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We introduce an invariant phase description of stochastic oscillations by generalizing the concept of

standard isophases. The average isophases are constructed as sections in the state space, having a constant

mean first return time. The approach allows us to obtain a global phase variable of noisy oscillations, even

in the cases where the phase is ill defined in the deterministic limit. A simple numerical method for finding

the isophases is illustrated for noise-induced switching between two coexisting limit cycles, and for noise-

induced oscillation in an excitable system. We also discuss how to determine isophases of observed

irregular oscillations, providing a basis for a refined phase description in data analysis.
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Phase reduction is the basic tool in the characterization
of self-sustained, autonomous oscillators. With a reason-
ably defined phase variable, one obtains a one-dimensional
representation of the oscillator, allowing us to describe
important aspects of its dynamics, such as regularity, sen-
sitivity to forcing, and noise, et cetera [1–3].

The concept of phase is also substantial for the data
analysis of oscillatory processes in physics, chemistry,
biology, and technical applications, where events, such as
a heart beat, are determined by recurrences of the process
into a certain phase. In implementation of this concept,
various approaches exist for extracting a phase variable
from oscillatory time series [4–8].

To understand many properties of oscillating systems,
such as their phase resetting and synchronizability, it is
important to define the phases not only for the purely
periodic motion, but for the whole state space. In the theory
of deterministic oscillations, this is done via isochrones [9],
i.e., isosurfaces of constant phase, each of which gathers
those states that converge to the same state on the limit
cycle. However, many applications, especially biological
and geophysical ones [10], exhibit a nondeterminism that
demands for an extension of existing nonlinear determi-
nistic methods to incorporate stochasticity explicitly. For
example, in the review on the neuronal dynamics Smeal
et al. [11] raise the question: ‘‘Are neurons too noisy to be
described by phase-response theory?’’

In this Letter we extend the foundations of deterministic
phase description to irregular, noisy oscillators. The main
idea is based on the definition of the isophases by virtue of
the mean first passage time concept. We will first apply our
method to noise-perturbed deterministic oscillators for
which the isophases can be compared with the determinis-
tic isochrones. Because our theory is nonperturbative with
respect to noise, it makes the phase-response theory ge-
nerically applicable to strongly irregular oscillations, even
for those where isochrones and oscillations do not exist in
the deterministic limit. Furthermore, we will show, that
application of our approach to noise-perturbed chaotic

oscillations allows one to obtain well-defined isophases
in this case as well. Finally, to highlight the relevance of
the introduced concept in data analysis, we will demon-
strate that isophases can be obtained from observed oscil-
latory signals.
We start by reminding the reader the standard definition

of isophases in deterministic systems with a stable periodic
orbitx0ðtÞ ¼ x0ðtþ TÞ of periodT. For these, isophases are
also isochrones. First, one defines the phase on the orbit
’ðx0Þ. When being observed stroboscopically with time
interval T, all the points x that converge to a particular point
on the orbit x0 have the phase ’ðx0Þ. These points form a
Poincaré surface of section Jð’ðx0ÞÞ for the trajectories of
the dynamical system, with the special property that the
return time to this surface equals T for all points on it. Thus,
finding an isophase surface is equivalent to finding a
Poincaré surface of section with the constant return time T.
For a noisy system we define the isophase surface J as a

Poincaré surface of section, for which the mean first return
time J ! J, after performing one full oscillation, is a
constant T, which can be interpreted as the average oscil-
lation period. In order for isophases to be well defined,
oscillations have to be well defined as well: for example in
polar coordinates, the radius variable must never become
zero, so that one can reliably recognize each ‘‘oscillation.’’
Random processes for which this is not the case should be
treated with care.
Analytical calculations of the mean first return time

(MFRT) are a complex problem in dimensions larger
than one; therefore, below we apply a simple numerical
algorithm for construction of the isophases: an initial
Poincaré section is iteratively altered until all mean return
times are approximately equal. In two-dimensional sys-
tems for which isophases are lines, we represent Poincaré
sections by a linear interpolation in between a set of knots.
For each knot xj, the average return time Tj is computed

via the Monte Carlo simulation. According to the mis-
match of Tj and the mean period hTi, the knot xj is

advanced or retarded. The procedure is repeated with all
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knots, until it converges and all return times Tj are nearly

equal to hTi.
Before demonstrating instructive examples of average

isophases, we discuss the importance of knowing isophases
for noisy oscillations. The first important application is that
of phase resetting. Phase resetting curves determine how an
oscillator responds to external kicks, which determines
synchronization properties of the oscillator [12,13]. For
deterministic oscillators the phase response curve is deter-
mined just from the isochrone to which the kick shifts the
state of the system from the limit cycle. For irregular
oscillators the proper definition of the phase response curve
is based on first passage times [14]. Thus, to determine it,
one has to find to which isophase the state of the system is
shifted by the kick. The correct approach is to use the
isophase defined above (whereas in the limit of small noise,
perturbative calculations of phase dynamics have been
shown to do the job as well [15,16]). The second applica-
tion is in the analysis of experimental data of coupled
oscillators (cf. [4–8]). There one needs to determine the
phase dynamics from time series, this task is relatively
simple to accomplish if the variations of the amplitudes
are very small so that the definition of a phaselike variable
along the observed limit cycle is unambiguous. However, in
the presence of large irregular amplitude variations, the
phase characterization of the oscillations is not unique
(cf. Fig. 5 below). Proceeding according to the given above
definition of the isophases as the lines on the two-
dimensional embedding plane, for which the mean return
times do not depend on the amplitudes, allows us to get rid of
the ambiguity and to determine the phase in a consistent way.

We stress here that in our definition of isophases, we do
not assume the process to be Markovian: if its dynamics is
non-Markovian, then the definition of the MFRT includes
averaging over the ‘‘prehistory’’ or hidden variables as
well. To illustrate this we consider as the first example a
simple Stuart-Landau oscillator (variables r, �) perturbed
by an Ornstein-Uhlenbeck noise �ðtÞ:

_r ¼ rð1� r2Þ þ �r�ðtÞ;
_� ¼ !� �ðr2 � 1Þ;

� _� ¼ �� þ ffiffiffiffi

�
p

�ðtÞ;
(1)

where �ðtÞ denotes a �-correlated white noise, � and � are
the correlation time and the noise intensity of the Ornstein-
Uhlenbeck noise, ! is the frequency of the noise-free limit
cycle, and � is a nonisochronicity parameter. In the state
space (r, �, �) the process is Markovian, but on the two-
dimensional plane (r, �) it is not. Nevertheless, by the
method described we obtain the numerical isophase for
which the MFRT is nearly constant (Fig. 1). This isophase
can be obtained also from an analytic approximation: first,
we introduce a ‘‘corrected’’ phase variable c ¼ �� � lnr

which obeys _c ¼ !þ ��½� _� � ffiffiffiffi

�
p

�ðtÞ�. Averaging this

expression and identifying ! ¼ _’ where ’ is the correct

uniformly rotating phase, we obtain ’ ¼ c � ���� . In
this expression we have to account for correlations of � and
r, to obtain the isophases on the plane (�, r). Assuming that
r follows �ðtÞ adiabatically, we obtain �� � r2 � 1, which
leads to the following expression for the isophases

’ ¼ �� � lnr� ��ðr2 � 1Þ: (2)

An isophase following from this formula is compared with
a numerical one in Fig. 1. Interestingly, the noise-induced
correction [last term in Eq. (2)] does not contain noise
intensity �, but the range where this correction is valid
jr� 1j & � shrinks with the noise intensity.
While in the simplest example above the effect of noise

is in the correction of the deterministic isochrones only, we
consider now a situation where local isophases of different
periodic motions are ‘‘mixed’’ by noise resulting in new,
global isophases. To this end we analyze the following
model of two coexisting stable limit cycles, driven by
white noise:

_r ¼ rð1� rÞð3� rÞðc� rÞ þ �r�ðtÞ;
_� ¼ !þ �ðr� 2Þ � ð1� rÞð3� rÞ: (3)

Without noise, the system shows two limit cycles rI ¼ 1,
rII ¼ 3 (which have the same frequency if � ¼ 0), sepa-
rated by an unstable cycle at r ¼ c. Each of the stable
cycles has its own isophases, which meet singularly (as
infinitely rotating spirals) at the basin boundary r ¼ c.
With noise, trajectory switches between the basins, so
that combined mixed-mode oscillations involving both
cycles occur. By applying our method, we find the iso-
phases of these oscillations in the whole range of radius r,
as shown in Fig. 2. While for small noise intensity,
a residue of the singularity at the basin boundary is
clearly seen, for a strong noise the isophases are rather
smooth curves.
Another example where otherwise singular isophases

are smeared by noise is that of chaotic oscillations. Many
chaotic attractors allow a representation in terms of

FIG. 1 (color online). The average isophase for a noise-driven
oscillator [Eq. (1)] with ! ¼ 1, � ¼ 1, � ¼ 0:15, � ¼ 1. The
inset compares its close to constant MFRTs with those of an
arbitrary cross section. The numerically derived isophase shows
minor differences to the analytic approximation [Eq. (2)].
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amplitudes and phases [3,17,18], but because the phase
generally performs a chaos-induced diffusion, isophases in
the strict sense do not exist. Recently, a description of
chaotic oscillations in terms of approximate isophases
has been suggested [19]. With noise, the return times to a
Poincaré surface of a strange attractor can be defined in the
averaged sense only, and in this respect there is no differ-
ence between chaotic and regular deterministic oscillators.
Thus, the procedure of finding isophases based on the
constancy of the MFRTs can be applied to chaotic systems
as well, as is illustrated in Fig. 3 for the Roessler model

_x ¼ �y� zþ ��1ðtÞ;
_y ¼ xþ 0:16yþ ��2ðtÞ;
_z ¼ 0:2þ zðx� 10Þ;

(4)

with uncorrelated Gaussian white noises in x and y com-
ponents. Remarkably, including small noise not only
allows us to give a good definition of isophases, which is
absent for chaotic attractors in the noise-free limit, but
provides additionally a stable numerical procedure for
the isophases’ calculations.

Our final example is noise-induced oscillations in an
excitable system, which without noise has just a stable
steady state, so deterministic isophases do not exist in

any sense. With noise, such a system demonstrates oscil-
lations which may be quite regular in the case of coherence
resonance [20]. To build the model, we modify the noisy
Stuart-Landau oscillator, with y-polarized noise, to per-
form noise-induced oscillations:

_r ¼ rð1� r2Þ þ �r cos��ðtÞ;
_� ¼ !þ r cos�� �r2 þ � sin��ðtÞ:

(5)

For 0<!� � < 1, noise excites the stable state [r ¼ 1,
� ¼ �� arccosð!� �Þ] beyond the unstable one [r ¼ 1,
� ¼ �þ arccosð!� �Þ] and induces oscillations. For
strong excitability and small noise, the phase is well
defined, and the isophases can be introduced as curves
with constant MFRTs. We show ten isophases in Fig. 4
(examples Figs. 1 and 2 have been rotationally symmetric,
so one drawing of one isophase was sufficient, here the
rotational symmetry is broken). The effect of the noise
intensity on the isophases is maximal at � � �, i.e., in
the region of excitability where the oscillations spend most
of the time; in the ‘‘deterministic’’ region j�j<�=2 the
isochrones are less sensitive to noise.
A practical definition of the isophases, for which the

MFRT is constant, is straightforward for numerical models
of irregular oscillators as illustrated above, but it can be
used for experimentally observed signals as well. For this
purpose one needs a two-dimensional embedding of
observed oscillations, which can be, e.g., achieved by using
the Hilbert transform of the signal as the second variable.
In Fig. 5 we present such a representation of measurements
of human respiration, taken from the Physionet database
[21]. One can see that the oscillations have a large ampli-
tude variability, and defining the phase has a large degree
of ambiguity—contrary to the situations with a nearly
constant amplitude, where a similar embedding on the
signal vs its Hilbert transform plane results in a very
narrow band of trajectories. The initial phaselike angle
variables and the isophases resulting from the iterative

FIG. 2 (color online). Isophases of bistable oscillations mixed
by noise, in model (3) with ! ¼ 3, c ¼ 1:8, � ¼ 0:01 and
different noise intensities. Stable cycles (solid black curves),
separated by an unstable cycle (dashed curve), have slightly
different periods, leading to a ‘‘stretching’’ of isophases.

FIG. 3 (color online). Isophases of the noise-driven Roessler
chaotic system [Eq. (4)], for different noise intensities �.
Smaller noise leads to less smooth curves. Gray dots show the
deterministic Roessler attractor.

0

FIG. 4 (color online). Average isophases of Eq. (5) at ! ¼
1:99 and � ¼ 1 vary with noise intensity � as indicated. Larger
noise intensity makes the system less isochronous, letting aver-
age isophases show stronger curvature. (Background trajectory
of noise-induced oscillations (gray dots) corresponds to the
strong noise case � ¼ 0:6.) Large markers show the stable
(square) and the unstable (circle) steady states.
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procedure as described above are presented in Fig. 5.
Application of the calculated isophases to determining
the phase dynamics of the observed signals gives the
mostly uniformly rotating phase, maximally uncorrelated
from the amplitude variations.

In summary, we have introduced for irregular oscilla-
tions a concept of average isophases based on the con-
stancy of the mean first return times. In the deterministic
limit, average isophases reduce to the usual ones. It is
noteworthy that the approach is not a perturbative one
based on small noise approximation; its applicability is
thus neither restricted by noise level, nor even by specific
properties of the underlying deterministic dynamics
(which may even be nonoscillatory). Of course, the general
limitations of phase description apply: in order to define
average isophases, ‘‘oscillations’’ should be well defined.
Practically, this means that in some two-dimensional
embedding the irregular trajectory should perform loops
of finite radius, as the experimental data in Fig. 5, so that
the return time to a cross section is well defined. Not all
noisy oscillations fulfill this property; a similar restriction
is also valid for the definition of an angle variable for
deterministic chaotic oscillators where the existence of a
well-defined Poincaré section is a prerequisite [22].

By applying a simple procedure [23], we determined
these isophases in a unified way for different classes of
noisy oscillators: (i) noise-perturbed periodic oscillators,
which possess isophases also in the noise-free case;
(ii) multistable oscillators which in the noise-free case pos-
sess different singular isophases, but the latter become well
defined when different modes merge due to noise;
(iii) chaotic attractors where in the purely deterministic
case the isochrones are singular objects which become
smooth and well defined due to noise; (iv) excitable systems,
which do not oscillate without noise and therefore have no
isophases, but the latter appear for the noise-induced dy-
namics. Furthermore, we have demonstrated applicability of
the method to irregular experimental data [24].

Average isophases of noisy systems bear opportunities
especially for data analysis and synchronization theory. In
data analysis, determination of a phase from observations
lies at the basis of correlation and synchronization analysis,
with applications ranging from human physiology to cli-
mate variability [25]. In these applications, our approach
will allow for an optimal distinction of phase and ampli-
tude effects in subsequent analyses, that is especially use-
ful if amplitude variations are large (e.g., in Fig. 5, angle
and radius variable are correlated). In synchronization
theory, consistently defined isophases allow us to deter-
mine the phase response of irregular oscillations to external
kicks and thus to predict their synchronizability.
J. S. was partly supported by the DFG (Collaborative
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