
by a double-well energy potential. Therefore, one can
expect strong effects caused by the second harmonics
in the interaction. Third, in experiments with globally
coupled electrochemical oscillators [16], a pronounced
second harmonics has been observed in the coupling func-
tion inferred from experimental data.
Our approach is based on self-consistency equations for

the order parameters, like in Refs. [1,13]. We start with
introducing the two relevant order parameters according to
Rme

i�m ¼ N�1
P

ke
im�k and rewrite Eq. (1) as

_’ ¼ !þ "R1 sinð�1 � ’Þ þ �R2 sinð�2 � 2’Þ: (3)

We consider the thermodynamic limit and assume the
distribution of frequencies gð!Þ to be symmetric; without
loss of generality, we can set the central frequency to zero.
Then, due to the symmetry of the coupling function and of
the distribution, stationary solutions can be chosen with
�1 ¼ �2 ¼ 0. Introducing the conditional distribution of
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the phases at a given frequency as �ð’j!Þ, we can repre-
sent the order parameters R1;2 as

Rm ¼
ZZ

d’d!gð!Þ�ð’j!Þ cosm’; m ¼ 1; 2: (4)

To close these equations, we have to find �ð’j!Þ using
Eq. (3). All the phases can be separated in the rotating ones
(if j!j is large) and locked ones (small j!j). For rotating
phases, the stationary distribution density is inversely
proportional to the phase velocity �rð’j!Þ ¼ Cj!�
"R1 sinð’Þ � �R2 sinð2’Þj�1, where C is the normaliza-
tion constant. The locked phases satisfy the equation ! ¼
"R1 sin’þ �R2 sin2’. It is convenient to introduce

cos� ¼ �R2=R, sin� ¼ "R1=R, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2R2

2 þ "2R2
1

q
, and

x ¼ !=R, so that this equation takes the form x ¼
yð�; ’Þ ¼ sin� sin’þ cos� sin2’. In the following analy-
sis, for the sake of brevity of presentation, we restrict
ourselves to the case R1;2 > 0, 0 � � � �=2; this implies

a restriction on the possible range of parameters ", �, but
all interesting effects are present. When finding ’ as a

function of x, we have to satisfy additionally the stability
condition ð@=@’Þyð�; ’Þ> 0 that follows from Eq. (3).
The stable branches are clear from Fig. 1. For tan� > 2,
there is only one stable branch ’ ¼ �1ðx; �Þ in the

range �’1 <’<’1, �x1 < x< x1, where ’1 ¼
arccos½ð� sin�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2�þ 32cos2�
p Þ=8 cos�� and x1 ¼

yð�; ’1Þ [Fig. 1(b)]. For tan� < 2, there is an additional
stable branch ’ ¼ �2ðx; �Þ with �� ’2 <’<�þ ’2,

�x2 < x < x2, where ’2 ¼ arccos½ðsin�þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2�þ 32cos2�

p
Þ=8 cos�� and x2¼�yð�;’2Þ [Fig. 1(a)].

Locked phases occupy these stable branches; thus, for
the distribution �lð’j!Þ, we get

�lð’j!Þ ¼
8<
:
½1� Sð!Þ��½’��1ðx; �Þ� þ Sð!Þ�½’��2ðx; �Þ� for jxj< x2

�½’��1ðx; aÞ� for x2 < jxj< x1:
(5)

Here, 0 � Sð!Þ � 1 is an indicator function describing the
distribution over the branches; its dependence on ! is
arbitrary. Because this function enters in the integral (4)
only, it is an arbitrary integrable function with finite varia-
tion; i.e., it can be extremely nonsmooth. This is already
an indication on the multiplicity of synchronous states
(already mentioned in Ref. [13] for " ¼ 0), to be discussed
in more detail below. Substituting distribution (5) in Eq. (4),
we can represent the order parameters R1;2 as functions of
R, �. We introduce

FmðR; �Þ ¼
Z �

��
d’ cosm’

�
Að’ÞgðRyÞ @y

@’

þ
Z
jxj>x1

dxCðx; �Þjx� yð�;’Þj�1

�
; (6)

where the indicator function Að’Þ is Að’Þ ¼ 1� SðyÞ for
j’j<’3, Að’Þ ¼ SðyÞ for j’� �j<’2, Að’Þ ¼ 1 for
’3 < j’j<’1, and Að’Þ ¼ 0 otherwise. Here,’3 satisfies
yð�; ’3Þ ¼ yð��; ’2Þ. The normalization constant is de-
termined from

R
d’Cðx; �Þjx� yj�1 ¼ gðRxÞ. In terms of

these integrals, we can represent the order parameters and
the coupling constants parametrically, as

R1;2 ¼ RF1;2ðR; �Þ; " ¼ sin�

F1ðR; �Þ ; � ¼ cos�

F2ðR; �Þ :
(7)

Relations (6) and (7) solve the problem of finding the
stationary order parameters in an analytic form, for any

indicator function Sð!Þ. In Figs. 2–4, we illustrate the
solutions for the simplest case, where Sð!Þ ¼ � is a con-
stant, and for the Gaussian distribution of frequencies
gð!Þ ¼ ð2�Þ�1=2 expð�!2=2Þ.
We start with � ¼ 0 (so that all the phases are on one

stable branch). Setting in Eqs. (6) and (7) R ! 0þ and
varying �, we find a curve on the plane of parameters ð"; �Þ
where the order parameters R1;2 vanish (line L2 in Fig. 2).

Between curves L1 and L2, there are two solutions. We also
show curve L3 corresponding to the parameter value
tan� ¼ 2, which separates the two-branch [Fig. 1(a)] and
the one-branch [Fig. 1(b)] situations (marked as C and B,
correspondingly). Below L3, there is a solution with
Sð!Þ ¼ 0 only; above it, a multiplicity due to the arbitrari-
ness of the indicator function Sð!Þ occurs. We also depict
curves corresponding to synchronous solutions with
R1;2 ¼ 0 at fixed values of �; to the right of these curves,

synchronous states with corresponding values of � exist.
We illustrate different synchronous regimes as functions

of coupling parameters (", �) in Figs. 3 and 4. Figure 3
shows the dependence of synchronous states on the cou-
pling parameter ", for fixed � ¼ 0:85�lin (horizontal arrow
in Fig. 2). Here, the synchrony arises at different values of
" for different �, and immediately beyond the threshold,
multiple synchrony states are possible. With a further
increase of ", when the line L3 is crossed, multiplicity
disappears. A different situation is shown in Fig. 4, where
we increase � at fixed " ¼ 0:9"lin (vertical arrow in Fig. 2).

(a) (b)

FIG. 1 (color online). Sketch showing stable phase branches
(black bold line) vs frequency x ¼ !=R.
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Now, synchrony sets on at tan� > 2, so that a unique
synchronous solution appears and remains unique until
the border of multiplicity tan� ¼ 2 (point Q) is crossed.
Multiple solutions exist for all larger values of �. A special
solution with � ¼ 0:5 appears at the linear threshold
� ¼ �lin: this regime, because of symmetry, contains
only the second order parameter (R1 ¼ 0) and corresponds
to the bifurcation from the asynchronous state, as described
in Ref. [9].

Unfortunately, we cannot analyze analytically the stabil-
ity of the constructed solutions. The only analytic results
we can rely on are stability calculations of the asynchro-
nous state R1;2 ¼ 0, yielding instability for " > "lin or � >
�lin, and neutral stability due to a continuous spectrum
otherwise [9,12,17]. Thus, we checked for stability via
direct numerical simulation of the large ensembles. They
follow the theoretically predicted curves, as the markers
show in Figs. 3 and 4. At low values of R1;2, these solutions,

however, can hardly be confirmed due to finite-size effects,
to be considered elsewhere [18]. Remarkably, the linearly
neutrally stable asynchronous state, in the region beyond
the curve L2, where synchronous solutions also exist,
appears in simulations to be only metastable. After a
transient, which becomes longer for very large ensembles,
the ensemble evolves abruptly to one of the synchronous

states; we illustrate this in the inset of Fig. 3. Thus,
although the curves in Fig. 4 look like those for a standard
hysteretic transition, they are not: at point P, the zero
equilibrium does not become linearly unstable; instead, it
remains linearly neutrally stable in the thermodynamic
limit but is metastable due to finite-size effects. This
neutral stability or metastability also allows synchronous
states to appear with arbitrary small amplitudes R1;2 (see in

Fig. 2 curve L2 and corresponding curves for different

FIG. 3 (color online). Dependence of the order parameters on
coupling " for � ¼ 0:85�lin (curves). Markers are results of
direct simulation of a population of N ¼ 2� 104 oscillators.
Different curves correspond to values of �, as depicted in the
panel. For " * 1:6"lin, the solution is unique; for smaller ", there
are multiple states appearing at different critical couplings. The
inset shows the time evolution of the order parameter R1 in direct
simulations of an ensemble (1) for � ¼ 0:85�lin, " ¼ 0:6"lin,
and different N: from left to right, N ¼ 5� 104, 105, 2� 105,
5� 105, 106.

FIG. 4 (color online). Same as Fig. 3, but for " ¼ 0:9"lin. For
� & 0:6�lin, there is a unique synchrony state; for larger cou-
plings, multiplicity is observed. Point S denotes a saddle-node
bifurcation at which coherent states appear (curve L1 in Fig. 2).
At point P, the unstable branch of the coherent solution vanishes
(curve L2 in Fig. 2). Between points S and P, a finite perturba-
tion of the incoherent state is needed to come to a synchronous
regime. Point Q, the onset of multiplicity, corresponds to curve
L3 in Fig. 2.

FIG. 2 (color online). Diagram of different synchronous states
in dependence on parameters (", �) resulting from from the
analytical solution of Eqs. (6) and (7). The bold (blue) line L1

represents the border of synchronous states; the bold dashed
(blue) line L2 shows where the order parameters vanish; when L1

and L2 split, there are two solutions (stable and unstable) with
nonzero R1;2 and the transition to synchrony is hard (see the

region between points S and P in Fig. 4); when L1 and L2

coincide (above point M), there is a soft transition to synchrony
(see Fig. 3). Above the solid (blue) line L3 (drawn from the
condition tan� ¼ 2), multiplicity of synchronous states occurs
(beyond point Q in Fig. 4). The dotted (red) lines represent the
onset of synchrony for � ¼ 0:2, 0.4, 0.5, 0.6, 0.8, 1 (from left to
right). Arrows show routes depicted in Figs. 3 and 4; the dotted
black lines are linear stability borders of asynchronous states. A,
no synchronous states; B, single synchronous state; and C,
multiple synchronous states.
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values of �, which occupy the whole region on this dia-
gram, and also Fig. 3). Therefore, the points in Fig. 3 where
R1;2 vanish do not correspond to a usual bifurcation from

an equilibrium and cannot be described as the points where
the incoherent state becomes linearly unstable. This is due
to the singularity of the appearing states: as one can see
from Eq. (5), the density includes a combination of delta
functions for any small R1;2, similar to the Van Kampen

modes in plasmas [19], while in the stability analysis [9],
one operates with modes which apparently cannot describe
constructed singular solutions.

Next, we discuss the issue of multiplicity. As mentioned
above, in the thermodynamic limit, any indicator function
can be used, so that to a macrostate with given ", �, R1;2

belong to many microstates with different redistributions
between the stable branches. We illustrate this in Fig. 5. In
fact, we can easily estimate the rate of the multiplicity. We
can view the locked oscillators in the bistability range as
uncoupled spins. Assuming for simplicity that the phases
of two branches differ by �, we conclude that the order
parameter R2 does not depend on the ‘‘spin orientation,’’
i.e., on which branch they are sitting, while R1 can be
interpreted as a ‘‘magnetization.’’ Then, finding that the
number of different microstates reduces to a textbook
problem of calculating the entropy SðR1Þ with a constant
magnetization for noninteracting spins. Thus, the number
of microstates grows exponentially with the number of
locked oscillators in the range of bistability Nbist, which
is less than N but is a macroscopic quantity for R1;2 that is

not too small, as � exp½SðR1ÞNbist�.
Remarkably, both the multiplicity and the singularity are

lifted by adding a small Gaussian white noise to the phase
dynamics, replacing Eq. (1) with the Langevin model

_�k ¼ !k þ 1

N

XN
j¼1

�ð�j ��kÞ þ
ffiffiffiffi
D

p
�kðtÞ: (8)

Now, in the thermodynamic limit for each !, the distribu-
tion (5) is no more an arbitrary combination of delta

functions but a smooth unique distribution density. Thus,
the multiplicity is removed. Because this distribution is
nonsingular, it belongs to the class of functions used in the
linear stability and in the bifurcation analysis [9,12,17]. We
confirm this in Fig. 6, where we show the dependence of
the order parameters on coupling, for two different levels
of noise. Here, we used both the extension of the self-
consistent analysis as above, where in the integral Eq. (4)
the distribution density is taken as the solution of
the Fokker-Planck equation corresponding to Langevin
model (8) (details will be presented elsewhere [18]), and
the results of direct simulations of the density evolution
equation of the whole system using mode expansion.While
the former method gives stable and unstable solutions, the
latter one selects the stable branches only. Comparing with
Figs. 3 and 4, we see that both multiplicity and singularity
are lifted. Because the stability of the incoherent state is no
more neutrally but asymptotically stable [17], a hysteretic
transition to synchrony is of a standard type accompanying
a subcritical bifurcation.
In conclusion, we have described nontrivial synchronous

states that appear in the Kuramoto model with a bihar-
monic coupling function. Because of a possibility to have
two stable branches of phase-locked oscillators, one
observes a multiplicity of microstates. On the macrolevel,
this multiplicity manifests itself as the existence of a whole
range of possible order parameters for given coupling
constants. Remarkably, these states appear prior to the
linear instability of the asynchronous regime and are not
captured by the linear stability analysis. When a noise is
added, the multiplicity is lifted, but the transition to syn-
chrony may become hysteretic, with a region of bistability
synchrony-asynchrony. We stress that the self-consistent
approach developed allows us to find stationary synchro-
nous states but does not deliver their stability properties. To
check for stability, we performed simulations with large
ensembles in the noise-free case, which revealed the meta-
stability of the asynchronous state and simulated the
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FIG. 6 (color online). Dependence of order parameters on the
couplings ", �, (a),(b) for � ¼ 0:8�lin and for (c),(d) " ¼
0:75"lin in the presence of noise [Eq. (8)]. Markers are values
obtained from self-consistent analysis; the bold black line is a
result of simulation of the density evolution, yielding dynami-
cally stable branches. The branch in (c) and (d) corresponding to
the symmetric state R1 ¼ 0, R2 > 0 is unstable dynamically for
D ¼ 0:2 but stable for D ¼ 1.

(a) (b) (c)

FIG. 5 (color online). Illustration of multiplicity of states (" ¼
� ¼ 1:25"lin, N ¼ 2� 104). In all cases, one can see two stable
branches of locked phases and the corresponding coarse-grained
indicator function Sð!Þ. In (a), the redistribution between
branches is random; in (b) and (c), we kept Sð!Þ to be constant
with values 0.33 and 1.
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evolution of the probability density in the presence of
noise. More details about the regimes in the full range of
parameters, and on the limit of small noise, will be pre-
sented elsewhere [18].
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