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Multipulse phase resetting curves
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In this paper, we introduce and study systematically, in terms of phase response curves, the effect of dual-pulse
excitation on the dynamics of an autonomous oscillator. Specifically, we test the deviations from linear summation
of phase advances resulting from two small perturbations. We analytically derive a correction term, which
generally appears for oscillators whose intrinsic dimensionality is >1. The nonlinear correction term is found to
be proportional to the square of the perturbation. We demonstrate this effect in the Stuart-Landau model and in
various higher dimensional neuronal models. This deviation from the superposition principle needs to be taken
into account in studies of networks of pulse-coupled oscillators. Further, this deviation could be used in the
verification of oscillator models via a dual-pulse excitation.
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I. INTRODUCTION

The weakly connected oscillator theory is often used to
show conditions under which oscillators are synchronized [1].
In this theory, small perturbations to an oscillator do not
influence the amplitude but have a significant effect on its
phase. This allows for a drastic reduction in the description of
the oscillator: instead of operating with the original, possibly
high-dimensional set of equations, only one phase variable
is used for each oscillator. In the case of weakly coupled
oscilators, phase description is sufficient to find the conditions
under which oscillators get synchronized, provided the phase
reduction is accurate enough. One of the assumptions used in
this approach is the principle of superposition, which states
that the effect of several small perturbations on the period
of the oscillation can be considered independently and then
summed.

In this paper, we examine the phase dynamics beyond
the superposition principle. More precisely, we consider the
effect of two relatively small perturbations on the phase for
various types of oscillators. Our main tool in the description
of the phase dynamics is the phase response curve (PRC; §¢),
which is widely used in both theoretical and experimental
studies, especially in the field of neuroscience [1-5]. The PRC
measures the shift of the phase of the oscillator due to an
external pulse as a function of the phase at which the pulse
is applied. In other terms, the PRC measures the local change
in the period of the oscillator due to a pulse perturbation at
various time points within the period. The oscillation can either
advance or delay based on the sign of the PRC. To determine
the PRC, one often performs an experiment just according
to the definition of the PRC; this can be accomplished for
individual biological neurons [6] and for complex oscillating
systems like those responsible for circadian rhythms in the
brain [7,8] (see Refs. [9-11] for other biophysical examples).
Furthermore, the PRC concept can be applied not only to
individual oscillators, but also to collective modes [12,13].

The shape of the PRC curve is shown to be critical for
the synchronization properties of the oscillator networks [14].
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However, in the synchronization problem, an oscillator is
subject not just to one external pulse, but to a series of pulses
from the external force or another oscillator (or several other
oscillators if more than two oscillators are coupled). Thus, in
order to apply the PRC concept in such situations, one has
to know how the oscillator responds to a series of pulses. If
the superposition principle holds, then the sum of two small
perturbations will independently influence the period of the
oscillator according to the PRCs for single inputs and, thus, can
be linearly added to predict the overall phase shift. However, if
the perturbations are not small, one generally expects deviation
from this simple superposition. In this paper we systematically
consider the effect of two pulses on the oscillator’s phase
and characterize the deviations from the pure superposition as
nonlinear effects. We illustrate these effects also for several
realistic models of neuron dynamics.

II. PHASE DYNAMICS AND DEFINITION
OF MULTIPULSE PRC

A. Pure phase dynamics

We start with the simplest case, where the oscillator is
described by just one variable, the phase ¢ (to be assumed 27
periodic), which grows uniformly in time:

¢ =ow. (1)

Suppose that the action of a forcing pulse with strength ¢ is
described by the standard PRC ¢S(¢,¢) [here the dependence
of § on ¢ accounts for nonlinear terms, so that S(¢,0) is the
linear PRC]. Consider now the action of two pulses, at times f
and #p + 7, having strengths gy and ¢, respectively. Just after
the first pulse

@+(10) = @(t0) + €0 S(g(to),&0).-
Just prior to the second pulse the phase is
@(to + 7) = @1 (fo) + @T = @(to) + 0T + £0S(9(1o).£0).
and after the second pulse
@+(to + 7) = @(to) + 0T + £0S(¢(t0), €0)
+e18(p(to) + 0t + £0S(¢(10),€0),€1).
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Thus, the overall effect of two pulses,

A = gS(¢(to),&0)

+e185(p(to) + wt + £0S(9(t),€0).€1), 2

can be simply calculated via the superposition of two single-
pulse PRC functions, €S(¢,¢). In the linear approximation,
where ¢S(¢p,¢) ~ £S(¢,0), one obtains just the sum:

Ag ~ £9S(¢(10),0) + &1 S(¢(t0) + w7,0).

B. General consideration

Now we consider a general situation where periodic
oscillations are described by a limit cycle x((f) in an
N-dimensional phase space. The crucial notion simplifying the
consideration is that of isochrons [15], which are submanifolds
of codimension 1 foliating the phase space and having the
same phase as the corresponding points in the limit cycle.
This allows one to represent the phase space as (a,¢), where a
is an (N — 1)-dimensional “amplitude,” and the phase obeys
the same equation, (1). Without loss of generality, to simplify
notations, we can assume that in the limit cycle the amplitude
vanishes, a = 0.

In terms of the phase and the amplitude, a pulse that kicks
the system resets state (a,) as

0 —> @+eda,p,e), a— a+eAap,e),

where, again, ®(a,¢,0) and A(a,¢,0) correspond to a linear
approximation. The usual PRC is defined for the initial state on
the limit cycle (a = 0), so S(g,e) = ®(0,¢,¢). We now apply
as above, two pulses, at times 7y and fy + 7, assuming that the
system is initially in the limit cycle. Then after the first pulse

@4+(t) = o(to) + e0S(@(to),€0), a4 (ty) = 0A(0,9(),&0).

Just prior to the second pulse
@(to + 1) = @4 (to) + 0T = P(to) + wT + £0S(9(t0),€0),
a(ty + ) = L (t0)at(to) = L7 (t0)0A(0,¢(10),£0),

where L7 is the operator describing the evolution of the
amplitudes. After the second pulse the new phase is

@i(to+ 1) =@t + 1) + &1 P(alty + 1),0(t0 + 7),81)

and the overall phase shift due to two pulses (two-pulse PRC)
is

3¢ = e0S(p(to),e0) + &1 P(alty + 1),0(to + 7),61).  (3)

Comparing this with expression (2) we see that now the effect
is not a superposition of two PRCs but contains the amplitude-
dependent phase reset function ®. The difference between
expression (2) and expression (3) gives the nontrivial effect of

R(1) _
<0<t)) B

i < R(to)) _
0(to0)
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multiple pulses on the phase of the oscillator as the nonlinear
correction term A:

A =8¢ — Ap = &1 P(L(1)e0A0,¢(10),€0),¢(t0)
+ ot + £0S(9(t),€0),€1)
—&18(p(ty) + ot + £0S(¢(10),€0).€1)
= 1 P(L (t0)e0A0,9(t0),0),9(t0) + @
+€0S(@(t0),20),1) — £19(0,0(0) + wt
+0S(p(10),€0),€1). 4)

From this expression one can see that the result essentially
depends on the action of the amplitude evolution operator £*:
if £7(tp)A ~ 0, correction (4) vanishes. Thus, the nontrivial
effect of the two-pulse excitation of an oscillator depends
crucially on the relation between the interpulse time interval
T and the relaxation time of the amplitude #, (characteristic
time scale of the amplitude evolution operator £); it is most
pronounced if 7 < ¢,. If the amplitude is multidimensional, ¢,
is the time of the slowest decay.

In the leading order in the powers of gy, &1, we can represent
the nonlinear correction as

0
A~ 818051700)1\(0790(!0),0)5CD(aJP(lo) + ot
+£08(¢(t0),0),0)|a=0, (5)

where £ is the linearized evolution operator for the ampli-
tudes, which describes their relaxation to 0 ~ exp[—?/t,].

This can be generalized to n pulses with amplitudes
(¢0y...,6n-1,6,) and different time shifts between them
(70, - - . ,Ty—1). Then the leading terms will be quadratic ones
(~&0€1,8082,€182, - -.), while also higher order corrections
(e.g., ~epe1€2) will appear. Most important are the nonlinear
terms including neighboring pulses, because, as argued above,
the effect decreases with the time interval between the pulses.
Another straightforward generalization is the case where two
pulses are different and are described by functions ®g, Ao,
D, AL

C. Example: A Stuart-Landau oscillator

The Stuart-Landau oscillator is a two-dimensional model
described in polar coordinates as

R=uR(1—-R>, 6=1+a—aR’

Here the frequency of the limit cycle, which is a circle with
radius R =1, is normalized to 1, parameter « describes
nonisochronicity of oscillations, and w is the relaxation rate of
the amplitude. The phase ¢ defined in the whole plane (except
for the origin) is

go:@—glnR.
7

Evolution of the variables R and 6 can be explicitly solved as

—1/2
1—R(t0)* ,—2u(t—1o)
[1 + Ry ¢ ’

)

O(to) +t — o — 5= In(R(19)* + (1 — R(tg)*)e 21~
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30

FIG. 1. (Color online) The normalized nonlinear effect of two-pulse action on the Stuart-Landau oscillator A - =2 vs the phase ¢, and the
time shift between pulses 7 (normalized by the cycle period), for ¢ = 0.1, « = 3, and three values of i [u = 0.1 (a), u = 0.5 (b), and pu = 2
(c)]. For large i the effect is pronounced for very small time intervals between two pulses only.

which defines the operator £. We assume that the pulse is
acting in direction x, i.e., at the pulse

Rcos® — RcosH +¢, Rsinf — Rsin6.

This fully describes the system, and one can find expressions
for the PRCs Ag and 3¢ (see Appendix A). Using these

(a)
1200
600
0
-600

formulas, we calculated the nonlinear correction term A and a
plot of this is depicted in Fig. 1. Here we take &g = & = 0.1
and present results for different values of u. As expected, the
most pronounced effect is for small .

For this equation it is possible to obtain the leading term in
order ~e&pe) in the expansion of the nonlinear correction term

FIG. 2. (Color online) Same as Fig. 1, but for the modified Stuart-Landau oscillator, Eq. (7). Parameter values: (a) ¢ = 3, « = 0.1,& = 0.01,
b=03;b)a=3,4u=0.1,6=001,b=0.7;(c) e =3, u=0.1, ¢ = 0.001, b = 0.95.
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FIG. 3. (Color online) Illustration of how the PRC is computed for a quadratic integrate-fire neuron. (a) Single pulse; (b) double pulse.
Ty is the original period when no input occurred; 7; is the period when there was an input at time #; with input phase ¢, = #,/Tp. (c) PRC
8¢ = (Ty — T;)/ Ty for single input (black crosses) along with its fit [solid (red) line; §;(¢;)]. In (c) and (d) the x axis depicts the input phase ¢.
(d) PRC for two inputs with ISI = 10 ms. Filled (gray) circles indicate the change in period vs the first input; PRC with respect to the second
input is plotted as black crosses. The prediction from the superposition principle is plotted as the solid (blue) line [§,(¢;) + 8,(¢2)].

in pulse strengths analytically (see Appendix A): Here large values of parameter b produce highly nonuniform
growth of angle variable 6, so that the relation between ¢ and
N o? “our . 6 is strongly nonlinear. As a result, the isochrons crowd in
A eoer| 1+ w2 e cos ¢ sin(go + 7). ©)  the region around 6 & 0, where the evolution of 6 is slow.
Also, the nonlinear correction term becomes very large in this
This expression fits numerics very closely for ¢ < 0.01. region, as illustrated in Fig. 2.
D. Example: A modified Stuart-Landau oscillator III. NEURON MODELS
Our second example is a modification of the Stuart-Landau The PRC is commonly used to describe neuron models.
oscillator proposed in [16]: In this context, the PRC can characterize the properties of

‘ . neurons, especially their synchronizability. In many systems
R = uR(1 — R2), 0 =1-—brcosd +a —aR’ 7 a neuron receives inputs from many other neurons, therefore,

(a) (c)
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¢ q)
1

FIG. 4. (Color online) Wang-Buzsaki model. (a) PRC for single input along with its fit [solid (red) line], §(¢) = (Ty — T1)/ Tp. (b) PRC
for two inputs with IS = 10 ms. Filled (gray) circles indicate the PRC with respect to the first input, and the PRC with respect to the second
input is plotted as black cross. The prediction from the superposition principle is plotted as the solid (blue) line. (c) Deviation from linear
superposition (A ) for different 7’s or ISIs and ¢;, which is the input phase of the first input.
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FIG. 5. (Color online) Original Hodgkin-Huxley model. Caption same as for Fig. 4.

it is critical to understand how multiple pulses affect the PRC
response of neurons. Below we test four neuron models for the
dual-pulse effect. Although generally the theory presented in
Sec. II B is applicable to spiking neurons as well, practically
one does not follow the continuous phase of the oscillations but
focuses on the spiking events (these events are readily available
in experiments too). Therefore, for spiking neurons, the PRC
and the nonlinear correction term have to be measured in terms
of the spike times as opposed to phase shifts at arbitrary points
as done in the previous section. It is convenient to normalize
the correction term by the peak-to-trough value of the PRC for
single input as shown below. We first illustrate these definitions
in Fig. 3, using the quadratic integrate-and-fire model [17].
[Note that traditionally in this context the phase 7/ Tj and the
PRC §¢ = (T) — Tp)/ Ty are normalized by 1, and not by 27.]
This one-dimensional model corresponds to the pure phase
dynamics in Sec. II A, so it does not demonstrate nonlinear
effects of deviations from the superposition.

In general, the models of neurons are classified based on
their PRC curves as types I and II. The type I PRC has only
phase advance in response to perturbation, while type II PRC

(@ 415 (c)
0.4
0.1
0.35!
0.05
0.3

includes both phase delay and advance [4]. We further consider
both type I and type II neuron models in this study. We tested
the Wang-Buzsaki model (type I; based on [18]), the original
Hodgkin-Huxley model (type II; based on [ 19]), and a modified
Hodgkin-Huxley model (type I; based on [20]). The equations
for all the models are given in Appendix B. All of these models
are three-dimensional, which is required for any deviation from
linear superposition.

To characterize the deviation from the superposition of two
input pulses, we use the quantity

- - 100
Ap = (82(92) = 81(91) = dilp2)) 7. ®)

where 8,(¢») is the measured PRC for the second pulse, 51(¢1)
and 8 () are the expected PRCs of single pulses, and §,, is the
amplitude of the single-pulse PRC (this normalization provides
a better visualization of the deviation from the superposition of
single-pulse PRCs). We present the results for the three neuron
models in Figs. 4-6, where the main dependence of A, on the
first input phase and on the interspike interval (ISI) between
two applied pulses 7 is depicted in Fig. 4(c) by color coding.
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FIG. 6. (Color online) Modified Hodgkin-Huxley model. (a—c) Caption same as for Fig. 4. (c, d) p = 1.0. Error for modified Hodgin-Huxley
model with slower evolution, p = 0.5 (see Appendix B for definition of p).
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We observed that some neuron models show pronounced
nonlinear effects, as the two-pulse response deviates from
the expected PRC based on the superposition principle, while
for other models the linear superposition was able to predict
the PRC for two pulses accurately. The Wang-Buzsdki model
(Fig. 4) appears to be of the latter type, while both the original
Hodgkin-Huxley system (Fig. 5) and its modified version
(Fig. 6) show nonlinear effects in the two-pulse PRC. The
Wang-Buzsaki and modified Hodgkin-Huxley model had type
I PRCs, and the original Hodgkin-Huxley model had a type II
PRC, suggesting that there is no relationship between the
type of PRC and the origin of this deviation. Further, the
bifurcation type for spiking from the resting state also did
not determine the existence of error, since the Wang-Buzséki
model and the modified Hodgkin-Huxley model possess a
saddle-node bifurcation, while the original Hodgkin-Huxley
model demonstrates an Andronov-Hopf bifurcation.

There were two main findings from the analytical results in
Sec. II that can be qualitatively compared with the neuronal
models presented in this section. The first result was that the
nonlinear correction term was proportional to the square of
the perturbation, (6). We tested this in the modified Hodgkin-
Huxley model and observed similar qualitative results (Fig. 7).
Second, the square of the decay time constant of the amplitude
term in the oscillator due to perturbation was inversely
proportional to the nonlinear correction term, (4). Thus, a
faster relaxation dynamics of the neuron leads to a lower error.
We observed this in the modified neuron model when the
parameter p was reduced to 0.5; the time constant of the &
variable increased, promoting membrane hyperpolarization.
The membrane hyperpolarization then reduced the membrane

10 ¢ .
—+— Simulation ’

———82 ’

Error/period

1 1
-3 -2 -1

10 10 10

FIG. 7. Relationship between €2 and A/period. The division by
period was used for comparison with the Landau-Stewart oscillator
simulations and does not change the relationship between € and A,
since the period was the same for all €2.
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time constant through closing voltage-gated channels, i.e.,
faster relaxation dynamics, which led to a shorter ISI and
a smaller error. Thus, the main features of general limit
cycle oscillators, and in particular of the Stuart-Landau
oscillator, can be qualitatively extended to some of the neuron
models.

IV. CONCLUSION

In this paper we have developed a theory of the response of
an autonomous oscillator to two-pulse perturbation. We found
that the action of two pulses generally deviates from the super-
position of two one-pulse responses, and this nonlinear effect,
which is proportional to the product of the perturbations’
amplitudes, significantly depends on the relation of the interval
between the pulses and the relaxation time of the oscillator. In
the case of fast relaxation or a large time interval between the
pulses, the nonlinear effect vanishes. We have demonstrated
this property for several models: the standard Stuart-Landau
oscillator, the modified version for this oscillator with a highly
nonuniform motion over the cycle, and three neuron models,
including the classical Hodgkin-Huxley system.

We stress here that in our study, the term “nonlinearity”
of the PRC has been used in two contexts. For a one-pulse
PRC, nonlinearity means that the phase response cannot be
represented as an amplitude of the pulse multiplied by a
function of the phase; in particular, the form of the curve may
depend on the pulse amplitude. For two pulses, we use the term
nonlinearity to describe a deviation from the superposition
principle; this effect in the leading order is proportional to
the product of the pulses’ amplitudes. We have shown that
nonlinearity of the single-pulse PRC does not necessarily lead
to nonlinearity for a two-pulse excitation: the purely phase
model in Sec. II A is a good illustration of this. Both nonlinear
effects may distort a simple picture of the neuron’s dynamics
under external forcing. In particular, in [17] it was suggested
that a relatively weak noisy current to the neuron can be
applied to obtain the PRC, by solving the equation that relates
the infinitesimal (linear) PRC to the external voltage through
optimization methods. However, this method does not account
for the nonlinear correction which we showed in this study.
In some neurons, we showed that the nonlinear effect can
have a significant effect on the multipulse PRC compared to
the single-pulse PRC, and thus the continuous perturbation
method may produce erroneous results. Thus, further studies
are required to validate the method proposed in [17].

We see two main application fields for our approach. First,
it can be used for diagnostics of oscillators. While the usual
PRC allows characterization of the sensitivity of the phase
to an external action, the nonlinear terms in the two-pulse
response allow characterization of relaxation processes. In
particular, one-pulse PRCs of the Wang-Buzsaki model and
of the modified Hodgkin-Huxley model are very similar [cf.
Figs. 4(a) and 6(a)], but their two-pulse PRCs are completely
different; this may be useful for designing models to fit
experimental data. Two-pulse PRCs can be estimated from
experimental data and this information can be used to design
optimally a model that provides the best description of the
data. The second field of application is the incorporation
of these effects into the synchronization theory of pulse
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coupled oscillators. Indeed, in a network an oscillator usually
experiences inputs from many other units, and in the absence of
synchrony the time intervals between the incoming pulses can
be rather small. In this case the nonlinear “interference” of the
actions is mostly pronounced and may contribute significantly
to the synchronization properties. In particular, we expect that
incorporating the effects of two-pulse PRCs into the methods
used in predicting synchronizability (which are currently based
solely on PRCs developed in Ref. [14]) would increase the
accuracy of such approaches.
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APPENDIX A: PRC FOR THE
STUART-LANDAU OSCILLATOR

We briefly outline the majors steps in obtaining the
approximate nonlinear correction term for the Stuart-Landau
oscillator using an expansion in €. Several intermediate steps
are not shown to make the presentation brief. Section II C
provides the phase equation and the evolution operator for the
Stuart-Landau oscillator.

Att =0,let R = 1,6 = 6. Afterthe g pulseatt = 0, R =
\/(cos 0y + €0)* +sin*6y) and Gy = arctan(sin 6y /(cos 6y +
€0)), which, upon expansion, gives R=1+4¢ycosby+
63(%) + O(g®) and Oy = 6y — € sin By + €] sin 6 cos O +
O(&*). From here we ignore all O(&?), cubic, and higher order
terms.

The phase shift due to the gy pulse is

Agy =0y — 6y — ¢ In R = arctan(sin 6 /(cos 6y + €0)) — 6o — il In \/(cos 6o + €0)? + sin? 6y),
I m

—€p sin Gy
Agy = arctan ———
1+ €gcosby

—%m V(cos 8y + €)% + sin2 6p)
"

. a L L. o
~ —eo| sinfy + —cosby | + =€ sin26p + — cos 26 |.
2 2 2

Attime T

R(®)\
<9<r)> B

() =60 +1— 2& In(R* + (1 — R?) exp(—2u1))
n

Ur<

R
o )’

~ T+ 6y — €gsinby + eg sin 6y cos 6y — 2& In ((l + 2¢€p cos by + eg) + (—260 cos Gy — eg)efzm)
"

~T+6)— eo[sin60 + gcos(l — ez’”)i| + 65|:
m

‘[-f-e()—é()E'f‘GgF’

sin 6y cos fy — 23(1 — e 2T 2 cos26y(1 — 62’”)2):|
m

1+ 2¢pcos by + €5

R(1) = [

REP ~ 1+ 2¢pcos by + €5
1 4 269 cos Op(1 — e7247) + €2(1 — e~217)

72 12 12
R2+(1- Rz)e_z‘”} - |:1 + 2¢€p cos O + € + (—2€p cos by — eé)e—zﬂf} ’

~ 1 + 2€pcos fpe 2T — 463 cos? Op(1 — e™27) + 636‘2’” + 463 cos? Gp(1 — e 2472

~ 1 + 2€pcos e 21T + 63[—4 cos? Op(1 — e 2HT)e 21T 4 o7 2T

=1+€C+¢eD.

After the second pulse (&) at time 7,

R(t) = V(R(t)cos O(t) + €1)> + (R(1) sin (1))?

and () =

arctan(R(t)sin6(t)/(R(t)cosO(t) + €1)). So the final phase shift is Agy; = é(r) — 6y —1— ﬁ In 1@2(1), which needs
to be compared to prediction from linear superposition, which is given as Agy + Ag;. We first expand cos 8(t), R(z), and 6(),

since they are used in the comparison as

1
cosf(t) = cos (r + 6y — €0 E + egF) =~ cos(t + 0y) — €oE sin(t + 6p) + 65 <—§E2 cos(t + 6p) — F sin(t + 90)>,

N 1
R*(t) = R*(t) 4+ 2R(t)€; cos 0(t) + € ~ 1 4 &9C + &2 D + 2, (1 + 580C>(COS(90 + 1) + &0 E sin(t + 6p)) + €7,
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& . &? .
RO sinf(t) + Rz—(r) sinf(t)cos O(1)

A(t) = arctan(R(t) sin0(7)/(R(t) cos (1) + 1)) ~ O(t) —

1
~ T+ 60)+ €E — epsin(t + 6y) + egF + eo€1 [— cos(6p + 1)E + 3 sin(6y + ‘L’)C:| + 8]2 sin(6y + 1) cos(fy + 1),

sin(6p + Agy + 1)
(cos(8o + Ago + 7) + €1)

A@o + Ap; = Agp + arctan < ) — (6 + Ao + 1)

a .
— ﬂ In(cos(8y + Ao + T) + €)* + sin’(Bp + Ago + 1)

—e1 sin(By + Ago + T) o i
— —In(142¢&1cos(By+ Agpo+ 1)+ ¢
I +ecos(bp+Apy+71) 1 ( 1 cos(6p @+ 1) 1)

~ Agp + arctan
. o l 2 . o . (07
~ —eg| sinfy + —cosby ) + 560 sin 26y + — cos 260y | + €1 sin(6y + Ay + ) + — cos(@p + Agy + 1)
w w w
1 . o
+ Eef[sm 2600 + Ay + 1) + ; cos 2(6y + Agy + r)],
N o An
Apyg =0(t)—60)— 17— —InR(7)
2p
1
= €gE — gy sin(t + 6y) + egF + g1 [— cos(fp + 1)E + 5 sin(6y + t)Ci| + 8% sin(6y + 7) cos(6y + T)

1
— 21 In |:1 + &C + S(Z)D + 2¢; (1 + 550C>(c0s(90 + 1) + g9 E sin(t + 6y)) + 612]
"

Finally, the difference between the prediction from superposition and the actual phase reset (after substitutions) is given as
Ao — (Ao + Agr)

= eo|:sin 6 + hl cos(1 — e‘z’”):l — g1 sin(t + 6p) + 6§|:sin 0o cos By — 21(1 — 72T — 2 cos? Oy(1 — e‘z‘”)z):|
w w
_ : o _ ,2urt L. —2ut 2
+ go&1| —cos(Bp + t)| sinfy + — cos(1 — e )|+ 3 sin(fy + 7)2 cos Hye ~+ &1 sin(fp + 1) cos(Bp + T)
u
- 21 In [1 + 202 cos fpe 2T + e2[—4cos? (1 — e 2HT)e T 4 o727
m
1 —2ur . o —2uty | o 2
+2&( 1+ zeoZCoseoe R )(cos(by + 1) + &9 sinby + — cos(1 — e “H7) | sin(r + 6p)) + €;
n
: o 1Y o .
— | —€o| sin6y + —cos by | + 560 sin26y + — cos 26y | + &1 | sin(6p + Ao + T)
w %
o | o
+ ; cos(Bp + Apo+ 1) | + 581 sin2(6yp + Agy + ) + ; cos2(6p + Ay + 1) | |,

which, upon several steps of algebraic reductions and ignoring cubic or higher ¢ terms, gives

a2 .
Ao, 1 — (Agy + Apy) = e (1 + ;)e‘z‘” cos ¢p sin(gy + 7).

APPENDIX B: NEURON MODELS

In these models Iy, is the external input.
Wang-Buzdki model [18]:

b = —0.1(v 4 65) — 9n*(v 4+ 90) — 35m> h(v — 55) — Igim; h = (heo — h)/he, 11 = (0o —n)/ny,
o /(@ + Bn); em = —(v+35)/(10(e™ IO — 1)), B, = e O

hoo = an/(an + Br)s e =1/5n + i), ap = 0.07e" V20 g = 1 /(e @+28/10 4 1,
Moo = Un /(@ + B),  Nr = 1/(5(y + B)); @y = —0.01(v + 34)/(e” /10 — 1), B, = 0.125¢~ /80,

Moo

(B1)
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Hodgkin-Huxley model [19]:

b = —0.5(v + 65) — 36n*(v + 77) — 120m> h(v — 50) — Iyim;
/(@ + B); G = —0.1(v 4 40)/(e” VTN 1),

Moo

heo = ap/(ap + Br),  he = 1/(an + Br),
Noo = an/(an + Br), ne = 1/(an + B1);

Modified Hodgkin-Huxley model [20]:

oy = —

PHYSICAL REVIEW E 88, 042902 (2013)

h = (hoo — h)/ e,
,Bm — 46_(U+65)/] 8.

n = (N —n)/ne,

0 = (—0.0317(v + 77.8) — 30.032m> h(v — 49.8) — 5.315n(v 4 100.4) — Iyin)/0.75;

h=—p(h — hoo)/ht, n=-6n— noo)/nr’
oy = 0.182(v 4 25) /(1 — e~ @+2)/9),

hoo = an /ety + Br),  he =1/(2.953(n + B));
hoo = 1/(1 4 eVH2/02); q = 0.024(v + 40)/(1 — e~V H40/5),
Moo = & /(n + Bn),  ne = 1/(2.953(w + Bu));

B, = —0.002 % (v — 25)/(1 — eV729/9),

Here, p is the factor which was reduced to 0.5 in Fig. 6.

ap = 0.07e” @020 g — 1 /(e @H3/10 4 1. (B2)
0.01(u + 55)/(e" @10 1), p, = 0.125¢ HI/,
Moo = O /(O + Bn);
= 0.124(—v — 25)/(1 — e~ (-v=25)/9 ;
B ( )/( ) ®3)

B = 0.0091(—v — 65))/(1 — e~ V76975,

ap = 0.02 % (v — 25)/(1 — e~ @=29/%),
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