
In vivo cardiac phase response curve elucidates human
respiratory heart rate variability

Published in: Nature Communications, 4:2418 (2013); doi: 10.1038/ncomms3418

Björn Kralemann1, Matthias Frühwirth2, Arkady Pikovsky3,
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Recovering interaction of endogenous rhythms from observations is challenging, especially if a
mathematical model explaining the behaviour of the system is unknown. The decisive information
for successful reconstruction of the dynamics is the sensitivity of an oscillator to external influ-
ences, which is quantified by its phase response curve. Here we present a technique that allows
the extraction of the phase response curve from a non-invasive observation of a system consisting
of two interacting oscillators – in this case heartbeat and respiration – in its natural environment
and under free-running conditions. We use this method to obtain the phase coupling functions
describing cardio-respiratory interactions and the phase response curve of 17 healthy humans. We
show for the first time at which phase the cardiac beat is susceptible to respiratory drive and ex-
tract the respiratory-related component of heart rate variability. This non-invasive method for the
determination of phase response curves of coupled oscillators may find application in many scientific
disciplines.

Since observation of respiratory-related variation of the
heart rate by S. Hales in 1733 and its first registration
by C. Ludwig in 1847 [1], cardio-respiratory interaction
(CRI) remains a challenging physiological phenomenon.
Respiratory sinus arrhythmia as a component of heart
rate variability has become important in many medical
fields as a diagnostically and prognostically meaningful
indicator of vagal activity. In a more general context,
understanding interaction of oscillatory systems is a key
problem for many areas of research, especially in life sci-
ences, where rhythmical activity is both abundant and
important. Many biological (sub)systems exhibit endoge-
nous rhythms; quantification of their interaction with
the environment is relevant for getting insight into the
orchestration of organismic processes, the dynamics of
neuronal ensembles, determination of brain connectivity,
study of robustness of circadian rhythms, etc. [2–6]. A
key feature determining the interaction properties is the
ability of an oscillator to respond, by shifting its phase, to
an external perturbation; this feature is often quantified
in terms of phase response curves (PRC), which describe
both reaction to a single pulse perturbation and to a con-
tinuous force, resulting in a continuous phase shift in the
latter case [2, 3, 7, 8]. This approach is used in neuro-

science [9–11], cardio-respiratory physiology [12–17], and
chronobiology [18, 19], to name just a few. A traditional
experimental approach to obtain the PRC implies that
the oscillator (e.g., a neuron) is isolated from the envi-
ronment (e.g., from other neurons which normally inter-
act with it) and is repeatedly perturbed by (weak) short
pulses [20]. PRC is then defined as the phase shift evoked
by the pulse; this shift is expressed as a function of the
fraction of the oscillation period, at which the pulse is
applied. The aim of this Communication is twofold: we
present a new framework which allows us to reveal the
PRC without isolating the system from its environment
and without adding any specially designed perturbation,
but from simple observation of the system and of the en-
vironment under free-running conditions, and determine
the PRC of human heartbeat in vivo.

PRC is one of the basic concepts of nonlinear science
[2, 3, 7, 8], universally applicable to endogenous, self-
sustained oscillators (and clusters of oscillators [21, 22])
of various nature: physical, chemical, biological, etc. The
starting point here is a parametrisation of the state of an
isolated system with well-pronounced rhythmicity, e.g. of
an atrial pacemaker cell, by the phase ϕ. This uniformly
growing variable measures the fraction of the time within
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one undisturbed cycle. An (not too strong) interaction
with another endogenous oscillator can be characterised
by the coupled dynamics of two phases ϕ1, ϕ2 [7]:

ϕ̇1 = Q1(ϕ1, ϕ2) = ω1 + q1(ϕ1, ϕ2) ,

ϕ̇2 = Q2(ϕ1, ϕ2) = ω2 + q2(ϕ2, ϕ1) ,
(1)

where ω1,2 are natural, autonomous frequencies and q1,2

are called the coupling (interaction) functions. (Follow-
ing the tradition of the physics literature, we understand
coupling as the presence of an interaction between the os-
cillators, whereas in the biological literature coupling is
often understood as a correlation between their outputs,
e.g. due to phase locking, cf. [23–25].) Equations (1)
describe the ideal case when the two interacting oscilla-
tors are noise-free and are isolated from the rest of the
world. If one goes beyond this ideal case, then the right
hand side of Eqs. (1) contains additional terms, not re-
lated to the coupling, cf. Eq. (3) below. We stress that
here we exploit the general concept of the phase from
the dynamical systems theory. It characterizes relative
accelerations/decelerations at different stages of the cy-
cle; physiological (biological, physical, etc.) interpreta-
tion of phase values requires a separate consideration for
any particular system.

Theory [7] suggests that for weak interaction the cou-
pling functions in typical cases can be written as

q1(ϕ1, ϕ2) = Z1(ϕ1)I2(ϕ2) , (2)

where Z1(ϕ1) is the PRC of the first oscillator and I2(ϕ2)
is the forcing with which the oscillator 2 acts on 1,
and similarly for q2 = Z2(ϕ2)I1(ϕ1). However, even if
the governing equations for the interacting systems are
known (like for many physical and engineering systems),
the derivation of the phase model (1) and of the PRC rep-
resents a complicated theoretical problem. In this Com-
munication we develop a novel approach, based on data
analysis of free running systems and demonstrate how
the functions q, Z, I can be obtained non-invasively, from
observations of the coupled oscillatory systems in their
natural environment.

The advantage of using the phase model is its uni-
versal form. However, one cannot measure the phases
directly; in fact only the time series of one or several ob-
servables of each oscillator are available. Typically, the
phase is estimated from these time series [26–29], but
these estimates naturally depend on the observables and
their processing. On the contrary, in the theory lead-
ing to Eqs. (1), the phase is introduced in a unique way,
as the variable that uniformly parametrises the motion
along the closed attractive curve in the state space of the
dynamical system, i.e. along the limit cycle. The gap
between the theory and data-based model reconstruction
can be bridged by means of the transformation of the ini-
tial phase estimate, called protophase, to the true phase,

consistent with the theoretical definition [27]. This trans-
formation ensures invariance of the model reconstruction
and, hence, of the PRC determination for a large class
of observables. We apply this approach for the first time
to analyse the CRI in healthy humans, where we con-
sider the heartbeat and the respiratory cycles as outputs
of coupled oscillatory systems approximately obeying the
description (1). From the observations of the electrocar-
diogram and arterial pulse and from the measurements
of the respiration we first determine the true phases of
these oscillators, then find the interaction function q, and
finally determine the PRC Z and the forcing I.

Human CRI has been studied for decades [23–25, 30–
33]. It has gained increased interest due to extensive ap-
plication of ideas from nonlinear dynamics and informa-
tion theory to medical problems, e.g. to the use of heart
rate variability (HRV) as an indicator of autonomic activ-
ity. As a result, many aspects of cardio-respiratory coor-
dination, like the degree of locking and the directionality
of interaction, have been investigated [26, 28, 29, 34–40].

Here, exploiting the invariant approach and the novel
technique for the phase estimation of complex signals, we
perform the evaluation of the coupling function and its
decomposition into the PRC of the intact human heart
and the respiratory forcing. Based on this we quantify
the respiratory-related component of the heart rate vari-
ability. This complete, from the viewpoint of the nonlin-
ear dynamics theory, description of the phase dynamics
of the CRI is promising for quantification of HRV.

RESULTS

Coupling function and PRC from passive ob-
servation. First we outline our framework (Fig. 1) for
the coupling function reconstruction (cf. [27, 40, 41]) and
the PRC determination from data. We emphasise the
novel aspects of the procedure, whereas the details are
described in Methods and Supplementary Information.

The first step is to obtain high-resolution recordings
of observables from two systems – one observable for the
respiratory system and two different observables for the
cardio-vascular one: the ECG and the arterial pulse.

The second step is parametrising the signal by an angle
variable θ that grows monotonically in time and gains 2π
at each cycle. It is important that this variable, called
protophase [27], is unambiguously determined from the
state of the oscillatory system. For complex waveforms
like the ECG signal the construction of the protophase is
highly non-trivial. Here we use a novel three-step tech-
nique: first we define 6 marker events within each cardiac
cycle and introduce a preliminary cyclic variable from the
conditions that it gains 2π between two R-peaks and lin-
early increases with time between the events. Next, we
use this initial estimate to construct the average cycle
and define a new, improved continuous protophase on it;
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FIG. 1. Phase response curve from non-invasive observation: scheme of the approach. (A-B): The respiratory signal, the
electrocardiogram, and the arterial pulse are simultaneously recorded from subjects in resting state. (C-D): From these scalar
signals, by virtue of a proper two-dimensional embedding, the protophases θr, θe, and θp are obtained and transformed to the
phases ϕr, ϕe, and ϕp, shown in E. (In this schematic representation the difference between θe and ϕe is not seen). (F): The
coupling (interaction) function describing the effect of respiration on heart dynamics is reconstructed in an invariant way. (G):
The coupling function is decomposed into the phase response curve PRC and the respiratory forcing.

finally we assign the protophases to all points of the state
plane trajectory by projecting them onto the average cy-
cle. The protophase for the arterial pulse is obtained in
a similar way, using 3 markers.

The next step is to transform the protophases θ to
phases ϕ, to match the underlying condition of Eq. (1)
that the phase of an autonomous system grows uniformly
in time. In this way an arbitrary protophase is mapped
on to the uniquely defined phase; moreover the transfor-
mation θ → ϕ is fully invertible and does not contain
any filtering. Practically, it is performed by means of the
probability distribution of θ which is obtained by virtue
of a kernel function [27, 42].

Having two time series of the phases ϕ1,2, we repre-
sent their dynamics according to Eqs. (1), via recon-
structing the right hand sides of Eqs. (1) by virtue of
two-dimensional kernel functions. We denote the phases
from the ECG, the arterial pulse, and the respiratory sig-

nal as ϕe, ϕp, and ϕr, respectively. We reconstruct only
the phase dynamics of the cardiac system, i.e. only one
of the Eq. (1); in the new notations it reads

ϕ̇e = ωe + qe(ϕe, ϕr) + ξe = Qe(ϕe, ϕr) + ξe or

ϕ̇p = ωp + qp(ϕp, ϕr) + ξp = Qp(ϕp, ϕr) + ξp .
(3)

The residues of fitting ξe,p(t) include noise and effects
of non-observed physiological rhythms other than respi-
ration, i.e. ξe,p describes all perturbations to the heart
dynamics which do not depend on ϕr. As the ECG
and the arterial pulse represent two different observ-
ables of the cardiac system, ideally functions Qe(ϕe, ϕr),
Qp(ϕp, ϕr) should coincide. In practice they are very
similar in shape (Fig. 2), which confirms the reliability
of our approach and its invariance with respect to the
used observables, due to the θ → ϕ transformation.

The last stage is an optimal decomposition
Qe,p(ϕe,p, ϕr) = ωe,p + Z(ϕe,p)I(ϕr) + β(ϕe,p, ϕr),
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FIG. 2. Coupling functions for the human cardio-respiratory system. The reconstructed functions provide the dependence of
the instantaneous cardiac frequency, measured in radians per second, on the cardiac and respiratory phases. Red regions mean
higher frequencies (acceleration) while blue regions correspond to lower frequencies (deceleration). Functions Qe(ϕe, ϕr) (a,c,e)
are obtained from the ECG and the respiration, whereas functions Qp(ϕp, ϕr) (b,d,f) are computed from arterial pulse and
respiration. Using these two very different observables for the cardio-vascular system, we nevertheless obtain highly correlated
results, as is expected for the invariant approach. The functions for the subject with the lowest correlation between Qe and
Qp are shown in (a,b), and for the subject with the highest correlation in (c,d). Panels (e,f) present the averaged (over all
measurements for all subjects) coupling functions Qe and Qp.

cf. Eq. (2), which minimises the residual error β.
We find that the error is relatively small; hence, the
resulting functions Z(ϕe,p) and I(ϕr) can be interpreted,
according to the theoretical framework, as the PRC and
the driving force, respectively.

Coupling function for cardio-respiratory inter-
action. The intermediate result of our analysis, i.e. the
reconstructed coupling functions Qe,p(ϕe,p, ϕr), are illus-
trated in Fig. 2. Before making the next step, we discuss
the robustness of the obtained functions for different test
persons and trials. The reliability of the technique is
confirmed by large similarity between the coupling func-
tions among the group, with highest similarity for re-
peated measurements of the same person. To quantify
the similarity between the functions obtained in different
trials, we use the correlation coefficient ρ, which quanti-
fies similarity of the forms of two functions (independent
on their amplitudes), and the difference measure η, see
Methods, which also reflects difference in the amplitudes
(norms), see Fig. 3. We find that the functions have
a well pronounced characteristic shape for each of the
subjects (Fig. 2e,f): the correlations between Qe(ϕe, ϕr)
obtained in different trials with the same subjects are

ρ & 0.6 (with the average ≈ 0.89). Naturally, the corre-
lation between the functions of different subjects is lower,
reflecting the interpersonal variability; however, it is high
enough, ρ & 0.43 (average ≈ 0.81), to demonstrate the
high similarity of the CRI in our group of subjects. We
emphasise that the high similarity of the functions, ob-
tained from such different observables as the ECG and
the arterial pulse, as well as practical coincidence of their
norms, supports validity of the transformation to the in-
variant phase.

We have also performed a surrogate data test [43].
First we computed two functions Qe for a subject, for
whom data from two trials are available, Fig. 4a,b. Next,
we used exactly the same procedure and computed two
functions after interchanging the respiration time series
from the trials (Fig. 4c,d). These surrogates keep the
properties of the processes, but destroy the correlation
between them. The functions shown in Fig. 4e,f are ob-
tained by taking the respiration data of other subjects.
Ideally, the functions obtained from the surrogate data
should be flat, showing no coupling; in practice we ob-
serve some low variability due to accidental phase corre-
lations, because we have only 20 to 40 respiratory cycles.
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FIG. 3. Similarity measures for the obtained coupling fuctions. Box-whisker plot illustrates the correlation coefficient ρ (a)
and the difference measure η (b), for all available pairs of functions (high similarity corresponds to large ρ and small η). ES:
similarity between the functions Qe (respiration – ECG) of the same subject, obtained from two trials; it is maximal. EG:
similarity between Qe of different subjects in the group demonstrates low interpersonal variability. PS and PG: intra- and
interpersonal similarities for Qp (respiration – arterial pulse). EPS and EPG: intra- and interpersonal similarities between Qe

and Qp. Notice that the correlation can be maximised by computing it for phase-shifted functions; so, e.g., the outlier value in
(a) ES, at ≈ 0.6 becomes as high as 0.9. This phase-shift might reflect a variation of internal delays and therefore might have
a physiological meaning; however, this issue requires a separate study. The number of cases used for computation of the 6 box
plots is (from left to right): 11, 18, 29, 314, 172, 491. (The low border of the box, the red line, and the upper border are the
first, second, and third quartiles, respectively. The whisker length is 1.5 times the interquartile range.)

However, the difference measure η between the true and
the surrogate functions is approximately one order in the
magnitude larger than between the two true functions.
We conclude that the detected coupling is not a statis-
tical artefact; however, the surrogate tests do not allow
one to check whether all components of the coupling are
revealed. The absence of artefacts in the reconstructed
function is also supported by numerical tests with artifi-
cial ECG signals.

PRC for cardio-respiratory interaction. Final
results for the computation of the PRC of the human
heartbeat in vivo are presented in Fig. 5. Below we re-
strict ourselves to the coupling functions obtained from
the ECG data, since they are of superior quality; the
results based on pulse time series are shown in Supple-
mentary Fig. S1. We show both the individual PRCs Z
and the forcing functions I for all trials, as well as the
group-averaged curves, obtained either by averaging all
functions Z and all functions I, or by decomposing the
averaged coupling function, shown in Fig. 2e. Because in
the decomposition we cannot separately determine the
amplitudes of the PRC and of the forcing, only the form
of these functions is revealed (in our presentation in Fig. 5
we make the norms of Z and I equal, another option is
illustrated in Supplementary Fig. S2). In Fig. 5c,d we
also show the relative decomposition errors, they all are
in the range between 0.15 and 0.45, with median ≈ 0.265.

The PRC of the heartbeat, which is the main result of

this study, clearly exhibits two different domains: in the
interval 0.6π . ϕe . 1.8π the phase of the heartbeat can
be strongly advanced by respiration forcing, and this sus-
ceptible epoch lies between the T and P waves. Another
domain (ϕe . 0.6π and ϕe & 1.8π) is characterised by
nearly zero response, i.e. here the heart is insensitive to
respiratory drive. A corresponding interpretation for the
respiratory force I follows from Fig. 5b. The functions I
are quite close to a sine, but with a typical asymmetry of
inspiration/expiration stages. As I changes sign (while
Z is positive or close to zero), one can distinguish the
different stages of accelerating and decelerating effects of
force, and relate them to the stages of inspiration and
expiration within the respiration cycle.

Respiratory-related component of the heart
rate variability. Description of cardio-respiratory in-
teraction in terms of coupling functions yields a new tech-
nique for the quantification of respiratory-related HRV.
HRV is one of the central tools of psychophysiology and
behavioural medicine [44], and the respiratory compo-
nent is a significant part of it (see, e.g. [23–25, 45–
48]), representing mainly the vagal or parasympathetic
part of the autonomic nervous system influences. Hav-
ing introduced the time-continuous phase of the ECG,
we obtain a continuous description of the HRV via the
instantaneous frequency ϕ̇e(t), instead of the commonly
used discontinuous beat to beat description. Further-
more, using Eqs. (3) we decompose ϕ̇e(t) into two pro-
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FIG. 4. Surrogate data test. Here we show an essential difference between true functions Qe (here for ECG-respiration) and
spurious functions Qs. (a,b): Coupling functions for two recordings of the same subject (average heart rates are 0.93 Hz and
0.94 Hz, average respiration frequencies are 0.16 Hz and 0.13 Hz). (c,d): Coupling functions obtained after interchanging the
respiratory signals from these two measurements. (e,f): Here respiration time series of a different subjects is used (average
frequency 0.32). The difference measure, η, between the true functions (a) and (b) is 0.20, while the difference between the
true function (a) and the spurious functions (c,e) is 0.81. The difference between (b) and its surrogates (d,f) is 0.80. The
difference between the surrogates is in the range from 0.58 to 0.80. The correlation, ρ, between the true functions (a) and (b)
is 0.93, while the correlation between the true function (a) and the spurious functions (c,e) is −0.10 and 0.00, respectively. The
correlation between (b) and its surrogates (d,f) is 0.13 and 0.25. The absolute value of the correlation between the surrogates
is in the range from 0.02 to 0.34.

cesses: the first component, Qe(ϕe(t), ϕr(t)), reflects the
effect of respiration and therefore can be used for char-
acterisation of the respiratory sinus arrhythmia (we use
“RSA-HRV” to denote this component), whereas the sec-
ond component, ξe(t), is independent of respiration and
reflects both intrinsic sources of HRV as well as the effects
of other, unobserved, rhythms like baroreflex and/or an-
giotensin loop rhythms and of random perturbations; we
denote it as “non-RSA-HRV”. (Noteworthy, in 8 cases
the RSA-HRV component is larger that non-RSA-HRV,
and in 18 cases it is smaller, indicating, respectively, va-
gal and sympathetic predominance of the subjects during
the measurements.) The quality of this decomposition is

confirmed by Fig. 6a: we see that the variances of the
components sum up to the full variance of HRV, as is
expected for independent components. This result, in
addition to opening a new perspective in quantification
of the respiratory influence on the heartbeat, provides a
confirmation of our approach based on Eq. (3).

To illustrate the decomposition in more detail, we show
in Fig. 6(b,c) the power spectra of the original HRV ϕ̇ and
of their two components, for two extreme cases, i.e. for
maximum and minimum content of RSA-HRV in HRV,
measured by the ratio rms(non-RSA-HRV)/rms(HRV).
In both cases the main effect on the spectrum is elimina-
tion of a peak at the frequency of respiration (around 0.2
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23

FIG. 5. PRC curves and effective forcing. We show individual PRCs Z (a) and effective forcing I (b) for all ECG-based coupling
functions with grey curves. In both panels blue lines show the average over all individual (grey) curves. Red curves are obtained
by decomposition of the averaged coupling function, shown in Fig. 2e. Small panel on top of (a) shows for comparison the
average ECG cycle as a function of its phase. One can clearly see the interval where PRC is not zero, and, hence, the cardiac
system is susceptible for the respiratory perturbation. Small panel on top of (b) shows the average respiratory cycle as a
function of the phase, with marked epochs of inspiration and expiration (approximately). Intervals of positive (negative)
effective forcing are the intervals where respiration is accelerating (decelerating) the heart rate. Panels (c) and (d) show error
of the decomposition ‖β‖, where || · || denotes the norm of the function. In (c) the relative error ‖β‖/‖Q− 〈Q〉‖ is shown (for
the cases of the largest (red) and of the smallest (green) error) in dependence on the parameter ωe used in the decomposition
procedure; finally the value of ωe yielding minimal error is chosen. In (d) all errors are presented, demonstrating quality of the
decomposition.

Hz). Additionally, some respiration-induced side-bands
close to the basic heart frequency are reduced, while the
very low frequencies (smaller than 0.1 Hz) remain prac-
tically unchanged.

DISCUSSION

We have presented a general framework for determina-
tion of PRC from the observations of coupled oscillators
under free-running, undisturbed conditions, and have ap-
plied it to characterise the respiratory influence on the
cardiac cycle in humans. Our reconstruction method is
based solely on non-invasively recorded biological data
and their analysis, and can be applied to a wide class of
coupled self-sustained, endogenous, systems provided the
oscillatory observables from both of them are available;
the coupling should be not too strong, so that the os-
cillators remain asynchronous (presence/absence of syn-
chrony can be easily recognized from the data). In our

case the decomposition of the coupling function into a
product of the PRC and the forcing was successful, which
indicates that the interaction between the cardiovascular
and the respiratory systems is relatively weak (in the
sense of applicability of Eqs. (1)). This allowed us for
the first time to obtain the PRC of the heart in vivo and
without artificial measures like paced breathing. Gener-
ally this decomposition may not work, so that the cou-
pling function would be the final stage of the analysis.

For a group of healthy subjects we have determined the
functions describing the effective respiratory forcing, I,
and the heart PRCs, Z, which, being multiplied, fully
quantify the respiratory-related HRV. These functions
provide a rather detailed, with a resolution much finer
than the cycle length, description of the CRI on the sys-
tem analysis level, without going into details of back-
ground chemical and electrical mechanisms. The func-
tions I are quite close to a sine, but with a typical asym-
metry of inspiration/expiration stages, which manifest it-



8

 0.01

 0.1

 1

 0.01  0.1  1

V
a
ri
a

n
c
e

s

Var(HRV)

(a)

RSA-HRV
non-RSA-HRV

sum of both

10
0

10
2

10
4

 0  0.5  1  1.5  2  2.5  3  3.5

P
o
w

e
r 

s
p
e
c
tr

u
m

 (
a
rb

. 
u
n
it
s
)

(c)

(b)

C

D E

A
B HRV

non-RSA-HRV
RSA-HRV

10
0

10
2

10
4

 0  0.5  1  1.5  2  2.5  3  3.5

frequency [s
-1

]

(c)

(b)

C

D E

A
B

FIG. 6. Extracting the respiratory component of heart rate variability. (a) The variances of

the RSA-HRV and non-RSA-HRV signals, as functions of the variance of the original HRV. Green

diamonds show the sums Var(RSA-HRV)+Var(non-RSA-HRV), these are nearly equal to Var(HRV)

(black dashed line), which means that RSA-HRV and non-RSA-HRV are almost uncorrelated. (b,c)

Power spectra of original HRV (green), the RSA-HRV component (red) and of the non-RSA-HRV

(blue), in the cases of maximal (b) and minimal (c) relative RSA-HRV component; in (b) ≈ 67%

of Var(HRV) is contained in RSA-HRV, indicating vagal predominance, while in (c) only 10%

Var(HRV) is in RSA-HRV, indicating sympathetic predominance. In (b) the letters A, B, C mark

three respiratory-related peaks, corresponding to average respiratory frequency 0.23 Hz and to

side-bands of the heart rate (average value 0.92 Hz), i.e. to 0.92±0.23 Hz. Notice that these peaks

(at which the green and red curves practically coincide) are definitely higher than the surrounding,

which indicates a strong contribution of RSA-HRV in these frequency bands. Correspondingly,

the residual non-RSA-HRV (blue line) is much weaker than HRV and RSA-HRV in these bands.

Contrary, in (c) the peaks of RSA-HRV, marked by D (corresponds to average respiratory frequency

0.15 Hz) and E (side-band of the heart rate peak at ≈ 0.82 Hz) are low and the corresponding

peaks in HRV only slightly exceed the surrounding, hence, the residual non-RSA-HRV is relatively

high.

24
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signals, as functions of the variance of the original HRV. Green diamonds show the sums Var(RSA-HRV)+Var(non-RSA-
HRV), these are nearly equal to Var(HRV) (black dashed line), which means that RSA-HRV and non-RSA-HRV are almost
uncorrelated. (b,c) Power spectra of original HRV (green), the RSA-HRV component (red) and of the non-RSA-HRV (blue), in
the cases of maximal (b) and minimal (c) relative RSA-HRV component; in (b) ≈ 67% of Var(HRV) is contained in RSA-HRV,
indicating vagal predominance, while in (c) only 10% Var(HRV) is in RSA-HRV, indicating sympathetic predominance. In
(b) the letters A, B, C mark three respiratory-related peaks, corresponding to average respiratory frequency 0.23 Hz and to
side-bands of the heart rate (average value 0.92 Hz), i.e. to 0.92 ± 0.23 Hz. Notice that these peaks (at which the green and
red curves practically coincide) are definitely higher than the surrounding, which indicates a strong contribution of RSA-HRV
in these frequency bands. Correspondingly, the residual non-RSA-HRV (blue line) is much weaker than HRV and RSA-HRV
in these bands. Contrary, in (c) the peaks of RSA-HRV, marked by D (corresponds to average respiratory frequency 0.15 Hz)
and E (side-band of the heart rate peak at ≈ 0.82 Hz) are low and the corresponding peaks in HRV only slightly exceed the
surrounding, hence, the residual non-RSA-HRV is relatively high.

self in asymmetry of decelerating and accelerating stages
of the forcing (Fig. 5b). Contrary, the form of the PRC is
highly non-sinusoidal and exhibits an epoch of insuscep-
tibility, ≈ 40% of the cycle length (in phase units), where
the PRC is close to zero and the heart is insensitive to
forcing (in accordance to the known refractory period of
sinoatrial cells [49]). During the epoch of susceptibility
the phase of the heart can be influenced by the respira-
tion, to our knowledge mainly by varying vagal control.
This epoch coincide with the electrical diastole, i.e. with
the interval between T and P waves. This corresponds to
the fact that in the second halve of the T-wave the cells of
the myocardium recover and become again susceptible to
excitation; this epoch is terminated with the next cycle of
the sinus node activity, when atrial and ventricular exci-
tation renders the myocardium refractory. The functions
I and Z quantify the long known qualitative observation
that inspiration accelerates the heart beat, while the ex-
piration slows it down [50] and make it possible for the
first time to determine, when these influences take place.

It is well-known [23–25, 45–48, 51, 52] that the phase
of respiration influences the peripheral autonomic ner-
vous system’s outflow to the heart. However, till now it
has never been shown when exactly this happens inside
the cardiac cycle. Our results show that this transfer

happens when the PRC is highest, i.e. between T and
P waves, which is the time of electrical diastole of the
heart; they also correctly reveal the existence and tim-
ing of the atrial and ventricular refractory phase of the
myocardium [49], during which no information transfer
takes place. This information is relevant for all models of
CRI as well as for clinical problems (in particular because
the period of susceptibility is crucial for myocardial fib-
rillation risk estimation). Our technique of non-invasive
determination of refractory and susceptible periods is
thus of potentially high medical and clinical relevance,
as these periods demonstrate quite an interpersonal vari-
ability (see grey lines in Fig. 5a). This information might
be used to determine individual myocardial properties
relevant for fibrillation. Furthermore, since the duration
of electric diastole mainly determines the heart rate [53],
the amplitude of PRC can be considered as a measure
of adaptability in response to respiratory drive; adapta-
tion of the heart rate is a fundamental prerequisite of the
proper functioning of the cardiovascular system. There-
fore, quantification of variations of the PRC in ampli-
tude or shape might be helpful for diagnostic of various
disease states involving cardiorespiratory dysautonomia
[54]. Further statistical studies of PRC dependence on
the age, gender, and other factors are needed here.
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In this paper we mainly concentrated on the reliabil-
ity and consistency of the developed technique, which is
confirmed by similar results obtained from ECG and arte-
rial pulse, which are two essentially different observables
of the same system, representing, respectively, electrical
and mechanical processes in the heart. A further confir-
mation of the validity was achieved via a decomposition
of the instantaneous frequency time series, which rep-
resents the HRV, into two components: the respiratory
related and the non-respiratory-related ones, which are
found to be statistically independent. This fact indicates
that the respiratory-induced part of HRV is correctly
captured by our technique. Additionally, this essentially
nonlinear decomposition opens new ways for quantifica-
tion of the RSA and of the HRV, to be compared with
other recently suggested decomposition methods based
on linear analysis, see e.g. [55, 56]. As the HRV analysis
by itself has gained clinical relevance in fields like cardiac
risk prognosis, sleep research, and circadian autonomic
regulation, we expect that our essentially nonlinear ap-
proach will contribute significantly to these studies, al-
lowing one to go beyond a usual linear analysis.

For our group of healthy subjects, the coupling func-
tions and PRCs of the heart have a characteristic, re-
producible shape, while the amplitude of these functions
varies. This finding makes the approach promising for
quantitative studies of possible effects of different fac-
tors (age, gender, diseases, drugs, physical load, etc.) on
these characteristics of the cardiovascular physiology. To
give a flavour of such possibilities, we show in Fig. 7 that
the norms ‖Q‖, and, hence, the RSA-HRV tend to de-
crease with age, in good correspondence with other stud-
ies [57], while the shape of Q does not exhibit an age
dependence. However, clinical and physiological applica-
tions of cardio-respiratory coupling functions and PRCs

require comprehensive statistical studies with different
groups of subjects. Another prospective application of
the characterisation of CRI through PRC is related to
implementation of a proper CRI in computational mod-
elling of cardiac electrophysiology [58].

METHODS

Data. We analysed continuous multichannel record-
ings from 17 healthy subjects (7 females, 10 males,
age between 27 and 51, average 36, see Supplemen-
tary Table S1 for details; written informed consent
including permission of data use was obtained from
all subjects before the measurement). The measure-
ments were done with a custom-made battery-powered
device (ChronoCordr, Human Research, Weiz, Aus-
tria (www.humanresearch.at), and the University of Ap-
plied Sciences FH Joanneum, Kapfenberg, Austria) with
Bluetoothr connection to a PC. It is based on a Holter
ECG, but was expanded to record four channels, each
with the sampling rate of 1 kHz and resolution of 16
bit. The device was equipped with a differential chest-
wall ECG, two piezoresistive pressure sensors attached
to the wrist of the left and right hands above the arte-
ria radialis close to the location of apophysis radii and
yielding arterial pulse signals, and a high-speed thermis-
tor to record the nasal respiratory flow for the respira-
tion signal [59, 60]. For each subject, two recordings of
duration 420s were performed in the supine position at
rest, with the interval of 12 minutes between the trials;
the subjects were quietly and relaxed standing during
these breaks. All data have been visually inspected and
only time series without large disturbances, e.g. due to
motion, swallowing, etc, were analysed (small artefacts
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have been manually corrected during preprocessing). Al-
together, we have selected and analysed 26 records of
respiration – ECG data and 20 records of respiration –
arterial pulse data, see Supplementary Table S1. Prepro-
cessing of time series has been performed in the follow-
ing way: manual correction of artefacts by interpolation
(for respiration), smoothing by Savitzky-Golay filter, and
elimination of slow baseline fluctuations, see Supplemen-
tary Figs. S3, S4, S5.

Phases from data. Protophases of the respiratory
signal, θr, were obtained as angles in the two-dimensional
embedding performed with help of the Hilbert Transform
(Fig. 8a). Then the protophases were transformed to the
phases with the help of the technique of Ref. [27]:

ϕ = θ + 2

nF∑
n=1

Im

[
Sn
n

(einθ − 1)

]
, (4)

where Sn = n−1
∑N
j=1 e

−inθ(tj) are the coefficients of the
Fourier expansion of the probability distribution den-
sity of θ, computed from its time series θ(tj), where
j = 1, . . . , N . The number of Fourier modes nF was cho-
sen according to [42]. For such complex signals as ECG,
the embedding via the Hilbert Transform does not pro-
vide a trajectory with a well-defined centre of rotation
(Fig. 8b); therefore we developed the following three-
step technique. In the first step, 6 markers are identi-
fied within each PQRST complex, corresponding to the
maxima of R, T, and P waves and minima of Q, S and of
the wave after T (Fig. 8d). The first estimate, Ψ, of the
protophase is obtained by means of a linear interpolation
between the markers, while the phase of each marker is
assigned according to its average position within the cy-
cle; the phase of the R-peak is set to zero. Next, we
construct from the ECG the complex analytic signal z(t)
by means of the Hilbert Transform, and compute the av-
erage cycle (Fig. 8b), parametrised by an angle variable
ψ:

zac(ψ) =
∑
n=0

Hne
iψ (5)

whereHn are the Fourier coefficients of the function z(ψ):

Hn =
1

Ψ(T )

∫ Ψ(T )

0

z(ψ)e−inψdψ

=
1

T

∫ T

0

z(t)e−inΨ(t) dΨ(t)

dt
dt .

(6)

As the next step we introduce the protophases θe, pro-
jecting z(t) onto the average cycle with the help of an
optimisation strategy, illustrated in Supplementary Fig-
ures S6, S7. Finally, the transformation θe → ϕe was
performed according to Eq. (4). The protophases θp were
obtained via the average cycle technique with 3 markers,
see Fig. 8e.

Coupling function reconstruction. For this pur-
pose we use the kernel density estimation. First, for
each point in the data set we estimate the derivative of
either ϕe or ϕp via local polynomial fitting, using the
4th-order Savitzky-Golay filter with the window length
0.008s, which provided a reliable smoothing without los-
ing much information. Next, we fit Eq. (3) on a n × n
grid using the smoothing kernel with the width inverse
proportional to n: K(x, y) = exp [ n2π (cosx+ cos y)]. We
compute

Q(ϕe,p, ϕr) =

∑N
k=1 Φ̇e,p(tk)K(ϕe,p − Φe,p(tk), ϕr − Φr(tk))∑N

k=1K(ϕe,p − Φe,p(tk), ϕr − Φr(tk))
.

(7)
Here ϕe,p and ϕr denote the points on the grid, where the
functions Qe,p are estimated, whereas Φe,p and Φr denote
the time series of cardiac and respiratory phases, respec-
tively. We choose n = 64 which yields ≈ 100 observation
points per grid cell.

Similarity between the functions is quantified by the
correlation coefficient ρ = 〈Q̃1Q̃2〉‖Q̃1‖−1‖Q̃2‖−1, which
measures similarity of the forms of two functions (in-
dependently of their amplitudes), and by the differ-
ence measure η = ‖Q̃1 − Q̃2‖(‖Q̃1‖ + ‖Q̃2‖)−1, which
also reflects difference in the amplitudes (norms). Here
〈·〉 denotes averaging over the two-dimensional domain
0 ≤ ϕ1, ϕ2 ≤ 2π, Q̃ = Q−〈Q〉, and norm ‖Q‖ = 〈QQ〉1/2.

PRC from coupling function. We decompose the
reconstructed functions Qe(ϕe, ϕr) according to Eq. (3).
Because the frequency ωe is unknown, we represent
Qe(ϕe, ϕr) − ωe = Z(ϕe)I(ϕr) as a product of two func-
tions, considering ωe as a parameter and searching for
minimum of the decomposition error ‖β‖ = ‖Qe − ωe −
ZI‖; the optimal value is taken for the estimate of the
frequency ωe (see Fig. 5c). Decomposition of a function
into a product was performed by means of an iterative
scheme (Supplementary Eq. (S5)).
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Supplementary Information

Code Age Sex Number of respiration - ECG Number of respiration - pulse
data sets data sets

V01 37 m 2 3
V02 39 f 0 1
V04 39 f 2 0
V06 30 f 1 0
V07 32 m 2 0
V08 39 m 1 4
V09 37 f 1 1
V11 40 m 2 2
V12 27 m 0 2
V14 29 m 2 0
V15 43 f 1 0
V16 40 m 2 1
V17 30 m 2 0
V21 43 m 2 0
V23 28 m 2 4
V24 27 f 2 2
V25 51 f 2 0

Average age: 36 Total number: 26 Total number: 20

Supplementary Table S1. Summary of the data used. For 17 subjects we have obtained from 1 to 6 data sets of
sufficient quality for the subsequent analysis, with totally 26 respiration – ECG bivariate data sets and 20 respiration
– arterial pulse sets. The average age of the group is 36, with 7 female and 10 male subjects (average age 38 and 34.5,
respectively).

SUPPLEMENTARY METHODS

Measurements and preprocessing.

We performed experiments with 17 healthy subjects
and recorded ECG, respiratory flow, and pulse wave. The
description of the data sets is summarised in Supplemen-
tary Table S1.

Respiratory data. Preprocessing of respiratory time
series was performed in the following way: (i) manual
correction of artefacts by interpolation, (ii) smoothing by
Savitzky-Golay filter of order 1 with the window length
0.75s, and (iii) elimination of slow baseline fluctuations
by means of fitting and subtracting Fourier modes with
the periods T = 420s (total record length), T/2, T/3,. . . ,
Tmin, where Tmin corresponds to 4 average respiration
periods. An example of the original and preprocessed
signals is shown in Supplementary Figure S3.

ECG and arterial pulse data. The signals have been
smoothed with the help of the first-order Savitzky-Golay
filter with the window length 0.025s (Supplementary Fig-
ure S4). Next, slow variation of the baseline was cleansed

by fitting and subtracting Fourier modes with the periods
T = 420s, T/2, . . . , T/210, i.e. slower than 2s. (Notice
that the quality of our ECG records is very high and the
baseline fluctuations were very small; however, this pre-
processing step has been performed for consistency with
other records.) Next, in order to reduce the slow am-
plitude variations of the ECG, we detected the R-peaks,
fitted their heights by a 3rd-order polynomial function of
time R(t), and divided the ECG signal by R(t). Finally,
we normalised the ECG so that its maximal value is one.
Arterial pulse signals have been preprocessed in the same
way as the ECG signals (Supplementary Figure S5).

PRC from bivariate data: Methods in details

Protophase determination.

Here we describe how to compute the protophases θr,e,p
for the observables, recorded in our experiments, where
we consider the heart and the respiratory cycles as out-
puts of coupled oscillatory systems approximately obey-
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ing Eqs. (1) in the main text. Protophase is an angle
variable that parametrises the signal, grows monotoni-
cally, but generally not uniformly, in time, and gains 2π
at each cycle. Important is that the protophase is not de-
fined from the timing within the cycles of the signal, but
shall be related to the state of the oscillatory system,
via construction of an embedding. For the respiration
we obtain θr from a two-dimensional state plane, where
one coordinate is the signal x(t) itself and another one is
its Hilbert transform x̂(t) (see Fig. 8a in the main text).
Here the dynamics on the state plane looks like rotations,
and the protophase is identified with the polar angle with
respect to some origin, i.e. θ = arctan(x̂/x). For com-
plex waveforms like the ECG signal the construction of
the protophase is highly non-trivial. Here we use a novel
three-step technique; the first two steps are described in
the main text. In the third step we introduce the pro-
tophase θe, projecting the analytic signal z(t) onto the
average cycle with the help of an optimisation strategy,
described below.

Cardiac protophase via projection on the average cycle.

We have to assign protophases to all points of the tra-
jectory z(t). For the points on the cycle itself we simply
take θe = ψ. In order to ascribe the protophase to the
points in the neighbourhood of the average cycle zac, we
project each point of the complex time series z(t) onto the
average cycle. Namely, we search for the point zac(ψ0)
on the average cycle, which has the minimal Euclidean
distance to z(t), i.e. we find minψ0

{
|z(t)− zac(ψ0)|2

}
,

and assign θe(t) = ψ0.
Here, the following problem has to be solved. In the

time interval between the minimum after the T-wave and
the P-wave, i.e. between the 4th and 5th markers (cf.
Fig. 8d in the main text), the ECG signal is nearly con-
stant and therefore is dominated by fluctuations: the
variation of the signal due to the variation of protophase
is smaller than its variation due to noise or amplitude
dynamics. Hence, within this region the signal contains
practically no information about the protophase of the
system. To overcome this difficulty, we added another
term to the minimisation condition, which now reads

minψ0

{
|(z(t)− zac(ψ0)|2 + α

∣∣∣eiΨ(t) − eiψ0

∣∣∣2} , (S1)

where the term α
∣∣eiΨ(t) − eiψ0

∣∣2 quantifies the discrep-
ancy between the preliminary estimate of the protophase
Ψ(t) and the point ψ0 on the average cycle zac. This
term plays the role of a cost function, forcing the min-
imisation procedure to look for solutions in the vicin-
ity of Ψ(t). The minimisation is achieved in a trade-off
between minimising the distance between the point z(t)
and the average cycle zac(ψ), i.e. |(z(t)− zac(ψ0)|, and

minimising the deviation of θe(t) = ψ0 from the initial
estimate Ψ(t), where the relative weight of both terms
is determined by the factor α. If α = 0, the solution is
solely determined by the distance between signal an av-
erage cycle; for large values of α the minimisation will
reproduce the values of the preliminary estimate Ψ(t).
Furthermore, the result of the trade-off depends on the
time structure of the signal. In the regions of fast dynam-

ics, where
∂z

∂ψ
is large, the term |z(t)− zac(ψ0)|2 strongly

contributes to the minimisation, while in regions with a
nearly flat signal, its contribution is negligible. On the
contrary, here the term describing the deviation from the
initial estimate will dominate. Since the trade-off also de-
pends on the absolute values of the signal z(t), the signal
is always normalised to max[z(t)] = 1. Practically, the
minimisation procedure is performed with the MATLAB
(The Mathworks, Natick, MA) function fminbnd.

The optimal value of the parameter α has to be esti-
mated empirically for the particular form of the signal,
noise level, and baseline fluctuation. We suggest the fol-
lowing procedure. In the first step we simulate the phase
model

ϕ̇teste = ωe +
∑
n,m 6=0 Fn,me

(nϕtest
e +mϕtest

r ) ,

ϕ̇testr = ωr ,
(S2)

in order to generate test phase time series ϕteste and ϕteste ,
where the natural frequencies are ωr = 2 and ωe = 2π.
Here Fn,m are Fourier coefficients of the test coupling
function; the non-zero coefficients are: F0,±1 = 0.05,
F±k,∓1 = 0.1, with k = 1, 2, 3, 4. Next, we generate a
test ECG signal Etest = zac(ϕ

test
e ), using the average cy-

cle, obtained from the ECG to be analysed. To imitate
the real ECG signals, we added some noise and amplitude
variations. In order to simulate the effect of respiration,
we introduced amplitude variations which are periodic in
ϕtestr . This was achieved with the help of transformation

Etest(t)
[1 + 0.02 cos[φtestr (t)]]2

+ η(t)→ Etest(t) , (S3)

where η(t) is Gaussian uncorrelated noise with stan-
dard deviation σ = 0.001 · max(Etest). An example of
the test signal Etest is shown in Supplementary Figure
S6. Next, from the contaminated test time series we re-
constructed phase models Qα for different values of α.
These reconstructed models were compared to the known
original phase model Qtest by means of the correlation
ρ(Qα, Q

test) and of the difference measure η(Qα, Q
test),

see Supplementary Figure S7. The maximal respectively
minimal values are found for α = 0.15. Therefore, the
value α = 0.15 appears to be the optimal choice for the
imitated signals. Since the real ECG signals are not as
clean as the simulated ones and since this optimal value is
very close to the border of quality breakdown, we choose
a value in the saturation region, namely α = 0.5 for real
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ECG data computations. As can be seen from Supple-
mentary Figure S7, this choice reduces the correlation by
2%, but makes the processing more reliable. For pulse
date we used the same procedure leading to an optimal
value of α = 0.8.

PRC from coupling function.

We decompose the reconstructed functions Qe(ϕe, ϕr)
according to

Qe(ϕe, ϕr) = ωe + Z(ϕe)I(ϕr) + β(ϕe, ϕr) , (S4)

with the residual β characterising the quality of the de-
composition. Because the frequency ωe is unknown, we
represent Qe(ϕe, ϕr)− ωe as a product of two functions,
considering ωe as a parameter and searching for minimum
of the decomposition error ‖β‖ = ‖Qe − ωe − ZI‖; the
optimal value is taken for the estimate of the frequency
ωe. Here ‖β‖ =

√
〈β2〉 denotes the norm of the func-

tion, whereas 〈·〉 denotes averaging of a function over the
two-dimensional domain 0 ≤ ϕ1, ϕ2 ≤ 2π. Decomposi-
tion of a function into a product S(x, y) = f(x)g(y) was
performed by means of the following iterative scheme:

fn+1(x) =

∫ 2π

0
S(x, y)gn(y)dy∫ 2π

0
g2
n(y)dy

,

gn+1 =

∫ 2π

0
S(x, y)fn+1dx∫ 2π

0
f2
n+1(x)dx

,

(S5)

with the initial function taken as g0(y) = S(x̄, y), where
S(x̄, ȳ) = maxx,yS(x, y). Numerical tests show that the
procedure converges very fast, namely at most 5 itera-
tions are required.

PRC: additional discussion

Normalisation. The decomposition Q(ϕe, ϕr) = ω +
Z(ϕe)I(ϕr) contains a free parameter which cannot be
determined from the coupling function Q, namely the
relative scaling of functions Z and I: rescaling Z → bZ,
I → b−1I yields the same Q. Thus, if no further informa-
tion is available, only the shape of the PRC Z(ϕh) can be
determined, but not its amplitude. In our presentation
in Fig. 5 in the main text we made the norms of Z and
I equal. Another, quite natural option is to assume that
the norm of I is roughly proportional to the norm (stan-
dard deviation) of the respiratory signal. Here we adopt
this, although in our measurements the relation between
the intensity of respiration and the amplitude of the mea-
sured quantity (thermistor output) is rather weak, as it is
distorted by variations of the environment temperature

and other factors. In this normalisation the PRC is mea-
sured in units of sec−1[r]

−1
where [r] is the dimension of

the respiratory signal (in our case mV). In Supplemen-
tary Figure S2, together with functions Z and I obtained
via decomposition of all obtained coupling functions Qe,
we also present the averaged functions, obtained either
by (i) averaging all functions Z and all functions I or (ii)
by decomposing the averaged coupling function, shown
in Fig. 2e in the main text. It is important to emphasise
that averaged functions Z and I obtained via different
normalisation techniques are very close (cf. Fig. 5 in the
main text).
PRC from Qp functions. PRC and effective forcing

obtained from arterial pulse – respiration functions are
shown in Supplementary Figure S1, to be compared with
Fig. 3 in the main text and with Supplementary Figure
S2. It can be seen that the effective force is nearly the
same, as the one obtained from Qr functions. The PRCs
qualitatively agree with those obtained from ECG, al-
though the refractory period is not so pronounced.
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Supplementary Figures
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Supplementary Figure S1. Individual PRCs Z (a) and effective forcing I (b) for all pulse-based coupling functions. In
both panels blue lines show the average over all individual (grey) curves. Red curves are obtained by decomposition
of the averaged coupling function, shown in Fig. 2f in the main text. Small panels on top of (a) and (b) show for
comparison the average pulse and respiratory cycles as functions of their phase.
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Supplementary Figure S2. Individual PRCs Z (a) and effective forcing I (b) for all ECG-based coupling functions,
obtained via another normalisation. In both panels blue lines show the average over all individual (grey) curves.
Red curves are obtained by decomposition of the averaged coupling function, shown in Fig. 2e in the main text.
Normalisation used here is explained in the text. Small panels on top of (a) and (b) show for comparison the average
ECG cycle and the average respiratory cycle as functions of their phase.
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Supplementary Figure S3. Illustration of the respi-
ratory data smoothing. Original signal is shown in red,
smoothed signal is shown in blue. Two artefacts at ≈ 13s
and ≈ 41s were manually corrected by interpolation. The
signals (arbitrary units) are shifted vertically for better
visibility.
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Supplementary Figure S4. Illustration of the ECG
smoothing. Original ECG is shown in red, preprocessed
signal is shown in blue. The signals (arbitrary units) are
shifted vertically for better visibility.
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Supplementary Figure S5. Illustration of the arterial
pulse smoothing. Original signal is shown in red, am-
plitude adjusted and smoothed arterial pulse is shown in
blue. The signals (arbitrary units) are shifted vertically
for better visibility.
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Supplementary Figure S6. The artificial ECG test signal
Etest used for the optimisation procedure.
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Supplementary Figure S7. Optimisation of the average
cycle technique with the help of artificial data. The cor-
relation, ρ(Qα, Q

test) (blue), and the difference measure,
η(Qα, Q

test) (red), as functions of the optimisation pa-
rameter α, for the ECG – respiration data. The maximal
respectively minimal values are found for α = 0.15 and
marked by circles. The value α = 0.5 used for the anal-
ysis is marked by vertical line.
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