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Detecting triplet locking by triplet synchronization indices
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We discuss the effect of triplet synchrony in oscillatory networks. In this state the phases and the frequencies
of three coupled oscillators fulfill the conditions of a triplet locking, whereas every pair of systems remains
asynchronous. We suggest an easy to compute measure, a triplet synchronization index, which can be used to
detect such states from experimental data.
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I. INTRODUCTION

Synchronization of self-sustained oscillatory systems is
a fundamental nonlinear phenomenon, extensively studied
within the last 3 decades [1]. Being weakly coupled, systems
of this class tend to adjust their frequencies and phases. This
happens because the direction along the flow of the dynamical
system in its state space is neutrally stable and therefore
susceptible to even a very small perturbation or interaction.
Since the neutrally stable direction corresponds to the phase
of the oscillator, its phase and hence its frequency can be easily
shifted due to a weak coupling to other systems.

In spite of essential progress made, synchronization re-
mains a topic of interest in numerous theoretical and experi-
mental studies and finds various applications, in particular, in
analysis of oscillatory time series [2–5]. There are two basic
approaches to this data analysis problem. In one formulation,
one tries to recover a description of the interaction between two
self-sustained oscillators from the time series, e.g., via recon-
struction of the coupling function in the phase approximation
[6]. Recent attempts [7] are aimed at extension of this approach
to cover the oscillator networks, e.g., to analyze the interaction
of respiratory, cardiac, and brain activities [8]. In another
approach one does not reconstruct the underlying equations but
focuses on establishing synchronization features by analyzing
some correlation between the signals or their phases [2,9,10].
Quite popular here is the so-called synchronization index, also
called the phase locking value (see, e.g., [11]), which can
be computed even for noisy and nonstationary time series,
provided the phases are extracted from the available signals.

Our main goal in this paper is to extend this analysis
to more complex synchronization patterns in multifrequency
systems. Such an approach naturally calls for incorporation
of the theoretical results on the synchronization of multifre-
quency systems (see, e.g., [12] for an analysis of external
synchronization of the van der Pol oscillator with a modulated
natural frequency, [13] for studies of mutual synchroniza-
tion of electronic three-dimensional quasiperiodic systems,
and [14] for numerical and experimental investigations of
forced and mutual synchronization of quasiperiodic oscillators
with two basic frequencies). In a general formulation [15],
synchronization of systems with N > 2 basic frequencies can
be understood as the occurrence of resonances on an N -
dimensional torus. Although this basic feature is well known,
to our knowledge this concept has never been applied to
quantification of high-order synchrony in oscillator networks

from multivariate data. In this paper we exploit this concept
and suggest a simple measure which reliably detects triplet
synchrony from time series.

This paper is organized as follows. In Sec. II we briefly
discuss triplet locking, and in Sec. III we introduce the
corresponding synchronization index. In Sec. III we present
the numerical results, which are then discussed in Sec. V.

II. TRIPLET SYNCHRONY

In the simplest setup, two limit-cycle oscillators (or an
oscillator and a driving force) are said to be n : m synchronized
if the conditions of phase and frequency locking,

|nϕ1 − mϕ2| < const, n�1 − m�2 = 0, (1)

are fulfilled. Here ϕ1,2 are the oscillators’ phases, �1,2 = 〈ϕ̇1,2〉
are the observed frequencies of interacting systems, m and n

are some positive integers, and 〈·〉 denotes time averaging.
Due to an interaction, the observed frequencies �1,2 generally
differ from the frequencies of autonomous oscillators (natural
frequencies) ω1,2. It is important that conditions (1) are fulfilled
in a finite range of the detuning ω1 − ω2. Synchronization can
also be described in geometrical terms: while the image of
the asynchronous, quasiperiodic motion is a two-dimensional
torus (spanned by the two phases) in the phase space of the
coupled systems, the transition to synchrony corresponds to
an appearance of a stable limit cycle on this torus; this picture
is valid for at least not very strong coupling.

A larger number of interacting oscillators (N > 2) gener-
ally builds a network. Now, depending on the distribution of
the natural frequencies, on the network structure, and on the
coupling parameters, different dynamical regimes are possible
[16]. Full phase locking is observed when conditions (1) are
valid for any pair of units; correspondingly, the dynamics in the
phase space of the system of N oscillators reduces to a stable
limit cycle on the N -dimensional torus (spanned by N phases).
It may happen that some pairs of oscillators synchronize, while
they remain asynchronous with the rest of the network. In
this context one speaks of partial synchrony [17], when the
dynamics reduces to a stable torus of a dimension between 1
and N . Furthermore, oscillators can form several synchronous
groups (clusters), so that every pair within the cluster is
synchronized according to (1); clusters can coexist with an
asynchronous group. These types of synchrony are usually
tackled by a pairwise analysis of phase and frequency locking
according to Eq. (1). However, pairwise analysis may not
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FIG. 1. (Color online) (a) Pairwise synchronization indices (black
solid line) and triplet index (thick blue line). There are four domains
where the triplet index is large whereas pairwise indices are small; this
indicates the triplet locking. (The order of the locking is shown on the
plot, e.g., 3:1:−2 means that the triplet index maximizes for n = 3,
m = 1, and l = −2.) The large domain 0.5 � ω1 � 0.7 is a domain of
complete synchronization (all three oscillators are locked). (b) Three
largest Lyapunov exponents of the coupled system (lines); negative
values indicate phase locking. A small parameter range around ω1 ≈
0.77, where triplet locking 1:1:−2 is observed, is magnified in the
inset.

reveal all synchronous states of a network because, generally,
we expect to observe high-order resonances on the tori.

For definiteness, we fix N = 3. Here, in addition to usual
pairwise locking described by Eq. (1), we expect to find a
synchronous state, when triplets of oscillators adjust their
phases and frequencies so that the following conditions are
fulfilled:

|nϕ1 + mϕ2 + lϕ3| < const, n�1 + m�2 + l�3 = 0, (2)

where integers n,m,l can be both positive and negative, while
the conditions of the pairwise synchrony equation (1) are not
satisfied for any pair of units. We denote this state as triplet
synchrony.

It is instructive to discuss the triplet and the pairwise
synchronies in terms of Lyapunov exponents (LE). When the
systems are uncoupled, the spectrum contains three zero LEs,
corresponding to the phases of the oscillators, and negative
LEs, describing the transverse stability of the limit cycles
(their number depends on the dimensionality of oscillator
subsystems). The negative exponents are practically unaffected
by the coupling and are not important for the following
discussion, while the initially zero LEs reflect synchronization
transitions. If one pair of oscillators gets frequency locked
while the third one remains asynchronous, one zero LE
becomes negative and two remain zero. Locking of all three
oscillators is characterized by one zero LE. When three
oscillators are locked in a triplet, the three phases are subject
to the stable condition (2), and therefore one zero LE becomes
negative. Thus, the spectra of LEs do not distinguish between
the triplet synchrony and the state when one pair of oscillators
is synchronized. In terms of the phase space, both the triplet
and the pair synchrony correspond to a two-dimensional torus
in the three-dimensional space of three phases. The difference

is that for the pairwise synchrony the torus lies “parallel” to
one of the axes [see Fig. 2(a) below], while for the triplet
synchrony it lies “diagonally” [see Fig. 2(b) below].

III. TRIPLET SYNCHRONIZATION INDEX

In a numerical or physical experiment where one can
vary or control the oscillators’ natural frequencies, the triplet
synchrony can easily be detected by directly checking the
locking conditions, (1) and (2), depending on these parameters
(cf. Fig. 3 below). In experimental studies, where only short
time series from the interacting systems are available and the
oscillators are inevitably noisy, one typically quantifies the
degree of interrelation between the phases by some correlation
measure, e.g., by means of the n : m synchronization index, or
the phase locking value [2,11]:

γn,m = |〈ei(nϕ1−mϕ2)〉|. (3)

Here n and m are integers which are typically chosen by trial
so that the index is maximized. The index is close to 1 in
the case of the pairwise locking described by condition (1)
and zero otherwise. (Notice that even in the case of perfect
synchronization, γn,m is generally less than 1 due to possible
oscillations of the generalized phase difference nϕ1 − mϕ2

around some mean value.)
If N > 2 interacting oscillators build a network, then the

synchronous states are usually characterized via the pairwise
analysis as well, namely, by computation of indices (3) for
all pairs. Naturally, the triplet-synchronous states are not
revealed by this analysis. Therefore, we introduce a triplet
synchronization index:

γn,m,l = |〈ei(nϕ1+mϕ2+lϕ3)〉| , (4)

which quantifies whether the phases of three oscillators fulfill
condition (2). In case of a perfect locking, nϕ1 + mϕ2 + lϕ3 =
const, the index γn,m,l ≈ 1, while it is zero if at least two of the
three phases are completely independent; intermediate values,
0 < γn,m,l < 1, are observed when the oscillators undergo
a transition from autonomous to synchronized dynamics.
Below we demonstrate that the proposed quantity efficiently
reveals triplet-synchronous states. Furthermore, we show that
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FIG. 2. (Color online) Trajectories on the three-dimensional
torus. Poincaré maps for ϕ1 = 0 are shown for (a) ω1 = 0.72 and
(b) ω1 = 0.77. In (a), for fixed ϕ1 the variation of ϕ3 is small, which
means that ϕ3 − ϕ1 ≈ const, while ϕ2 attains all values in the range
[0,2π ); this is a sign of synchronization between oscillators 1 and 3,
while oscillator 2 is asynchronous. In (b), for fixed ϕ1, both phases ϕ2,3

vary from zero to 2π , remaining, however, in a functional relationship;
this is an example of a triplet-synchronous state.
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FIG. 3. (a) Illustration of the triplet locking condition �1 + �2 −
2�3 = 0. (b)–(d) Absence of pairwise locking.

triplet-synchronous states appear already in a quite standard
setup with pairwise linear diffusive coupling of oscillators.

IV. NUMERICAL EXAMPLE

Our basic model is a ring of three coupled Rayleigh
oscillators [18]:

ẍ1 − μ
(
1 − ẋ2

1

)
ẋ1 + ω2

1x1 = ε(ẋ3 + ẋ2 − 2ẋ1),

ẍ2 − μ
(
1 − ẋ2

2

)
ẋ2 + ω2

2x2 = ε(ẋ3 + ẋ1 − 2ẋ2), (5)

ẍ3 − μ
(
1 − ẋ2

3

)
ẋ3 + ω2

3x3 = ε(ẋ1 + ẋ2 − 2ẋ3).

In the first numerical experiment we fixed parameters μ = 0.5,
ω2 = 0.52, ω3 = 0.65, and ε = 0.1, whereas frequency ω1 was
varied between 0.2 and 0.8 with a step of 0.0005. The system
was integrated with the fourth-order Runge-Kutta method with
a time step of 0.02.

For each set of frequencies we computed the LEs and the
synchronization indices. For this goal, we first obtained, for
all oscillators, the protophases

θ1,2,3 = arctan

(
− ẋ1,2,3

ω1,2,3x1,2,3

)
(6)

and then performed a transformation to phases, θ → ϕ (see
[6]). This step is necessary because the protophases, although
they yield correct observed frequencies, are not uniformly
distributed in the interval [0,2π ), and therefore the synchro-
nization index calculated using variables θ will not vanish
even in the absence of the coupling. The transformation to the

phases, according to [6], is performed as follows: (i) we find
the probability densities of the protophases ρi(θi), and (ii) we
obtain the genuine phases according to ϕ = 2π

∫ θ

0 ρ(θ ′) dθ ′.
Notice that this is a reversible transformation, not a filter, so
that no information is lost in this step. Then the phases ϕi are
used to calculate indices (3) and (4).

In this way, for all values of ω1 we obtained three pairwise
indices γ (1,2)

n,m , γ (2,3)
n,m , and γ (1,3)

n,m for n,m � 5 and took their
maximal values; the superscripts here correspond to the
oscillator indices. Next, we computed the maximal, over all
combinations with |n|,|m|,|l| � 5, triplet index γn,m,l . The
results, shown in Fig. 1(a), indicate four domains of triplet
locking of different orders. Within these domains the triplet
index is large while the pairwise indices are small. (Notice
that for all indices 0 � γ � 1.) The variation of LEs with ω1 is
consistent with the calculated indices [Fig. 1(b)]: large values
of indices correspond to negative LEs. However, as discussed
above, the distinction between pairwise and triplet locking on
the basis of LEs is not possible. This is illustrated in Fig. 2,
where we present Poincaré maps of the three-dimensional torus
for two cases, ω1 = 0.72 and ω1 = 0.77. (The sections are
constructed by taking ϕ1 = 0.) In both cases the triplet index
is large, γ1,1,−2 > 0.8. However, in the first case one pairwise
index is large as well, whereas in the second case all pairwise
indices are much smaller than γ1,1,−2. The Poincaré maps
confirm that the cases ω1 = 0.72 and ω1 = 0.77 correspond to
the pairwise and the triplet lockings, respectively.

Figure 3 presents the details for the domain of the 1:1:−2
locking. Here we show that condition (2) is fulfilled while the
natural frequency ω1 is varied in a finite range [19]. Thus, the
high value of the triplet index revealed a true locked state, not
an occasional coincidence of frequencies.

For the case of triplet locking, it is natural to represent the
synchronization regions as domains in the three-dimensional
parameter space spanned by ω1 − ω3, ω2 − ω3, and ε. This
is illustrated for the case of the 1:1:−2 locking in Fig. 4.
Here we show four cross sections of the parameter space for
four values of the coupling strength and for constant ω3 =
0.65 (therefore we use ω1,ω2 as the coordinates). Different
domains (no locking, pairwise locking, full synchrony, and
triplet locking) are shown by gray scales. Naturally, the domain
of triplet locking is stretched along the line ω1 + ω2 = 1.3 =
2ω3. This stripe connects the domains of pairwise and/or full
synchrony. Notice that the stripe becomes wider, but shorter, as
the coupling strength ε increases. Indeed, on the one hand, an
increase in coupling facilitates triplet locking, but on the other
hand, the domains of the usual (pairwise and/or full) locking
may grow even faster with ε, and in the parameter space no
place for the triplet locking remains.

In the second numerical experiment we checked how
frequent the triplet states are (cf. [15]). For this goal we
performed about 8 × 104 runs with the natural frequencies
ω1,2,3 randomly chosen from the interval [0.5,1.5]. For
each run we computed the observed frequencies �1,2,3 (by
following the phase growth for each oscillator over the
large time interval 2.5 × 104; see also [19]) and checked the
conditions of pairwise and triplet locking [see Eqs. (1) and (2),
respectively] for n, m, |l| � 20. The condition was considered
fulfilled if |n�1 + m�2 + l�3| � 10−4. Simultaneously, we
counted the number of zero LEs; practically, we attributed
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FIG. 4. Synchronization regions of order 1:1:−2 for (a) ε = 0.05, (b) ε = 0.1, (c) ε = 0.15, and (d) ε = 0.2. Triplet locking, full synchrony,
and pairwise locking are shown by black, white, and dark gray, respectively. Asynchronous states are presented by light gray.

the LEs satisfying |λ| � 10−5 as zero ones (this threshold
depends on the length of the numerical run). The results for
five different values of the coupling strength ε are shown
in Fig. 5. Here we show only the relative probability of
different synchronous states. For small couplings, the most
probable are synchronous states with pair synchrony; for large
couplings, the most probable are those with full synchrony.
Triplet synchrony appears with a probability of a few percent.
In the chosen frequency range, the most “popular” resonant
combination of frequencies is 2�1 = �2 + �3 (with a proper

0.05 0.075 0.1 0.15 0.2
0
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100
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FIG. 5. (Color online) The relative frequency of different syn-
chronous states (percent) for model (6) with randomly chosen
frequencies. From bottom to top: pairwise synchrony, full synchrony,
and triplet synchrony.

permutation); such triplets represent ≈40% of all observed
triple resonances for moderate couplings and about 80% for
the largest coupling ε = 0.2. Not shown in the diagram are
quasiperiodic states, which dominate for small couplings (they
occur with probabilities of 60%, 50%, 41%, 25%, and 10%
for couplings ε = 0.05, 0.075, 0.1, 0.15, 0.2, respectively).
Chaotic states are very rare (maximal occurrence of 0.25% for
ε = 0.15).

V. DISCUSSION

In this paper we have suggested a simple technique to
detect the triplet synchrony in the oscillator networks from the
observed data. Although the triplet synchrony is known from
the theory, we believe that it was important to demonstrate
that such regimes are not exotic and can naturally appear in a
heterogeneous network, in particular in experiments with large
groups of oscillators of different origins, e.g., mechanical,
electronic, chemical, etc. [20]. We expect that triplet indices
(4), due to their simplicity, will become a common tool in
data analysis. Possible applications are the quantification of
the coordination of respiratory, cardiac, and brain activities
[8] and of the interaction of different brain regions, where
oscillations with a hierarchy of frequencies are ubiquitous [21].
Furthermore, the concept of triplet synchronization might
contribute to research in neuroscience based on the binding-
by-synchrony hypothesis [22], which states that synchronized
patterns of neural activity constitute cognitive related content
since complex forms of synchronization might correspond to
more complex forms of cognitive binding.
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The proposed measure can easily be extended to reveal
quadruplets and higher-order resonances in networks of more
than three units. However, we expect the corresponding
parameter domains to be very narrow and the probability
of observing such states from noisy data to be very small.
Nevertheless, complex synchronous states can naturally arise.
Indeed, suppose as an example that three elements of a large
network build a triplet nω1 + mω2 + lω3 = 0 and also that
one of these elements synchronizes with another oscillator, so
that, e.g., kω3 = pω4. Then oscillators 1, 2, and 4 also fulfill
the condition of triplet locking, nkω1 + mkω2 + lpω3 = 0.

Finally, we mention that a high value of the index γ

demonstrates a high degree of interrelation between the phases,
and in spite of the commonly used name “synchronization
index,” it only indicates possible synchronization and does
not prove its existence (for the latter a determination of the

locking region, like in Fig. 3, is required). Generally, a high
value of γ can be due to other types of interaction, e.g.,
due to modulation. All the problems in interpretation of the
pairwise analysis by means of γ remain relevant in case of
triplets. Similarly, like in the pairwise analysis, the problem
of statistical significance can be tackled by surrogate data
tests [23]. Preliminary calculations performed for the case
illustrated in Fig. 3 show that triplet synchrony can be clearly
distinguished from the usual one if the time series contain at
least ten oscillation periods. Detailed analysis of the statistical
properties of index estimation and of the effect of dynamical
and measurement noises remains a subject for future studies.
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