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We study an ensemble of identical noisy phase oscillators with a blinking mean-field coupling, where one-
cluster and two-cluster synchronous states alternate. In the thermodynamic limit the population is described by a
nonlinear Fokker-Planck equation. We show that the dynamics of the order parameters demonstrates hyperbolic
chaos. The chaoticity manifests itself in phases of the complex mean field, which obey a strongly chaotic
Bernoulli map. Hyperbolicity is confirmed by numerical tests based on the calculations of relevant invariant
Lyapunov vectors and Lyapunov exponents. We show how the chaotic dynamics of the phases is slightly smeared
by finite-size fluctuations.
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I. INTRODUCTION

Dynamics of large populations of coupled oscillators
attracted large interest recently. Problems of this type appear in
studies of Josephson junctions, lasers, ensembles of neurons,
cell populations, and many other fields. From a more general
perspective, studies of such a system allow one to shed
light on a long-standing problem of an interrelation between
microscopic and macroscopic dynamics. Indeed, the mostly
studied nontrivial effect in the ensembles of globally coupled
oscillators is their synchronization, which can be considered as
a nonequilibrium phase transition [1,2]. Remarkably, in some
situations one can explicitly derive the dynamics of global
variables (order parameters), in terms of which the synchro-
nization transition is a bifurcation from a zero equilibrium to
a nontrivial state [3].

Different interrelations between regularity properties on
micro- and macro-levels (i.e., for the individual oscillators and
for the mean fields) have been reported in the literature. For
example, chaotic micro-oscillators being coupled may lead to
periodic mean fields [4–8]. On the other hand, coupled periodic
oscillators may produce chaotic mean fields [9–11]. While a
general description of populations of deterministic oscillators
remains a challenging task, there exists a nice framework for
ensembles of noise-driven oscillators. The behavior in the
thermodynamic limit can be described self-consistently by
virtue of a nonlinear Fokker-Planck equation, first suggested
by Desai and Zwanzig [12] in the context of globally
coupled noisy bistable oscillators (see also Ref. [13]). This
approach has been then applied to noisy periodic oscillators in
Refs. [14,15].

In this paper, we consider a population of noisy oscillators
subject to a blinking, time-periodic coupling [16–18]. This is a
minimal generalization of the simplest model with a constant
coupling, demonstrating simple synchronization patterns only.
We will show that with a blinking coupling, where on different
periods of the total cycle different synchronous modes emerge,
the total dynamics demonstrates highly nontrivial regime of
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phase hyperbolic chaos. In this regime, the phase of the
complex order parameter obeys a doubling Bernoulli map,
which has strong chaotic properties, and is, contrary to
many other models of chaos, structurally stable in respect to
perturbations.

Our treatment of the dynamics of the complex mean fields
follows recent studies [19,20], where a general framework for
mechanisms of hyperbolic chaos in coupled oscillators has
been developed. In the simplest setup, two oscillators that
are excited alternately can interact in a way to influence the
phases of each others at the stages where these oscillators
pass through a supercritical Hopf bifurcation. More precisely,
one needs the appearing field to be forced by a higher
harmonic of another oscillator, then a transformation of the
phase φ → nφ with |n| � 2 can occur. As a result, the
phase obeys a Bernoulli-type, uniformly expanding map, and
the whole strange attractor is of a famous Smale-Williams
type [21]. The described mechanism of hyperbolic chaos
generation via the phase multiplication is quite generic. The
straightforward way of its implementation is to consider two
nonautonomous limit-cycle oscillators with different natural
frequencies and appropriate coupling [22]. Further analysis
revealed a possibility to identify this mechanism in a system
of two or three coupled autonomous oscillators [23]. Recently,
it has been described how to observe the hyperbolic chaos
in a spatially extended system, as a result of an interaction
of Turing modes [24]. In Ref. [11] an alternation between
synchronized and desynchronized regimes in two ensembles
of nonidentical oscillators subjected to the Kuramoto transition
was shown to possess a collective hyperbolic chaos of complex
order parameters.

In this paper, we report on our study of an ensemble of
identical stochastic phase oscillators coupled via the mean
fields. We consider a situation of blinking coupling, where
different synchronization patterns, one with one cluster and
another with two clusters, alternate. We show, both basing
on the nonlinear Fokker-Planck equation and on the direct
simulation of a large population, that the phases of these
patterns demonstrate hyperbolic chaos. Moreover, we study
the Lyapunov exponents of the system and apply numerical
criteria based on Lyapunov vectors to verify hyperbolicity.
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II. ENSEMBLE OF COUPLED NOISY OSCILLATORS

A. Microscopic equations

Our basic model is an ensemble of K globally coupled
identical limit-cycle oscillators with additive noise. In the
phase description, the ensemble is governed by the following
set of equations:

φ̇k = f (φk) + 1

K

K∑
j=1

q(φj − φk) + σξk(t), (1)

where k = 1, . . . ,K , φk is the phase of a kth oscillator (taken in
the reference frame rotating with the basic frequency), and the
independent random variables ξk(t) describe white Gaussian
noise: 〈ξk(t)ξj (t + τ )〉 = δjkδ(τ ). Functions q(φ) and f (φ)
(both are 2π -periodic) describe, respectively, effects of global
coupling and of the external periodic forcing at the oscillator
frequency and/or its harmonics. It is convenient to define these
functions by means of the Fourier decompositions:

f (φ) =
∞∑

n=−∞
Fne

inφ, q(φ) =
∞∑

n=−∞
Qne

inφ. (2)

Since the functions f and q are real, F−n = F ∗
n , and Q−n =

Q∗
n, where asterisk denotes complex conjugation.
Given a state of the ensemble, one can determine the

following mean fields playing roles of order parameters:

A�(t) = 〈ei�φ〉 = 1

K

K∑
k=1

ei�φk , (3)

where � = 1,2, . . ., and A0 = 1. Notice that A−� = A∗
� . In

what follows we shall use the notation arg A� = 	�.

B. Nonlinear Fokker-Plank equation

In the thermodynamic limit K → ∞, the ensemble can be
described by the density of the probability distribution v(φ,t).
The mean fields in this case are expressed as

A�(t) =
∫ 2π

0
v(φ,t)ei�φdφ. (4)

The probability density can be decomposed as Fourier series:

v(φ,t) = 1

2π

∞∑
�=−∞

A�(t)e−i�φ, (5)

i.e., the order parameters A�(t) are just the coefficients of the
Fourier modes for the probability density.

The dynamics of the probability density can be described by
the nonlinear Fokker-Planck equation [12,13]. For the system
Eq. (1), accounting for the expressions in Eq. (2), we can write:

∂v

∂t
= − ∂

∂φ

∞∑
n=−∞

v(F−n + QnAn) e−inφ + σ 2

2

∂2v

∂φ2
. (6)

Now we substitute here the Fourier decomposition Eq. (5) for
v(φ,t), then multiply the expression by e−i�φ , and integrate it
over 2π . The resulting equations for A� read:

Ȧ� = i�

∞∑
n=−∞

(F−n + QnAn)A�−n − σ 2�2

2
A�. (7)

C. Elementary synchronization dynamics

The set of Eqs. (7) allows one a simple qualitative descrip-
tion of basic synchronization phenomena in the ensemble. If
only the global coupling is present (Fn = 0), and q(φ) has one
Fourier component Qn = − i

2κn, then the nonsynchronized
state Aj = δj,0 remains stable until the coupling exceeds the
synchronization threshold

κn > nσ 2. (8)

Above this threshold, the mode An becomes unstable, and a
stationary solution of Eq. (7) containing modes A�n with � =
1,2,3, . . . is established. This corresponds to the appearance
of an n-clustered state of the ensemble, where the probability
density has maxima at φ(0) + k2π/n, and φ(0) is an arbitrary
phase shift determined by initial conditions. In contrast, with-
out the global coupling (Qn = 0), if only the external forcing is
present containing one Fourier component (Fn = − i

2ε), then
for a small ε an n-cluster state with An ≈ −εn−1σ−2 appears.
The phase of this cluster is fixed, determined by the applied
forcing.

III. CLUSTER EXCHANGE DYNAMICS AT
BLINKING COUPLING

The main goal of this paper is to describe macroscopic chaos
appearing when the coupling in the ensemble is blinking (cf.
Ref. [16]).

In this section, we consider the effect of blinking cou-
pling qualitatively, based on the elementary synchronization
dynamics described in the previous section. First, we make
a particular choice for the global coupling terms, assuming
alternating couplings Q1 and Q2:

Q1,2 = − iκ̃1,2(t)

2
, (9)

where

(κ̃1,κ̃2) =
{

(κ1,0), if mT � t < mT + T/2,

(0,κ2), if mT + T/2 � t < mT + T .
(10)

Here, T is the total period of blinking; it is assumed to be
large enough compared to the characteristic time of cluster
formation or decay. In the first half of this period (we call it
stage 1) only Q1 is present; correspondingly, the one-cluster
state develops. During the second half of the period (stage 2),
only Q2 is present; so, in this stage, the two-cluster state
develops (see Fig. 1 below).

For the following consideration, the phases of the clusters
are important. As the one-cluster state contains all modes An,
n = 1,2,3, . . ., at the beginning of stage 2 the amplitude A2 ∼
A2

1 is finite. During stage 2, due to the appropriate coupling,
the instability appears associated with formation of the two-
cluster state, and the initial phase 	2 = 2	1 occurs, to be
definite, determined by the preceding evolution. Thus, the two-
cluster state accepts this phase from the former one-cluster
state. At the end of stage 2, only modes with even index An,
n = 2,4,6, . . . are present (as T is large enough, the odd modes
decay effectively during stage 2). Thus, at the beginning of the
next stage 1, there is no initial amplitude A1, and its growth
due to the coupling Q1 would start only from random initial
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FIG. 1. (Color online) (a) Probability density v(φ,t) determined by Eq. (5), where An(t) are computed according to Eq. (12); (d) distribution
for the ensemble of φk [see Eq. (14)], where the total number of the oscillators is K = 106. Darker colors correspond to higher values of v(φ,t).
Five periods of switching of κ̃1,2(t) are shown. (b) and (c) Absolute values and arguments of An computed according to Eq. (12); (e) and (f)
are the same computed via Eq. (3) for the ensemble. |An| are plotted in logarithmic scale. Parameters: κ1 = 1.3, κ2 = 2.3, T = 150, ε = 0.01,
σ = 1, �cut = 10.

fluctuations, and the appearing one-cluster state would have a
random phase.

The situation changes if a small regular external forcing
is present. As one can see from Eq. (7), the forcing Fn

provides appearance of terms ∼iF−nA�−n, thus producing
combinational modes.

Let us consider the effect of the mode F3 = − iε
2 . At stage

1, it produces combinational modes with all indices, but
because these modes are already present in the distribution, the
effect of small ε is negligible. At stage 2, however, the mode
A1 is produced by terms F ∗

3 A∗
2 + F3A4 in Eq. (7). Because

A2 is typically much larger than A4, the result of this interaction
is the appearance of a small but notable amount of mode 1 with
A1 ∼ εA∗

2 at the end of stage 2.
This circumstance changes, essentially, the starting condi-

tions for the evolution on stage 1 compared to the case ε = 0:
now the growing mode A1 develops from the seed ∼εA∗

2, and
so its phase will be 	1 = −	2. Now the phases of cluster states
arising at all stages of evolution are nonrandom but depend on
the previous phases in a deterministic way. Combining the
transformations 	2 = 2	1 at the transition from stage 1 to
stage 2, and 	1 = −	2 at the transition from stage 2 to stage 1,
we obtain the Bernoulli-type map

	1(m + 1) = −2	1(m) (11)

at successive periods of the blinking coupling.
The map [Eq. (11)] for the phase transformation is

uniformly expanding and hyperbolic, and we conclude from
these qualitative arguments that the cluster patterns for the
blinking coupling of noisy oscillators in the situation we
have considered will demonstrate hyperbolic chaos in the

dynamics of the order parameters (the modes of the distribution
density).

IV. ILLUSTRATIONS AND CHARACTERIZATION
OF THE DYNAMICS

In this section we confirm numerically the existence of
the hyperbolic chaos in the setup described above. The mode
equations take the form

Ȧ� = �

2

[
2∑

n=1

κ̃n (AnA�−n − A−nA�+n)

+ ε(A�+3 − A�−3)

]
− σ 2�2

2
A�. (12)

The corresponding Fokker-Plank equation reads

∂v

∂t
= − ∂

∂φ

{
v

2∑
n=1

κ̃n 〈sin[n(ψ − φ)]〉ψ

+ εv sin 3φ

}
+ σ 2

2

∂2v

∂φ2
, (13)

where 〈sin[n(ψ − φ)]〉ψ = ∫ 2π

0 v(ψ,t) sin[n(ψ − φ)]dψ . Ac-
counting this form, we can reconstruct the respective micro-
scopic Eq. (1) for the ensemble of phase oscillators as

φ̇k = ε sin(3φk) +
2∑

n=1

κ̃n

K

K∑
j=1

sin[n(φj − φk)] + σξk(t).

(14)
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In all these equations the blinking coupling κ̃n(t) is given by
Eq. (10).

The essential control parameters both for the ensemble
Eq. (14), and for the Fokker-Plank system Eq. (12) are κ1

and κ2, which have to satisfy the condition Eq. (8) for clusters
to grow at the corresponding stages.

A. Nonlinear Fokker-Plank equation

First, we present numerics for the Fokker-Plank system
Eq. (12). Since this system appears as a spectral decomposition
of the nonlinear integrodifferential Eq. (13), it is stiff, and we
integrate it numerically using the method of exponential time
differencing; see Ref. [25]. As follows from Eq. (3), |A�| � 1.
Due to the terms proportional to �−2, the amplitudes of A�

decay fast with �. Direct verification shows that already for
� = 5 the magnitude is small enough, |A5| 	 1, but to assure
the validity of the numerical results we cut the infinite set of
Eqs. (12) at �cut = 10.

Figure 1(a) illustrates the temporal behavior of the proba-
bility density v(φ,t) computed according to Eq. (5). At stage 1
(0 � t � 75) the 1-cluster develops. Then, after the switch to
stage 2 at t = T/2 = 75, the density acquires two humps.
One part of the 2-cluster is located just at the site of the
former 1-cluster, and the second one appears shifted by π .
As we already discussed, this situation corresponds to the
quadratic relation for the complex amplitudes A2 ∼ A2

1 and to
the doubling of the argument. At the initial epoch of the next
stage 1 at t � 150, the 2-cluster disappears, and the 1-cluster
reappears. Notice that the hump emerges now at a site that
is different both from that of the previous 2-cluster and that
of the former 1-cluster. It is so because of the presence of a
small force f (φ) corresponding to the term proportional to ε

in Eqs. (12).
Figures 1(b) and 1(c) show magnitudes and arguments of

An. At stage 1, all the magnitudes |An| grow and saturate
at some level; in this state, the main mode A1 dominates. At
stage 2, the mode A2 grows, together with its harmonics, while
all odd modes decay.

Let us now focus on the phase dynamics. The phase 	2

does not change at the transition from stage 1 to stage 2 at
t = 75. At the beginning of stage 2, the phase of the first
mode 	1 is nearly constant while the amplitude of this mode
remains relatively large; however, at t ≈ 100 the amplitude
drops to the level ∼ε, and now this mode is driven by εA∗

2.
Here, the mode A1 accepts the phase −	2 that can be seen
in Fig. 1(c) as a sharp transition around t ≈ 110. After this
event, the phase of the mode A1 does not vary significantly. At
t = T = 150, the new stage 1 starts; here the amplitude of the
previously active mode A2 decays rapidly, but it reappears soon
as the second harmonics of the mode 1, accepting its doubled
phase 2	1 (see the jump of 	2 at t ≈ 155 followed by the
growth of |A2|).

Although the dynamics of the phases and the amplitudes
observed in Figs. 1(a)–1(c) nicely correspond to the qualitative
picture of Sec. II C, it is important to verify that the phase
evolution really follows the Bernoulli-like map Eq. (11). In
Fig. 2(a), a diagram is shown for the values of argument of
the complex variable A1 recorded stroboscopically at t = tn =
(n + 9

20 )T . Indeed, the plot demonstrates the doubling of the

−π

 0

ϕn+1

−π  0 ϕn

(a) b)

FIG. 2. (Color online) (a) The plot ϕn+1 vs. ϕn where ϕn =
arg A1(nT + 9

20 T ), and A� is a solution of Eqs. (12). (b) The same
diagram for the ensemble Eq. (14), where A1 is computed according
to Eq. (3). Parameters are the same as those described in the legend
of Fig. 1.

phase, as expected. Thus, actually, the phases of the alternately
arising clusters evolve according to the expanding circle map
that implies hyperbolic chaos.

B. Ensemble of noisy oscillators

Here we report on the results of a straightforward simu-
lation of the ensemble dynamics according to Eqs. (14). We
perform numerical solutions for these stochastic differential
equations employing a special version of the Runge-Kutta-type
algorithm suggested in Ref. [26]. Figure 1(d) illustrates the
temporal behavior of the probability density v(φ,t) computed
from the instantaneous distributions of the phases φk for the
elements of the ensemble, and Figs. 1(e) and 1(f) demonstrate
the dynamics of the mean-field variables An(t). The parameters
are the same as in the previous simulations of the Fokker-
Plank equation. Except for the obvious difference in the
initial conditions, the distributions v(φ,t) and the magnitudes
of An(t) at their high levels behave visually similar. The
dynamics of the phases is definitely more noisy than that in
Fig. 1(c), especially in the regions where the magnitudes of the
corresponding modes are small: in these regions, even small
finite-size fluctuations produce a large effect on the phases.
When the magnitude of A1(t) is high (see for example the
time interval 30 < t < 75), its argument does not respond to
the noise. But when A1 gets small, the argument fluctuates
(see the time interval 110 < t < 150). The same is true for
A2. The most harmful are the fluctuations of 	1, because this
variable inherits the argument value from A2 when |A1| is
small. If the fluctuations are strong enough, they wash out the
correct value of the argument, and the phase multiplication
mechanism ceases to operate properly. The fluctuations of A2

are not so essential since they occur only in epochs, when the
component A2 does not play an important role. One can see
from Fig. 1 that the phase transfer happens when A2 has a
large magnitude and thus is not affected by the noise (see the
time interval 180 < t < 225).

Figure 2(b) shows the diagram for the stroboscopically
recorded values of 	1 corresponding to the dynamical be-
havior illustrated in Figs. 1(d)–1(f). One can observe that the
phases demonstrate the expected Bernoulli-like doubling map-
ping in average, though the fluctuations produce a noticeable
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FIG. 3. (Color online) (a) The first Lyapunov exponent and (b) the
lower and upper boundaries of the distribution of d1 vs. κ1. The data
relate to the stroboscopic map corresponding to the Fokker-Plank
system Eq. (12) at tn = (n + 9

20 )T . Distributions of d1 for each κ1

were computed for 104 attractor points. κ2 = 2.3; other parameters
are the same as described in the legend of Fig. 1.

statistical widening (which decreases as the size of the
ensemble K grows).

C. Lyapunov exponent and hyperbolicity test

Now we return to the Fokker-Plank system Eq. (12) and
discuss how the Lyapunov exponents (LEs) depend on κ1 and
κ2. Also, we test hyperbolicity of the chaotic dynamics of the
system Eq. (12).

We calculate the Lyapunov exponents in the determin-
istic system Eq. (12) with the standard algorithm due to
Benettin et al. Because the system is periodically driven, we
report as LEs the values � = λT , i.e., the “Lyapunov multi-
pliers” over the period. In all cases we have found at most one
positive LE, the others were negative. Figure 3(a) shows the
largest LE versus parameter κ1; in a large range of this parame-
ter it is positive and close to the expected value ln 2 ≈ 0.69314.
The other exponents are all negative, and their magnitudes are
much higher. For example, at κ1 = 1.3 and κ2 = 2.3 we have
�i = {0.688,−17.355,−197.507,−245.781,−705.748}, and
the corresponding Kaplan-Yorke dimension is 1.04.

The positive Lyapunov exponent varies slowly depend-
ing on the parameter, but no tips or dips, like in many
nonhyperbolic systems, are observed. This may be regarded
as a manifestation of the structural stability intrinsic to the
hyperbolic dynamics. Figure 4(a) represents a dependence of
� on κ2, while κ1 is constant. Again, the same features are
observed: the largest Lyapunov exponent is close to the value
ln 2, and it does not demonstrate any notable variation within
a wide range of the parameter.

To test hyperbolicity, we employed the method that has
been specially developed for high-dimensional systems; see
Ref. [27] for the details and Ref. [28] for the mathematical
background. In brief, the method includes the computation of
the first k orthogonalized Lyapunov vectors moving forward in
time (so called Gram-Schmidt vectors or backward Lyapunov
vectors [28]), and also the first k orthogonalized Lyapunov
vectors obtained moving backward in time from the conjugate
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FIG. 4. (Color online) The same quantities as described in the
legend of Fig. 3 against κ2, while κ1 = 1.3.

variational equations (forward Lyapunov vectors); here k is the
dimension of the unstable manifold. Given these vectors, a k ×
k matrix of their scalar products is built. Its smallest singular
value dk is cosine of the angle between the expanding tangent
subspace and the orthogonal complement to the contracting
tangent subspace, and thus dk can be used as an indicator
of hyperbolicity. For a nonhyperbolic case, the dk values
vanish somewhere along trajectories (as tangencies between
the associated expanding and contracting subspaces occur),
but for situations of hyperbolic dynamics the distribution of dk

is well separated from zero.
In Fig. 3(b) we illustrate the results of this hyperbolicity

test. In our case the expanding subspace is one-dimensional.
Thus, for each κ1 we compute 104 points on the attractor of
the stroboscopic map and evaluate the indicator d1 at each
of them. Then, the smallest and the largest values of d1

are plotted on the diagram, marked with crosses and pluses,
respectively. The first observation is that the smallest d1 is
very well separated from zero; this confirms the hyperbolicity.
Another noteworthy observation is that the maximal and the
minimal values of d1 are very close to each other. This means
that the mutual orientations of the expanding and contracting
directions remain practically unaltered on the entire attractor.
This can be treated as another manifestation of the structural
stability. Figure 4(b) shows the hyperbolicity indicator d1 in
dependence on κ2, it is again well separated from zero.

D. Lyapunov exponents for the microlevel dynamics

It is instructive to compare the macroscopic LEs for the
dynamics of the order parameters with microscopic LEs
describing stability of the dynamics of individual oscillators.
A direct approach to computation of the full spectrum of
Lyapunov exponents for the ensemble of phase oscillators
Eq. (14) can easily exhaust a computer memory and take
an extremely long time. However, there is a simple way to
estimate microscopic LEs assuming their decoupling from the
macroscopic dynamics. Neglecting small ε in Eq. (3), we can
rewrite this equation as

φ̇k = 1

2i

2∑
n=1

κ̃n(Ane
−inφk − A∗

ne
inφk ) + σξk(t). (15)
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Let us now assume that on stages 1 and 2, the order parameters
A1 and A2 are roughly constant. Then the variations of the
phases satisfy

1

δφk

d

dt
δφk = −

2∑
n=1

nκ̃n(Ane
−inφk + A∗

ne
inφk ). (16)

Now the microscopic LE is evaluated as an average of
the right-hand side of Eq. (16) multiplied by T/2, which
yields �mic = − T

2

∑2
n=1 nκ̃n|An|2. Substituting here the ap-

proximate expressions for stationary magnitudes of the order
parameters, valid for small subcritical couplings κ1 � σ 2,
κ2 � 2σ 2, we obtain the following estimate:

�mic ≈ −T σ 2

(
κ1 − σ 2

κ1
+ 4

κ2 − 2σ 2

κ2

)
. (17)

For the parameters used above, σ = 1,κ1 = 1.3,κ2 = 2.3,T =
150, this yields �mic ≈ −113 in a reasonable agreement with
the numerics.

Thus, contrary to many situations where chaos occurs in the
microlevel description, while the macroparameters manifest
rather regular behavior, here we observe an impressive oppo-
site case: the microdynamics is stable (because �mic < 0), but
at the macrolevel, hyperbolic chaos takes place.

V. CONCLUSION

In this paper we have demonstrated that blinking coupling
in populations of noisy oscillators may result in hyperbolic
chaos of macroscopic mean fields. The blinking is between
two simplest modes of coupling: one leads to a one-cluster
synchronized state, another one leads to appearance of two
clusters, shifted by π . Correspondingly, at these couplings two
different order parameters dominate: the usual Kuramoto order
parameter for the one-cluster state, and the second-harmonics
Daido order parameter for the two-cluster state. While the
magnitudes of these order parameters show no significant vari-
ations from cycle to cycle, the phases obey a strongly chaotic
Bernoulli transformation and thus demonstrate hyperbolic
chaos. Noteworthy, there is a realistic situation where the two
types of global coupling (one-cluster and two-cluster) can be

observed: this is an ensemble of pendula hanging on a common
beam. In such a configuration with two pendulum clocks,
Ch. Hyugens observed synchronization more than 300 years
ago (see a translation of his notes in Ref. [2]). Nowadays
one reproduces these experiments with metronomes [29].
The horizontal motions of the beam result in the one-cluster
coupling, while the vertical motions lead to the two-cluster
coupling [30].

Our analysis is mostly based on the consideration of the
thermodynamic limit, where the population can be described
by the nonlinear Fokker-Planck equation. We verify hyper-
bolic chaos in this integral-differential equation, by direct
simulations of equations for the modes and showing that
their phases obey a Bernoulli map and by checking that the
stable and the unstable directions in the tangent space are
never tangent to each other. For the original population, a
direct simulation gives a picture very similar to that for the
nonlinear Fokker-Planck equation, but the one-dimensional
transformation of the phases looks like a noisy Bernoulli map,
due to finite-size effects.

In a more general perspective, the nonlinear Fokker-
Planck equation, as an integrodifferential equation with partial
derivatives, is a representative of a class of deterministic
distributed systems demonstrating pattern formation. Different
cluster synchronization states correspond to different patterns;
phases of clusters correspond to the spatial positions of the
patterns. With this interpretation, our results demonstrate
that an interaction between blinking patterns results in a
chaotic relocation of their positions; moreover, this chaos is
hyperbolic. A kind of such behavior was reported recently
in a model of interacting Turing patterns with different wave
numbers [24]. The presented model based on the nonlinear
Fokker-Plank equation provides another indication that the
above mechanism of the hyperbolic chaos is realizable in quite
generic circumstances.
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