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We consider time evolution of Turing patterns in an extended system governed by an equation of the

Swift-Hohenberg type, where due to an external periodic parameter modulation longwave and shortwave

patterns with length scales related as 1:3 emerge in succession. We show theoretically and demonstrate

numerically that the spatial phases of the patterns, being observed stroboscopically, are governed by an

expanding circle map, so that the corresponding chaos of Turing patterns is hyperbolic, associated with a

strange attractor of the Smale-Williams solenoid type. This chaos is shown to be robust with respect to

variations of parameters and boundary conditions.
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In nonlinear dynamics the notion of structural stability,
or robustness, is one of the key tools allowing one to
specify systems and effects that are really significant for
theoretical and numerical researches, and especially for
practical applications [1,2]. Among chaotic attractors,
structural stability is intrinsic to those possessing the uni-
form hyperbolicity (‘‘the systems with axiom A’’), mathe-
matical examples of which were advanced already since
the 1960s and 1970s [3–6]. At that time, such attractors
were expected to be relevant for various physical situations
(such as hydrodynamic turbulence), but later it became
clear that the chaotic attractors, which normally occur in
applications, do not relate to the class of structurally stable
ones. This is an obvious contradiction to the principle of
significance of the robust systems mentioned above.

Recently, this inconsistency has been partially resolved
by introducing a number of physically realizable systems
with hyperbolic chaotic attractors [7–10]. It has been
shown that simple systems of coupled oscillators that are
excited alternately (in time) possess hyperbolic attractors
of Smale-Williams type (for experimental realizations, see
[9–11]). Hyperbolic chaos in these systems is related to the
dynamics of the phases of the oscillators, evolution of
which on the successive stages of activity is governed by
a Bernoulli-type expanding circle map.

In this Letter we develop a similar approach, but deal
with the spatial phases of patterns in a spatially extended
system. We demonstrate the occurrence of hyperbolic
chaos in dynamics resulting from an interplay of two
Turing patterns of different wavelengths arising in suc-
cession. This advance, first, extends a toolbox for design
of models manifesting robust chaos. Second, it suggests a
novel direction for search of situations associated with
hyperbolic chaos in the context, e.g., of fluid turbulence,
convection, and reaction-diffusion systems. Third, the

description in terms of truncated equations for ampli-
tudes of spatial modes leads to new prototypical low-
dimensional model systems with hyperbolic attractors.
(Note analogy with the Lorenz equations, which were
derived originally as a finite-dimensional model for fluid
convection.)
Let us illustrate the approach with a concrete example

based on the one-dimensional Swift-Hohenberg equation
[12]. Consider its following modification:

@tuþ ½1þ �2ðtÞ@2x�2u ¼ ½Aþ B�ðxÞ�u� u3: (1)

Here A is a positive parameter controlling the Turing
instability. An instant value of � determines the wave
number of the unstable Turing mode. In our case �ðtÞ
is assumed to be a periodic function: �ðtÞ ¼ 1 for nT �
t < ðnþ 1=2ÞT, and �ðtÞ ¼ 1=3 for ðnþ 1=2ÞT �
t < ðnþ 1ÞT. This switching provides the excitation of
two distinct alternating in time Turing patterns character-
ized by the dominating wave numbers, k ¼ 1 and k ¼ 3,
respectively. The time interval T between the switchings is
supposed to exceed the characteristic time duration of the
formation or decay of the Turing patterns. A nonlinear
cubic term in the equation is responsible for saturation of
the instability. Also, the coefficient at the linear term in the
equation is assumed to depend on the spatial coordinate
that corresponds to the presence of a spatial nonuniformity
characterized by a function �ðxÞ; its role will be clarified
below. Assuming the ring geometry and periodic boundary
conditions uðx; tÞ � uðxþ L; tÞ (PBC), it is natural to set
the length of the system as L ¼ 2�‘, with integer ‘, to get
the geometry supporting the Turing patterns of both the
wave numbers k ¼ 1 and 3.
The system operates as follows. In each time interval

with �ðtÞ ¼ 1 the Turing pattern with the dominating wave
number k ¼ 1 arises, which is characterized by some
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spatial phase ’: u�U1 cosðxþ ’Þ þ ~U3 cosð3xþ 3’Þ,
where ~U3 � U1, and U1 is of the order of

ffiffiffiffi

A
p

. (The third
harmonic appears naturally due to the cubic nonlinear term
in the equation.) After the switch to � ¼ 1=3 the system
becomes unstable in respect to the harmonic component
with k ¼ 3, while that with k ¼ 1 starts to decay. The
initial stimulation of the shortwave pattern is provided by
the component ~U3; so, it accepts the spatial phase 3’.
At the end of the considered time interval the first har-
monic component practically disappears, and we have

u�U3 cosð3xþ 3’Þ, with U3 of the order of
ffiffiffiffi

A
p

. After
the next switch, when � ¼ 1 again, the third harmonic
decays, but the first harmonic becomes unstable and starts
to grow. A germ for this growth is provided by a compo-
nent at the wave number k ¼ 1 arising from the combina-
tion of the decaying shortwave pattern and the spatially
dependent coefficient �ðxÞ. If the Fourier expansion of
�ðxÞ contains a dominating second harmonic k ¼ 2, the
longwave mode will arise with the phase 3’, due to the
term proportional to cos2x cosð3xþ 3’Þ ¼ ð1=2Þ cosðxþ
3’Þ þ . . . . Thus, on each complete period of modulation T
the phase of the spatial pattern undergoes the tripling (up to
a constant phase shift): ’nþ1 ¼ 3’n þ const. This is an
expanding circle map with chaotic behavior characterized
by the positive Lyapunov exponent � ¼ ln3 � 1:0986
[13]. Since the phase map is uniformly expanding, the
stroboscopic map corresponding to the transformation of
the states unðxÞ � uðx; tnÞ from tn ¼ nT þ const to tnþ1 is
expected to be hyperbolic.

Of course, this mode of operation occurs under the
proper choice of the parameters. A value of A is selected
to get an instability at k ¼ 1 with a decay at k ¼ 3, or vice
versa, at successive half-periods of parameter modulation.
The term B�ðxÞ must be small (comparing to the fully
developed pattern amplitude) to contribute only as a germ
for the formation of the longwave pattern, although this
germ should be of a sufficient level to start the process with
saturation on the time scale T. In fact, the requirements are
not very strict: the described type of behavior occurs in a
fairly wide parameter range.

Figure 1 illustrates the spatiotemporal behavior of the
system observed for the case of PBC. The 3D-plot uðx; tÞ is
obtained using computations on a spatial grid with the node
separation �x ¼ L=N, where N is a number of the nodes.
One can observe the alternating evolution of the Turing
structures: a longwave pattern first appears, then decays,
and is replaced by a shortwave one. After the period T, the
longwave pattern reappears but with a different spatial
phase (shift along x axis), and the process repeats. As we
show in Fig. 2(a), the spatial phases recorded stroboscopi-
cally follow a chaotic map of the expected type. To obtain
this diagram, we determine the spatial phases at tn ¼ ðnþ
1=4ÞT as ’n ¼ arg½uðL=2; tnÞ þ i@xuðL=2; tnÞ�, where the
spatial derivative @xu is estimated by the numerical differ-
entiation, and the results are plotted in coordinates ’nþ1

versus ’n. This empirical map is of the expected topologi-
cal type: one revolution for the preimage corresponds to
three revolutions for the image.
To characterize chaos quantitatively and demonstrate

its robustness, we calculate the Lyapunov exponents.
Figure 3(a) shows the first five Lyapunov exponents for
the stroboscopic map as functions of the parameter A. The
chaotic mode of operation occurs above some threshold
around A � 0:38. In the chaotic regime there is one
positive Lyapunov exponent, which remains almost con-
stant in a wide parameter range. In particular, at A ¼ 0:6
the Lyapunov exponents are � ¼ f1:018;�9:34;�9:34;
�11:42;�18:64; . . .g. As expected, the largest exponent
is close to ln3. As seen from the diagram, all the exponents
depend on the parameter smoothly, without sharp spikes or
dips. This is a manifestation of robustness of the hyperbolic
chaos [7,9,10]. The Kaplan-Yorke dimension of the attrac-
tor varies slightly, see the solid line in Fig. 3(b); in par-
ticular DKY � 1:11 at A ¼ 0:6.
To confirm the validity of the used spatial discretization,

in Fig. 3(c) we show the 16 largest Lyapunov exponents
obtained at a fixed length L with different sizes of the
numerical mesh N. The decrease of �x ¼ L=N corre-
sponds obviously to approaching the continuous limit.
The left-hand parts of the curves overlap perfectly; so,
the larger exponents are in good correspondence for all
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FIG. 1 (color online). Hyperbolically chaotic patterns in model
(1) at A ¼ 0:6, B ¼ 0:03, T ¼ 25, L ¼ 4�, N ¼ 64, PBC.
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FIG. 2 (color online). Diagrams for spatial phases of Turing
patterns at tn ¼ ðnþ 1=4ÞT for A ¼ 0:6, B ¼ 0:03, T ¼ 25.
(a) Numerical solution of the system (1), PBC, L ¼ 4�,
N ¼ 64. (b) Amplitude equations (3). (c) System (1) with
ZBC, L ¼ 8�, N ¼ 128.
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tested step sizes. The discrepancy visible in the right-hand
part of the plot for large negative exponents decreases with
the growth of N. Hence, we can be sure that the properties
revealed in the computations with the finite discretization
size are valid for the continues system as well.

Next, we perform a direct test of the hyperbolicity. The
hyperbolicity implies that there are no tangencies between
the stable and unstable manifolds of orbits belonging to the
attractor. Occurrence of a tangency is determined by the
zero angle between the expanding and contracting tangent
subspaces spanned by the corresponding covariant
Lyapunov vectors [14]. Following the method for testing
hyperbolicity described in [15], we examine the distribu-
tion of these angles by considering the orthogonal comple-
ment to the contracting subspace, which is normally much
less dimensional then the contracting subspace itself. If
there areK expanding directions, it is sufficient to calculate
K orthogonal backward and forward Lyapunov vectors, to
construct a K � K matrix P of their scalar products, and to

check how close to zero is the normalized characteristic
number

dK ¼ j detðPÞj: (2)

By the definition, 0 � dK � 1. The procedure is applied at
a representative set of points on a trajectory on the attrac-
tor. The distribution of dK separated well from zero means
that the chaos is detected as hyperbolic: the tested trajec-
tory does not contain any points with tangencies of the
expanding and conracting Lyapunov vectors.
In application to the stroboscopic map of the system (1)

the calculations are simple because K ¼ 1. For the pa-
rameters used in Fig. 1 we processed 105 points and
observed that ð1� 5� 10�5Þ< d1 � 1. It means that the
expanding direction is always almost orthogonal to the
contracting subspace. Thus, the conjecture that the attrac-
tor is uniformly hyperbolic is confirmed, but, of course, a
rigorous mathematical proof of the hyperbolicity would be
desirable anyway.
As in the system only two modes with the wave num-

bers k ¼ 1 and k ¼ 3 are basically involved, one can
expect that the essential properties of the dynamics can
be described with a truncated model. To derive the low-
dimensional model we proceed as follows. Accounting
for the relevant modes, we use the ansatz u ¼ a1ðtÞ�
cosxþ b1ðtÞ sinxþ a3ðtÞ cos3xþ b3ðtÞ sin3x. Assuming
�ðxÞ ¼ cos2x, after the substituting to Eq. (1), we multi-
ply the resulting expression by cosx and sinx, and by
cos3x and sin3x, and for each case perform the integration
over the spatial period 2�. The result is a set of equations
for the amplitudes of the modes, which can be compactly
expressed in the complex form as

_c1¼�1c1�1
4½3ðjc1j2þ2jc3j2Þc1�2Bc3þð3c	1c3�2BÞc	1�;

_c3¼�3c3�1
4½3ðjc3j2þ2jc1j2Þc3�2Bc1þc31�; (3)

where the asterisk denotes complex conjugation,
c1 ¼ a1 þ ib1, c3 ¼ a3 þ ib3, �1 ¼ A� ð1� �2Þ2,
�3 ¼ A� ð1� 9�2Þ2, and � ¼ �ðtÞ, as before. Notice
that the structure of the equations resembles that for the
amplitude equations obtained for other models with
hyperbolic attractors of Smale-Williams type [8,9,16].
Figure 4 illustrates the dynamics of the model (3).

Observe the switchings after each next half-period T=2.
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FIG. 4 (color online). Solution of Eq. (3) at A ¼ 0:6,
B ¼ 0:03, T ¼ 25. Solid (red) and dotted (blue) lines refer to
a1 ¼ Rec1, and b1 ¼ Imc1, respectively.
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FIG. 3 (color online). (a) Five largest Lyapunov exponents vs
A for the stroboscopic map of the system (1) at tn ¼ ðnþ 1=4ÞT,
PBC. (b) Kaplan-Yorke dimension for PBC (solid line) and ZBC
(dotted line). (c) PBC, first 16 exponents for different N: pluses,
crosses, stars, and squares refer to N ¼ 64, 128, 256, and 512,
respectively. (d) ZBC, first five exponents. Other parameters are
the same as in Fig. 1 for PBC and B ¼ 0:03, T ¼ 25, L ¼ 8�,
N ¼ 128 for ZBC.
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Different heights of the humps of Rec1 and Imc1 arise due
to the variations of the phases of c1. The phases transform
stroboscopically according to the triple expanding circle
map; see Fig. 2(b) for the diagram for the phases computed
as ’n ¼ arg½c1ðtnÞ�. The Lyapunov exponents evaluated
for the stroboscopic map of the model (3) at A ¼ 0:6, B ¼
0:03, T ¼ 25 are � ¼ f1:083;�12:5;�804:7;�806:5g,
and the Kaplan-Yorke dimension is 1.09. Notice that the
first exponent is close to ln3. The hyperbolicity test de-
scribed above again shows that the expanding and con-
tracting subspaces are almost perfectly orthogonal.

Now we intend to demonstrate that the hyperbolic chaos
can be observed in geometries distinct from the ring one. In
particular, let us examine simple zero boundary conditions
(ZBC): uðx; tÞ ¼ 0 for x � 0 and x 
 L, which could, in
principle, block the mechanism of the chaotic transforma-
tion of the phases (because near the ends the spatial phase
is dominated by the boundary conditions). However, com-
putations show that such a blocking occurs only in short
systems. If the length is large enough, patterns in the
middle part of the system still interact in the same way
as for PBC, while the parts close to the ends undergo
deformations to fit ZBC; see Figs. 2(c) and 3(d) for
L ¼ 8�. The map for the spatial phases at the middle
part of the system agrees well with the expected form.
Moreover, there is a large parameter interval, where the
system has a single positive Lyapunov exponent of value
almost independent on A. At A ¼ 0:6 the Lyapunov
exponents are � ¼ f1:047; �1:59; �3:92; �4:97;
�6:16; . . .g, and the Kaplan-Yorke dimension is 1.66.
The hyperbolicity test shows pronounced separation of
d1 from the origin, although the distribution is wider
(0:93< d1 < 1) than for PBC.

Summarizing, in this Letter we have shown how the
hyperbolic chaotic dynamics can emerge in extended sys-
tems due to an interplay of spatial patterns with different
wavelengths. In our model system the spatial phases of the
patterns evolve in time according to the Bernoulli-type
tripling map, and their dynamics is strongly and robustly
chaotic, while the amplitudes behave in a rather regular
manner. The mechanism of the hyperbolic chaos is similar
to that in alternately excited oscillations, studied earlier
[7]. In some respects, the chaotization of spatial phases
appears to be easier for implementation (there is no neces-
sity to have more than one involved subsystem). We have
demonstrated the expected chaotic behavior in the partial
differential equation of the Swift-Hohenberg type, and in
the truncated model represented by a set of ordinary dif-
ferential equations. It should be emphasized that the kind
of dynamics we consider is not specific for the Swift-
Hohenberg equation only. Ingredients needed for the phase
multiplication mechanism, namely, the alternation of
patterns due to parameter modulation, the nonlinearity,

and the spatial inhomogeneity can be either found or
created
in many spatially extended systems. As expected, these
results open prospects for the search and constructing for
hyperbolic chaos in pattern-formation for systems in fluid
dynamics (Faraday ripples, convection rolls) and in
reaction-diffusion systems (Turing structures, advection
induced patterns) [12]. In the case of microfluidic systems
[17,18], an interesting question for future studies is the
effect of hyperbolic chaos on Lagrangian mixing
properties.
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